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J. P. Blaizot*
Department of Physics, University of Illinois at Urbana Cham-paign, Urbana, Illinois 61801

H. Qrland
Service de Physique Theorique, Saclay, 02, 91190 Gif sur Yvet-te, France

(Received 22 December 1980)

We present a general method for constructing path intergrals for the nuclear many-body

problem. This method uses continuous and overcomplete sets of vectors in the Hilbert

space. The state labels play the role of classical coordinates which are quantized as bosons.

The equations of motion for the classica1 coordinates are obtained by calculating the func-

tional integral in the saddle point approximation. In the particular case where the over-

complete set considered is the set of all Slater determinants, the classical equations of
motion are the time-dependent Hartree-Fock equations. The functiona1 integral provides a

way of requantizing these classical equations. This quantization involves boson degrees of
freedom and is in some cases very similar to the method of boson expansion. It is shown

that the functional integral formalism provides a unifying framework to describe various

approaches to the nuclear many-body problem.

NUCLEAR STRUCTURE Functional integrals on continuous over-

complete sets. Time-dependent Hartree and Hartree-Fock theories. Bo-

son representations for fermion systems.

I. INTRODUCTION

The present work examines the application of
path integrals to the nuclear many-body problem.
It has been motivated partly by the recent develop-
ments in the time-dependent mean field theories
which have been applied to the description of large
amplitude collective motion or heavy ions reac-
tions. ' One of such theories is the time-depen-
dent Hartree-Fock theory hereafter referred to as
TDHF. As is well known, the mean field approxi-
mation to the many-body problem leaves out defin-

ite effects which are usually interpreted in terms of
quantum mechanics. For example the vibrational
and rotational modes are not quantized in TDHF.
To make connection with quantum spectra, a "re-
quantization" is obviously required. The procedure
followed for this requantization is often empirical
and mostly unjustified. This originates from the fact
that most of the derivations of the time-dependent
mean field equations do not allow for a systematic
expansion beyond the mean field level. An excep-
tion to this criticism is the boson expansion

method. In this method, the time-dependent
mean field equations arise from the replacement of
the boson operators by c numbers. Moreover, and
this is a major point, it can be shown that the boson
expansion retrieves exactly the original many-body
problem of interacting fermions. In other words bo-
son expansions provide an exact quantization
scheme for the time-dependent mean field equations.

Path integrals provide other possible quantization
schemes. The standard procedure is to calculate
first the functional integral using the saddle-point
approximation. This provides the "classical" ap-
proximation of the theory. Knowing the classical
solution, one can get a semiclassical expression for
the transition amplitudes and apply a generalization
of the Wentzel-Kramers-Brillouin (WKB) method
to quantize periodic motions. Further quantum ef-

fects are recovered by calculating the successive
corrections to the saddle-point approximation. In
the calculation of these corrections, boson degrees of
freedom appear naturally. Actually, as we shall see,
the boson expansion method is closely related to the
quantization through path integrals.
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Path integrals have been extensively used in many
different areas of physics, in particular in quantum
field theory and statistical mechanics. As is well

known they are mathematically ill-defined objects
and some of the manipulations one usually performs
on ordinary integrals are not necessarily allowed,
since they may lead to completely erroneous results.
This is an important point which must always be
kept in mind. To circumvent part of the mathemat-
ical diFiculties associated with the definition of the
functional integral, one usually identifies the func-
tional integral with the formal perturbation expan-
sion. All the manipulations on the integral which
can be interpreted as manipulations on the perturba-
tion expansion are then allowed. Other manipula-
tions should be examined with great care. This does
not imply that the use of the functional integral is
restricted to perturbative approximations. It only
guarantees that the properties of the integral are
identical to those of the perturbation expansion.

In this paper, we discuss a general method for
constructing path integrals for the nuclear many-

body problem. This method, due to Klauder, '

makes use of continuous and overcomplete sets of
vectors of the Hilbert space. Among those,
coherent states or generalized coherent states are
particularly important sets. Thus the vectors of the
Hilbert space are parametrized by a set of complex
numbers which play the role of classical coordinates
in a generalized phase space. According to the
choice of the overcomplete set, different "classical
approximations" are generated from the functional
integral. In the present context one should
remember that the word classical does not imply
that something is small compared to A. For exam-

ple, choosing the set of all the vectors in the Hilbeit
space as the overcomplete set, one gets as the classi-
cal approximation to the Schrodinger equation, the
Schrodinger equation itself. This is certainly an ex-
treme case and most of the interesting approxima-
tions leave out genuine quantum effects. One of the
purposes of.the present work is to analyze these ef-

fects in the case of the time-dependent mean field

approximations.
Functional integrals have been used recently in

nuclear physics by several authors. ' ' It will be
seen that all the methods used by these authors are
actually particular cases of the general method
presented here which has much more flexibility.

This work is organized as follows. In Sec. II of
this paper we discuss the properties of some over-
complete sets which are relevant to the discussion of
the nuclear many-body problem. In Sec. III we

construct the functional integral. Several specific
forms of the functional integral are explicitly given.
In Sec. IV we discuss the link between the path in-

tegral and the formal perturbation expansion. We
analyze the difficulties associated with the quantiza-
tion of the time-dependent Hartree-Fock theory.

In Sec. V, we analyze the successive corrections
to the mean field approximation and discuss the
physical nature of the quantum effects which are
left out in this approximation. We also briefly dis-

cuss the connection between path integrals and the
boson expansion methods. Section VI summarizes
the conclusions. Let us finally mention that a par-
tial account of this work can be found in Refs.
16—19.

II. OVERCOMPLETE SETS

I dp(z)
i
z)(z

i
= 1 (2.1)

where 1 denotes the unit operator in A . In (2.1) as
well as in the following, we use the abridged nota-
tion

~

z ) for the state
~
P(z) ). We give below ex-

amples of overcomplete sets which are useful in our
discussion.

A. Coherent. states of the harmonic oscillator

This is a well known and typical example of an
overcomplete set. We recall briefly its properties.
The coherent states are thus defined:

/n) (2.2)

where
~

0) is the oscillator ground state and
~

n )
the state with n quanta. c~ is the raising operator.
The closure relation is written in terms of the states

Let I ~
tP(z) ) I be an overcomplete set of vectors

in the Hilbert space 4, depending upon a family of
parameters which we denote collectively by z. We
shall call the parameters z classical coordinates, and
the space of variations of z the generalized phase
space. The justification for this will appear in Sec.
III. The overcompletegess means that any vector of

can be expanded on the states
~

tP(z) ) and that
the states

~
f(z) ) are linearly dependent. We as-

sume that the parameters z vary continuously and
that'there exists a measure p(z) on the space where
z is defined, such that
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~z) using Bargman's measure

2m
'

(2.3)

The state (2.7) is an eigenstate of the destruction
operator c with the eigenvalue z

c, iZ) =z, iZ)
The overlap of two coherent states (2.7) is,

(2.9)

where

dz dz

2&l

dRez dImz
(Z iZ') = exp gz*z

a

(2.10)
and the integration is carried over the whole com-
plex plane. The overlap of two coherent states is

given by

Therefore the matrix element of a normal ordered
operator A (c",c) is

(z ~z') = e' ' (2.4) (Z
~

2 (c,c)
~

Z' ) = 3 (Z*,Z') exp g z*z '

a
The coherent state

~

z ) is an eigenstate of the lower-

ing operator c with eigenvalue z, (2.1 1)

c z =z z (2.5a) C. Fermions coherent states

The matrix element of an operator A (e,c), in
which the operators c and c are written in normal
order (the c on the left of the c's) is therefore given

by

(z ~A(c,c) ~z') = e' 'A(z*, z')

(2.5b)

The coherent states of fermions are defined by
analogy with the coherent states of boson. ' Let a,
a be the fermion creation and destruction opera-
tors. They satisfy the anticommutation relations

[aa~&p]+ ——0, [aa,ap]+ ——0i [&a,ap]+ = 5ap

(2.12)

B. Bosons coherent states Let us consider the state

Let us consider the boson Fock space generated
by the repeated action of the creation operators c
on the vacuum

~
0), the index a running over a

complete set of single particle states. The operators
c and their Hermitian conjugates c obey boson
commutation rules

[c„cp]= 0, [c,cp] = 0, [c,cp] = 5 ~ .

(2.6)

Boson coherent states are defined by

~

Z ) = exp g z c
~
0)

(2.7)

The properties of these coherent states generalize
those of the preceding section. The closure relation
in Fock space can be written

dz dz
exp — z~z~ Z Z = 1

(2.8)

~Z) = exp gz a ~0)
a

(2.13)

where
i
0) is the vacuum of the fermion Fock

space. Since a = 0, ~z) can be an eigenstate of
a~ only if z~ = 0. This can be realized using an-
ticommuting Grassman variables. The rules for cal-
culating with these objects have been widely dis-
cussed in the literature. All the formulas of Sec.
(II B) hold for the fermion coherent states, provided
z is understood as a Grassman variable. Note that
fermion coherent states do not belong to the Fock
space. However, they allow for a decomposition of
the identity in Fock space

J gdz'dz, exp —yz*z
~

Z)&zi =1
a a

(2.14)

D. Boson representation for fermions

Fermion states are usually represented by vectors
of a fermion Fock space, constructed from a com-
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piete set of single particle states I ~

a) J. It is also
possible to represent fermion states as vectors be-

longing to a subspace (called the physical subspace)
of a large boson Fock space. We consider in this
section the representation which has been described
in Ref. 17, and which is a generalization of that in-

troduced in Ref. 7.
To construct the boson image of an N-fermion

state, we consider a large space G, product of X bo-
son Fock spaces 8;, associated with each of the par-
ticles i

is equivalent to the condition

gC; (a)Ci(a) ~P} = 0 (i +j) . (2.21)

g C, (u)CJ(a)
~ p) = 51 ~

p)
a

(2.22)

Thus the states of the physical subspace are charac-
terized by the following set of equations

G =%1(3 A2 S (3 (2.15)
The operators d J ——g C; (a)Ci(a) satisfy the

U(N) algebra,
We call C; (a), C;(a) the creation and annihilation
operators acting in A;. These operators satisfy the
commutation relations

[C;(a),Ci (P)] = 515 p,

[C;(a),CJ(f3)] = [C; (a),CJ (13)]= 0 .
(2.16)

The following states

~
lp} g ( ) Cl (+P )"'CN(+P ) 10)B

P

(2.17)

where g~ is a sum over all the possible permuta-

tions of the indices al. ..a~, and
~
0)z is the boson

vacuum, are in one-to-one correspondence with the
N-fermion states of the fermion Fock space. They
span the physical subspace. They are characterized

by two properties. There is one and only one parti-
cle per subspace A;,

Q C;t(a)C;(a} I P) =
~

1i } (i = 1, . . . , N) .

(2.18)

= —g C; (a)C;(a)

+ g C; (a)Ci(a) g C, (P)C, (P) . (2.19)
a p

In view of Eqs. (2.18) and (2.19), the condition

(2.20)

The state changes sign in any transposition of the
particle indices. The operator which realizes such a
transposition is

P; = g C; (a)C (P)C (a)C;(P)
ap

[d1 dkI ] = dit5jk —dkj 5t; (2.23)

(2.24)

where the matrix A may be chosen to be a real ma-
trix and the integration carried from —m to m.

Other forms are of course possible for P. The
Hamiltonian in G takes the following form

H~ = g g T~pC; (a)C;(P)
i=1 ap

+ —, y y (o'0~ V ~y5)C; (a)C (P)ci(5)C;(y)
ij apy5

(2.25)

where (aP
~

V
~
y5) denotes the nonantisymmetrized

matrix element of the two-body interaction V. It is
easily verified that H~ has the same matrix element
within the physical subspace as the Hamiltonian

H = g T pa a~+ —, g (aP
~

V
~

y5)a a&asar
ap apy5

(2.26)

has in the Fermion Fock space. It is also easily
checked that H~ commutes with the projector P
given by (2.24), that is, H~ has no matrix elements
between physical and unphysical states. This fol-
lows from the fact that physical and unphysical
states belong to different representations of the uni-

tary group, and Hz commute" with the generators
Oj

The closure relation in 6 is conveniently written

They are the generators of the transformation
which mixes the various components of a state vec-
tor in G. These operators can be used to construct
explicitly a projector onto the physical subspace

P= f gdA, Je
' '"exp i QA,&d,j.
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with the help of the coherent states:

IZ) = exp g Qzk(a)Ck(a) IO)ii
k=1 a

(2.27a)

Z(a) = AZ'(a), (2.32)

P
I

Z ) scales as detA. This property can be verified

using the explicit form of P given by Eq. (2.26).
One has indeed

P
I
AZ) = f dp, (Z')

I

Z'& (Z'
I
P

I
AZ)

where the index e runs over all the single particle
states and

I
0)e is the boson vacuum. We shall also

use continuous representation with the notation

N

l~&=-p y„ f dxmk(x)gk(» IO), .
lk=l

and

(Z'IP IAZ) = f dAe ' '"IIe

(2.33)

(2.34)

The closure relation in 6 reads [see Eq. (2.8)]

dZk*(a)dZk(a)
lG ——

k=1 a 2&l

X exp —g(zk I
zk)

k

(2.27b) where we have used the property

Ck Ak&CI (e —1)k&Ck CI
A

e =:e
(2.35)

P
I
AZ) = (detA)P IZ) (2.36)

Changing the integration variable A into A-i lnA and

using the property detA = exp tr lnA, one obtains

the desired equation

d q&k (x)d q&k(x)

k=1 x 2m

X exp Q (Vk I leak )
I p& &'P I

k

where we have used the abridged notations

(z„
I z, ) = g z,'(a)z, (a),

(2.28)

Equation (2.30) may then be written as follows

dZk*(a) dZk(a)P=
k=1 a 27Tl

x f dAgs[Aa, —(zk*lzl)]
k, l

X e ' PIZ)(z IP, (237)

('pk I pk) = f dx 0'k(x)gk(x)

(2.29) where the integration over A runs over all the posi-
tive definite Hermitian matrices. Making the

change of variable

The closure relation (2.28) induces a closure relation

in the physical subspace of G, obtained by applying
the projector P onto the physical subspace on both

sides of (2.28),

P= dZk*(a)dZk(a)

k = 1
2'Ill

xp g(zk lzk) P lz)(z IP .
k

(2.30)

Now we note that

P
I
z ) = det[zk(a;)]cl (al) cz(a„)

I
0) .

Z(a) = A'i Z'(a), Z"(a) = Z"(a)A'

(2.38)

where A denotes the transpose of the matrix A one

gets

P= f dA(detA)"e

dZk*(a)dZk (a)
X

k=l a 27Tl

N

x II &[(zk'
I
z, ') —s»]

Thus, in a scale transformation

(2.31)
(2.39)xPlz &(z IP,

where n is the total number of single particle states.
The integral over A is just a normalization constant
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We thus arrive at the result

dzh (a)dzh(a)f g g . g&[(z Iz) —& l&lz&&zl~ ~

2m
(2.40)

This result will be rederived in a different way in

the next section.
(Z la aplZ')

kg Z,Z = (,)
(2.46)

E. Independent particle states

We call "particle" states the states such that

ap lgo) = 0 (2.42)

We assume that the number of single particle states
is finite. We call nI, the number of hole states and

np the number of particle states. It is known that
any Slater determinant nonorthogonal to

I Po) can
be written

In this section we consider the overcomplete set
formed by all the Slater determinants describing sys-
tems with a fixed number of particles E. This set
can be parametrized in many ways. We give below
some parametrizations which are useful in practice,
together with the corresponding closure relations.
The derivations are reported in the Appendix.

Let
I Po) be a particular Slater determinant.

I Po) is composed of N orthonormalized single par-
ticle orbitals, which we call "hole" states,

(2.41)

Thus, for example, one has

(Z la aparaslZ')
( I,)

= ps (Z,Z')prp(Z, Z')

—psp(z, z')pr (Z,z')

(2.47)

The matrix elements p~p(z. ,z') have the following
expressions

p~h
——[Z'(1+ Z Z') ']~h

pap =I:(I+Z Z') 'Z
]hi

ppp
——[Z'(1+ Ztz') 'Z

]pp

P»h = [(1+Z Z') ']hh .

Performing the change of variable,

Pqh = Zqh [(1+Z Z) ' ']h»,

(2.48)

(2.49)

one can simplify (2.45). In the variables P, the clo-

sure relation takes the form

I

Z ) = exp g (Zzhai, ah )
I

((to &

ph

(2.43)
(2.50)

The states (2.43) are not normalized. The overlap
between two of them is

(Z IZ') = det(l + Z Z') (2.44)

where Z denotes the complex np )& n~ matrix made
out of the ZpI, amplitudes. In terms of the states
(2.43) the closure relation in the Hilbert space of
N-fermions states takes the following form (see the
Appendix),

dZpg dZppg
det I + Z~Z "~+"I+i

2'1TE

&& IZ)(Z
I

=1 . (2.45)

Using Wick's theorem one can express the matrix
elements of any operator between two states Z and
Z' in terms of the one-body density matrix defined
thus

where the states
I P) are obtained from (2.43) by

expressing Z in terms of P and normalizing. This
parametrization has been used in works on boson
expansions, The density matrix elements have the
following expressions in terms of the P's

p p= &&lapa I&&

pih = [P(1 —O'P)'"lych phi, = pi;h (2.51)

Phh' f)hh' (13 P)hh'

Note that the measure in (2.50) is extremely simple.
This results from the fact that the p~h are the coefli-
cients of the unitary transformation which carries

I Po) into the state
I
P). The domain of integration

is complicated, however, since the matrix P must
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satisfy which is identical to the relation (2.40).

(2.52)

while in the parametrization (2.43) the parameters

Zz~ vary over the whole complex plane. Note also
that the expression of the density matrix (2.48) is

formally the same, whether Z' diAers from Z or
not. The density matrix (2.51}has a simple expres-

sion only if the bra and the ket in (2.51}are Hermi-

tian conjugates of one another.

Using a further change. of variable, one arrives at

a parametrization in which the coordinates are the

single particle wave functions which build up the

determinant. The closure relation can be written

(see Appendix), with respect to a normalization con-

stant,

dyk (x)dq&k(x}f IIII —II&l(. I. )-& ~

k=1 x 27Tl

III. PATH INTEGRALS

In this section we give functional integral

representations for the matrix elements of the evolu-

tion operator e ' ' between some initial state
I
Z; )

and some final state (Z l I,

(zy Ie (3.1)

where
I Zl ) and

I
Z; ) belong to the class of states

described in the previous section. The general pro-
cedure for constructing path integrals is quite stand-

—&II (,t —t,. )

ard. First one factorizes the operator e
into N terms e ",where e = (ti —t;)IX. Then

one inserts the closure relation (2.1) between each of
the factors and gets

N
'

I
z &= f H dv(z }&z

I
z & &z

In the limit N ~ oo, e~0 and

(3.2)

&zk+1 I
e ""

I
zk &

&z„„lz,&

One then arrives at

(z„,lH Iz„)= exp —ie-
&Zk+(lzk&

+ 0(e') . (3.3)

(H((r ~,. )
~ ~ ~ —' (Zk+(IH lzk)

(ZIIe ' ' Iz;&= ltm f IIdp(Zk}II (Zk+)Izk&exp —t~ XN~ oo k=0 k=P k+1 k

where
I
Zp) =

I
Z;) and (Z))(+) I

=—(Zl I. One defines

I »k+) & =
I zk+) &

—
I
zk &

so that (3.3) may be rewritten as follows:

N

f IIld ( }&
I

&1& I»&
k=1

(3.4)

(3.5)

&Zklzk&

(z, IH Iz„,)
&Zk lzk (&

(3.6)

A further simplification is achieved if one admits

that the major contribution to the integral comes
from those "paths" for which

I
5Z k ) is of order e

for almost all k, that is, assuming that only piece-

wise continuous paths contribute in (3.6}. Setting
d

I
Z )Idt =

I
5Z )le and keeping only lowest order

terms in e, one finally ends up with the continuous
expression
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)z[~,. ]&= ) z, &
( )z(

(3.7)

Let us first consider the form of the functional in-

tegral obtained when one uses coherent states as an

overcomplete set. Due to the special form of the
overlap (2.10), the integration measure simplifies

into

where the action 5 is given by

&z(t)
I
ia, —H

I
z(t) &

&z(t) Iz(t)& The action reads

+ dZ'(t)dZ(t)
27TL

(3.11)

—i 1n&zi
I
Z(t~) &

and the integration measure is

(3.8)
f~

S [Z',Z] = J dt —(Z'Z —Z*Z) —H (Z*,Z)

&(Z*,z) = Q dp[z*(t)Z(t)]&z(t) IZ(t)&
[Zt*z—(ty)+Z~(t; )Z;]

(3.9)

The integration in (3.7) is carried over all the paths
&Z(t)

I
and

I
Z(t) & in the overcomplete set, subject

to the boundary conditions

Iz(t;)& = Iz;&, &z(ti)
I

= &zj I
(3.10)

——' ln&z(t, ) Iz, & &zf
I
z(tf) &

(3.8')

where we have used the notation

(z(t)(r), (z(()) = —, (z(() )
—
( z)

It is worth emphasizing that the expression (3.7)
has gotten no rigorous mathematical meaning from
its derivation. This is known to lead to difficulties
when some "unallowed" manipulations are per-
formed on the functional integral. An example of
such difficulties will be encountered in Sec. IV.

We examine now various explicit forms of the
functional integral (3.8) obtained with some of the
overcomplete sets described in Sec. II.

Note that in this formulation &Z(t)
I

and
I
Z(t) &

have to be considered as independent variables, e.g.,
there are no constraints on IZ(t~)& and &Z(t;) I.
It is important to keep this point in mind when ap-

plying the saddle-point approximation. (See Sec. V
and Refs. 9 and 23.)

The action (3.8) may be given a more symmetr'i-

cal form with respect to the boundary conditions by
an integration by parts

&Z(t)
I
i', —H

I
Z(t) &

&Z(t)
I
Z(t) &

(3.12)

where P denotes the projector on the physical sub-

space (see Sec. II D). We are interested in the ma-
trix elements

&eIe ~ ' Ia&,
which can be written

J di (4'.4»)di (O'4)

(3.14)

x &VIP)(PIe (3.15)

where Hti is the boson image of H, given by Eq.
(2.25). (P I

e '
I
P) may be represented by

where H(Z*,Z ) is the normal form of the second
quantized Hamiltonian, with the creation and an-

nihilation operators a and a replaced by Z* and Z,
respectively. The formulas above hold for bosons

. and fermions. In the latter case, the variable Z has
to be understood as a Grassman variable. This for-
mulation has been used in Refs. 11 and 13. The
formulas (3.11) and (3.12) hold also for the coherent
states (2.27) described in Sec. II D. However, in

this latter case, special attention must be given to
the boundary conditions. Indeed, one is not in-

terested in the matrix element of the evolution
operator between two coherent states (2.27), but
rather in this matrix element between two physical
states. Let

I P & and & g I
be two coherent states

(2.27) and
I
4& and &)I(

I
the Slater determinants

built from the same single particle orbitals; that is,
I

I
@& = X ( —)'I A,A, ' ' ' 4„&= ~

I 0»
P

(3.13)

P



1748 J. P. BLAIZOT AND H. ORLAND 24

the functional integral

p p&s~v' ~v'l

where the measure and the action are given, respec-
tively, by (3.11) and (3.12), except for an obvious

change of notation. The overlaps ()I(
I

1(t) and

(P I
4) determine the boundary condition

pk(ri ) $p(k)~ pk (rf ) Qp'(k)

where p (I(:) and p'(A:) denote two permutations of
the particle indices 1,2, . . . , X. The expression
(3.15) thus contains an obvious summation over all

such permutations. An alternative way of calculat-

ing (3.14) is to use the explicit form (2.24) for the

projector P onto the physical subspace. Further-
more, since P commutes with H, it needs to be in-

serted only once. One then arrives at the expression

(3.16)

where 3 is the following operator

boundary conditions in the case of (3.15). Now it is
possible to constrain the path at each time t so that
it lies entirely within the physical subspace. This is
achieved by inserting the projector P at each time
step in the construction of the path integral. One
then arrives at the following expression

with

P ~ eIS[v*,t] 3 20

(3.21)

Now let us perform the. same change of variable as
in Sec. II D, namely, ((()= A'~ (p' [see Eq. (2.38)].
In this change of variable, (yIP I(p) scales as
detA, as (yIHP I(p) and ((((&It),PI(p) do. In this
later case, it is easily verified that the possible time
derivative of A cancel. Thus Eq. (3.21) can be
rewritten as follows (with respect to an overall con-
stant, namely, the integral over A; see Sec. II D)

A = g g Ck (a)Ak)C((a)
kl a

(3.17)

—st [Hz —(3 /t)]
The matrix element (1(

I
e

I y) has the
following functional integral representation

«[H —(3 I s( * g 1

(3.18)

(3.22)
where, ignoring the boundary term

s[q',m]=g(q IK Iq» —g((A IT Iq )
k k

with kl

S[g' VW = S[m' V ] ——QAkl(V'k I @i)
kl

(3.19)

where S[(p',y] is the action (3.12), except for an ob-

vious change of notations. The expression (3.18)
describes the evolution of a system of bosons subject
to special constraints represented by the "external"
field A. When Fourier transformed [see Eq. (3.16)]
with respect to A this expression retrieves the origi-
nal fermion dynamics.

In the two formulations above [cf. Eqs. (3.15) and
(3.18)], the paths are allowed to lie outside the phys-
ical subspace; the projection onto the physical sub-

space is done by the overall integral over A in the
case of (3.18), or by the summation over specific

where now the antisymmetrized matrix element of
the two-body interaction occurs. In contrast, the
action (3.19) involves only the direct matrix ele-
ments of the two-body interaction. One recognizes
in the expression (3.22) the functional integral one
would have obtained working directly with Slater
determinants and the measure (2.53).

The functional integrals (3.18) and (3.22) are a
priori equivalent, i.e., they correspond to the same
Schrodinger equation. However, we shall see in the
next section that they have actually very different
structures. Let us remark here that they diAer
essentially by the way the constraints are handled.
In (3.18) the constraints are imposed in a global
way while in (3.22) they are imposed locally (in
time). One may also notice that the constraints
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(yk l q&t ) are constants of motion for the classical

equations of motion. This situation is very much

reminiscent of what happens in gauge theory; here

the gauge group is the group U(N) which mixes the

single particle orbitals. We shall not further

develop this point of view here. There is still anoth-

er way to take care of the constraints, namely,
choose a system of coordinates in which the con-

straints are automatically satisfied. This is realized

by the parametrizations (2.43) and (2.49) of Slater

determinants. We give below the explicit form of
the functional integrals in these two representations.

For the representation (2.43) the integration mea-

sure reads

E[il= Tt + —,i V.t»
where V is the (symmetrical) matrix,

(3.27)

v.,~ = (ap
l

v
l
ys) = v~., (3.28)

d ps (t)d ps (t)
~(p'.p) = H II (3.29)

The action (3.25) is the one used in Ref. 14, except
for the boundary term.

For the representation (2.49) the measure is sim-

ply

D~~(Z",Z )

dZ~q(t) dZ~t, (t)
2'tTl

and the action reads

f~

S[p,p] = f dt (p"p ——p p) —E[p(p p)] .

Xdet[1+ Z (t)Z(t)] ~ ", (3.24)

and the action is

t~
S[Z,Z] = f dt Tr(1+ Z—tZ) '(Z"Z —Z Z)

t

—E [p(Z,Z )]

1——Trln[1+ Zf Z(tf)] [1 + Zt(t;)Z, .],
(3.25)

where p is the density matrix (2.48) and E [p] is the

HF energy calculated with this density matrix

E[t 1=21'.tstt. + —, X (~pl V ll'&)i,.istt
aP aPy5

(3.26)

and (ap
l

V
l
y5) is the antisymmetrized matrix ele-

ment of the two-body interaction V. For later pur-

poses, we write E [p] using the following matrix no-

tation

—
2 trln(1 —pfp(tf )(1 —pt(t; )p;)

(3.30)

Almost all the functional integrals described in

this section describe boson theories with particular
constraints. Indeed, the elementary fields, or coor-
dinates, are represented by complex numbers which

are quantized as boson. This boson structure has
been explicitly analyzed in Sec. (II D) for the

representation (3.18). The representations underly-

ing (3.2S) and (3.30) are familiar in nuclear physics
for their intimate connection with perturbative bo-
son expansions. ' The method we have used to
generate path integrals clearly generate at the same

time boson expansions, or more precisely boson
representations. In these representations, the bosons
are just the quantum version of the classical param-
eters which label the quantum states of the over-

complete set used in the functional integral. The
role of the bosons in the functional integrals, and in

particular of coherent state of bosons, will be seen

in the next sections.

IV. PERTURBATION EXPANSION

In this section we compare the structure of the path integrals described in the preceding section with that of
the formal perturbation expansion. Let us consider the expression

(Zf le
' lZ, ) = f, , e(Z*,Z)e pxi f I.[Z",Z]dt + ln(Zf lZ(tf))

z(] ) zQ t

Z(,~,.)=z,.

where

(4.1)
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(4.2)

%e can rewrite I. as follows

(z let —H, lz)
[ '] &zlz&

(ZIVIZ)
&zlz&

= I.,[Z',Z] —&

&zlz&

and expand exp[ —i f (Z
I

V
I

Z )/(Z
I
Z )] in (4.1) in powers of V. One gets

n tf ff
(Zf I

e ' IZt) = g f dt~. ..dtn f &(Z,z)exp i f 1.0[z",Z]+ ln(Zf IZ(tf))
n

(Z(t„)
I

V IZ(t„))
(z(t. ) lz(t. ))

(Z(t, )
I

V
I
z(ti ) )

(z(t~)
I
z(t~))

t. n tff dt, ...dt„ f &(Z',Z)(zf
I
Z(tf))

'f, "&z(t»)
I
viz(t„)& f,

"
~. &Z(t. , I viz(t. ~)&

(Z(t„) I
Z(t„)) (Z(t„&)

I
Z(t„ i) )

f I;(Z(t, )l VIZ(t, )) f, t.o'
(Z(t, )

I
Z(t, )) (4.3)

By going back to the discretized form of the functional integral (Sec. III), one easily shows that (4.3) can be
rewritten as follows

~ n

(Zf Ie
' IZ;) = g f dt, . dt„ f dp(Z„). . .dp(z, )dp(Z„'). . . dtM(z,

'
)

n l

x &zfle
'""'f '"'lz„&&z„

I
viz„')

where we have used the expression

0 1 i lz) (4 4)

(Z„ le
' " " ' lz„&) = f, „&(Z',Z)exp i f 1-0+ ln&Z„ IZ(t„)&

Z &t„]=Z„
Z(t„ i)=Z„

(4.S)

The closure relations over
I
Z„)(Z „ I

can now be removed. One then ends up with

n tf
(Zf Ie

' IZ;) =g, f dt&. . . dt„(Zf Ie 'fT[V(t„). . . V(t&)]e "IZ;)
nI

= (Zf le 'fTexp —f V(t)dt e' "Iz;), (4.6)
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where V (t) is the interaction representation of V,

(4.7)

One recognizes in the expression (4.6) the standard
perturbation expansion in powers of V. This shows
that the functional integral preserves the structure of
the formal perturbation expansion. This follows
from the fact that the functional integral, by con-
struction, preserves the structure of the T product,
and that we have the following identity

In the remaining part of this section, we are going
to rearrange the perturbation expansion using opera-
tor identities. The rearrangement which will be per-
formed can be interpreted as a change of variable in

the functional integral. We shall see that this
change of variable is not always allowed.

Let us first notice that the T exponential may be
written

t~
T exp —i f V(t)dt

—i'Ht ' ~
—'[ i } o —i(t/N}V Ne = limine e

N —mao

(4.8) N
= lim T ff [1 —ieV(tk)]

N~ eo

that is, in the continuous limit, one can neglect the

noncommutation of the operators V and Ho. Had
one started from the expression (4.8) instead of us-

ing

N —ieV(tk }
lim T g:e

(4.9)

iHt
1

—
(

iHt/N)N-
N~op

for constructing the path integral, one would have
obtained directly (4.6).

It should be stressed that the identification of the

perturbation series obtained with the functional in-

tegral and operator methods has made explicit refer-
ence to the discretized form, which was needed to
disentangle the integration over Z and Z' at dif-

ferent times. This is therefore not a check of the
continuous limit.

The second line diA'ers from the first one by terms
which are negligible in the limit e—+0. We shall

keep them, however, for reasons which will become
clear soon. Note that the second line defines the T
product of two operators at equal times as their nor-
mal product:

T[A (t)B (t)] =:A (t)B (r): (4.10)

This refinement clearly does not affect the preceding
discussion. But it is going to be of crucial impor-
tance in the following.

We now consider an alternative form of the perturbation expansion which relies on the following identity

4 t t t

T exp ——f V(t)dt = N f &W exp —f W(t) V 'W(t)dt T exp i f W~p(t—)a (t)ap(t)dt
t; t. t;

(4.11)

where the normalization constant X is given by

N ' = f &W exp —f dt W(t} V 'W(t}
t;

and V ' is the inverse of the matrix

(4.12)

(4.13}

t~
(W p(r, )W»(t, )) =N f &Wexp —f W(t) V 'W(t)dh W p(r, }W»(r,)

V y,ps = «& I
V

I
}'» .

(aP
I

V
I
y5) is the nonantisymmetrized matrix element of V and in (4.11) —,V(t) stands for

—, g~ s(aP I
V

I
@5)a~(t)ap(t)as(t)ar(t). The identity (4.11) is easily proved. It is very similar to the identi-

ty used in Ref. 26. Let us simply remark here that the Gaussian integration over W operates like a Wick s
theorem, the elementary contraction being
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Thus the integration over 8' reconstructs the original two-body potential. Now it is important to realize that
the integration over 8' involves two 8' at the same time, and therefore, depends crucially upon the way the T
product at equal time has been defined. The formula (4.4) follows then from the application. of the two identi-

ties

tf N

Texp i —f V(t)dt = lim T g:e
l

(4.15)

i/2e8'V 8'. —ieWa a.
o iT (4.16)

—tH (tf —t. )
Let us now consider the functional integral representation of (ZI I

e r
I
Z;) in the overcomplete set

of Slater determinants. To avoid complications with the constraints, let us use for example the parametrization
(3.25) or (3.30). Using the identity

r. r

exp ——f p
~ V.pdt = g f 9Wexp —f W V 'Wdt —i f W pdt

2 2

one obtains the following expression
I'

(ZI Ie ' IZ;) = f, , f O'Wexp —f W(t) V 'W(t)dt
Z (tf )=Zf 2
Z(t,. )=Z,.

i& (z Iia, —H, —wIZ)
Xexp i +ln Z~ Z t~

(4.17)

Note that in the above formula, the matrix V is constructed with antisymmetrized matrix elements of the two-

body interaction. It is extremely tempting at this stage to interchange the orders of the integrations over 8'
and Z. %'riting

(ZI Ie' ' IZ;) = f 9Wexp —f W(t). V 'W(t)dt
2

'I (Z I'~~ —Ho —W IZ)
X &Z*,Z exp i +ln Z~ Zjf

(4.18)

Now the integral over Z is the matrix element
between IZ;) and (Zt

I

of the evolution operator
for noninteracting particles in the fluctuating field
W(t). It is, therefore, equal to

back to the fact that the contributions to the integral
over W in (4.8) comes from terms which are of or-
der (dt), or e~ in the discretized version. Thus the
integral over Z in (4.18) contains terms like

tf
(ZI Ie '~ Texp i f W(t)—e "IZ;)

e ' (' ') —1 —eW(ata )

(4.19)

However, a careful analysis of the first terms of the
perturbation expansion reveals overcounting, a sig-
nal that nonallowed manipulations have been per-
formed. The origin of the trouble can be traced

W(a a )W(a a ) . (4.20)
2

If one replaces this integral by the expression (4.19)
one gets instead terms of the form
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(e ' ' ') —1 —eW(a a )
—ewg~g

+ —W ttWrs(a att)(aras)

+ —W~W&s(a~as) (atiar )

(4.21)

that is, one obtains two terms corresponding to the
two possible contractions, and this is the origin of
the overcounting. Thus one cannot replace the in-

tegral over Z by the expression (4.19) which is real-

ly troublesome, since the integral over Z in (4.18) is

really the one which in our formalism represents
(4.19). Another way of stating the difHculty is to
consider that the change of variable involved in

(4.17) is not allowed for the integral over Slater
determinants, or more precisely that one is not al-

lo~ed to interchange the order of integration over Z
and Win (4.17).

It is easily seen that all these difIIiculties disappear
when one is working with a path integral construct-
ed with coherent states. Indeed taking the matrix
element of Eq. (4.16) between two coherent states
yields

=(Zf /e
' I ' /Z;) (5.1)

The saddle points are given by the following equa-
tions, with their boundary condition

5S
5Z

= 0, Z*(tf) = Zf*

M
gZ Q

=0, Z(t;)=Z; .

(5.2a)

(5.2b)

tegral, retrieves classical mechanics. In the many-
body problem, the classical approximation obtained
depends on the choice of the overcomplete set of
states which have been chosen to construct the func-
tional integral. If independent particle wave func-
tions are used, the classical equations are the time-
dependent mean field equations. It turns out that
these nonlinear equations have definite classical
features which we analyze. We also discuss in this
section the connection between path integrals and
perturbative boson expansions.

Let us then apply the saddle-point approximation
and its successive corrections to the calculation of
the functional integral

~(ze z )e is[ z*,z]
z*(tf)=z~~
z(t,-)=z,.

( . —lEV. )
—IE( V)

& ~~irz~wv-'w~ —~~w&a a &

(4.22)

We call Zc+' and Z c ' the solutions of Eqs.
(5.2a) and (5.2b), respectively. Note that Zc+' (t)
and Zc '(t) are not, in general, complex conjugates
of each other. We then expand the action S[Z",Z j
around the classical solution (Zc+', Zc '):

that is, the functional integral preserves exactly the
operator identities. In this particular case, the
change of variable involved in (4.17) is therefore
perfectly allowed. Note that this holds for any kind
of coherent states, of boson or fermions. It holds
in particular for the coherent states (2.27).

s=s, + g s„[z*,z],
ll )2

where we have set

sr. —= s[zc+' »c ']

(5.3)

V. MEAN FIELD THEORIES AND BEYOND

s„[z',z~ = y c„'(z")' z"-~,
gZ*PgZ"-Pp=1 C

In the preceding section, we made explicit the
similarities in the structures of the functional in-

tegral and the formal perturbation expansion. How-
ever, the most interesting feature of the functional
integral is to suggest approximation schemes which
are different from those of conventional perturbation
theory. In this section, we examine in particular the
saddle-point approximation and its successive
corrections. As well known, this approximation,
when performed on the standard Feynman path in-

and the functional derivatives are evaluated for
Z = Zc, Z = Zg . The functional integral

(+)* ( —)

(5.1) then takes the form

(Zf(e
' f ' iz, )

=e Q' Z,Z exp i Sn Z,Z
Z (ff)=0
Z(t,.)=0

(5.5)
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Note that the boundary conditions are now indepen-
dent of Z; and ZI . That is, all the dependence of
the expression (5.5) on Z; and Zt* is contained in

Sc and the possible boundary terms which subsist in

Sn
It is interesting to notice that Eqs. (5.2a) and

(5.2b) correspond to the time-dependent variational

principle (very similar to the ones developed in Ref.
27):

Let us then consider that the coordinates I Z ]
represent a Slater determinant, that is, I Z I denotes

any of the sets of coordinates discussed in Sec. II E.
[Actually the equations of motion given below only
hold if the action (3.30) or (3.23) are used. If the
action (3.25) is used, extra kinematical terms ap-
pears in front of the time derivatives. ] The classical
equations of motion are the time-dependent
Hartree-Fock equations

5S[Z*,Z] = 0,
where S[Z*,Z] reads explicitly:

(5.6) EZ— oH (Z', Z )
(5.8)

/ (Z lie, —H lz)S[Z",Z] =,
( )

—iln(ZI
l
Z(tI)) (5.7)

It is easily verified that Eq. (5.6) leads back to the

time-dependent Schrodinger equation if
l

Z ) is as-

sumed to represent any state of the Hilbert space,
i.e., in the case of unrestricted variations. When

l

Z ) is chosen in a given class of states, the solution

of the Eq. (5.6) provides an approximation for the
—iB(tI—t )

transition amplitude (ZI l
e /

l
Z;). This is

iS&
given by e . The usefulness of this expression jIies

in the fact that it is a stationary quantity. It appears
then clearly that the choice of an overcomplete set

for the construction of the functional integral is

equivalent to the choice of a class of trial states in

the use of the time-dependent variational principle.
Therefore the separation into a classical motion and

quantum corrections, implied by Eq. (5.3) does not

require that some quantity is small compared to A.

The nature of the classical approximation discussed

here, or the type of quantum effects which are left

out in this approximation, are entirely determined

by the specific choice of an overcornplete set in the

Hilbert space. In particular, if the overcomplete set

is the Hilbert space itself, the classical equations of
motion are identical with the Schrodinger equation.

The limitation of the time-dependent variational

principle (5.6) is that it does not provide a way of
estimating the error associated with a given choice
of trial states. This is precisely what the functional

integral (5.5) does. Although the corrections to the

classical approximation would be in most cases hard

to evaluate, the functional integral provides the pos-
sibility of analyzing them, and therefore, allows for
a better understanding of the classical approxima-
tion itself. We shall illustrate these considerations
in the case of the mean field approximations to the

many-body problem.

&H (Z*,Z)
(5.9)

where H(Z*,Z) = (Z
l
H

l
Z)/(Z

l
Z) is given

explicitly in Sec. IIE. The state vectors
l
Z(t))

which make the action (5.7) stationary are of the
form

Z(t)) =
l
Zo(t)) exp —i f f (t')dt'

(5.10)

where f(t) is an arbitrary function of time and

Z, (t) is a solution of the Eq. (5.8). This arbitrari-
ness in the phase of

l
Z(t) ) reflects the invariance

of the action (5.7) with respect to the choice of
phase of the state vectors. Equations (5.8) and (5.9)
can be easily transformed into an equation for the
one-body density matrix

ip = [h,p] (5.11)

with

p p(t) = (Zc+'(t) la attlZc (t))
(Z'+'(t) lZ' '(t))

(5.12)

and h =- 6E/6p is the usual Hartree-Fock Hamil-
tonian calculated with the density matrix (5.12).
Note that the density matrix is not Hermitian, so
that the Hartree-Fock Hamiltonian is in general
not real. Equation (5.11) is a generalization of the
ordinary time-dependent Hartree-Fock equation,
appropriate to the calculation of scattering ampli-
tudes. This equation has already been considered
in Ref. 12. Note that the standard TDHF equa-
tions are recovered if one chooses the boundary
conditions such that Z(tI) = Z&. Then Zc '(t)
and Zc (t) are complex conjugates of each other(+ )*

and the density matrix, as well as the Hartree-Fock
Hamiltonian are Hermitian. The classical solu-
tions [Zc+'(t), Zc '(t)] can be used to get a sem-
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iclassical approximation to the transition amplitude
(,Zf tf I

Z; t; ) ~ It can also be used to obtain semic-
lassical approximations to the bound state energies
of the system, applying a generalization of the
WKB method developed in Ref. 28. Typically one
arrives at semiclassical quantization rules for the
periodic trajectories of the time-dependent mean-
field equations. This method has already been ap-
plied in difFerent ways to several simple

13,12,29—'31

Let us now calculate the corrections to the mean
field theory. This is obtained by expanding the ac-

tion S around the classical solution [Zc+' (t),
Zc '(t)], as indicated by Eq. (5.3). We shall limit
ourselves first to the quadratic corrections, and to
simplify the discussion, we shall consider the Auc-
tuations around a static solution of Eq. (5.8). We
call

I Pp) the corresponding state and we calculate

(Pp I
e ~ I(tp) = e ""f, N(Z', Z) exp —f [Z'Z + H2(Z*,Z)]dt .

Z(0) =0

(5.13)

where EHF is the Hartree-Fock energy of the state
I Pp) and we have assumed (Pp I

Pp) = 1. H2(Z*,Z) is the
quadratic form obtained by expanding H(Z*,Z) around Z = 0 ( =—

I Pp) ). In terms of the amplitudes Z~t„
H2(Z*,Z) have the explicit form

B Zph
H2(Z*,Z) = , (Zpp, Zps—)

ph
(5.14)

where the matrices A and B are the usual matrices of the random phase approximation. Note that at this level
of approximation, all the parametrizations considered in Sec. II E, with proper inclusion of the constraints
when necessary, yield the same result, Eq. (5.14). Now the functional integral (5.13) is identical to that of a
system of coupled harmonic oscillators; more precisely it can be written

Pf &(Z',Z) exp ' —f [Z*Z + H2(Z', Z)]dt .

Z(0)=0

where we have used the matrix notation

= ii(0
I

exp p(Ct'A'C+ Ct 8 C+, 'C '8'C) I0)s
1

(5.15)

C A C = g C~s A~s p t, C
p, .

ph
p'h'

Czt, and C~t, denote boson creation and annihilation operators and
I
0)s is the boson vacuum. By using the

canonical form which diagonalizes the quadratic form in (5.15) one easily obtains:

ii(OI exp(C AC+ , C BC + —,CB—C)IO)s =- e (5.16)

where b,Ep is the correlation energy associated with the random phase approximation (RPA) vibrations, that
is,

1 1

b,Ep ———, geo& ——, TrA . (5.17)
P

This expression is easily shown to be equal to the sum of all the ring diagrams calculated with antisym-
metrized matrix element and including the well known double counting of the second order term.

The boson degrees of freedom which appear naturally in the calculation of the integral (5.15) are the usual
RPA phonons. The successive corrections to the expression (5.1S) represent the various couplings between
these RPA phonons. A systematic expansion can be derived in the following way. We first expand H(Z', Z)
to all order in Z* and Z. Since we have treated explicitly the terms of order 2, this expansion starts at third
order. These higher order terms can be treated in perturbation, which leads to the expression
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P
&Po I

e "ldo& = e ""exp —f, «g H. —,
n)3

PS Z*,Z exp — Z*Z +H2 Z*,Z + j*Z +- Z* j j 0 . 5.18
~ QZ(0) =0 j =0

The expression (5.18) is very reminiscent of the fam-
iliar perturbative boson expansion. The unperturbed
propagator for the bosons is the RPA propagator
and the term H„describes a coupling between n

RPA bosons. The occurrence of n-body interac-
tions between the RPA bosons arises from the Pauli
principle, or in other words from the constraints
necessary to project onto the physical subspace. It
must be kept in mind that we are not making here
an exact connection between our formalism and a
perturbative boson expansion. Indeed, when going
beyond the quadratic approximation, technical prob-
lems arise with the treatment of the constraints, the
integration measure or the domain of integration,
depending upon whether one chooses, respectively,
the parametrization (2.53), (2.45), or (2.50) for the
Slater determinant. In the absence of a careful
treatment of these points, we consider the expression

(5.18) as approximate. It is clear, however, that the
physical content of (5.18) will not be very much al-
tered by a more rigorous derivation. This physical
content is indeed quite transparent. The functional
integral "quantizes" as bosons the coordinates which
were introduced to parametrize the states of the
overcomplete set. Inversely, the classical limit ob-
tained in the saddle-point approximation is achieved
by replacing the boson operators by c numbers (see
Ref. 18).

The technical difficulties mentioned above do not
show up when one considers the expansion around
a solution of the Hartree equation. In this case, the
expansion can then be given easily a diagrammatic
interpretation, using the standard technics of pertur-
bation theory. We shall again restrict ourselves to a
time-independent problem and consider the expres-
sion

P&pele t'
leap&

=N f &Wexp' —,
' f W(t) V 'W(t)dt e

""'
(5.19)

which follows trivially from (4.11) and the identity
P

&/pl T exp f W(u)a (u)a(u)du leap&

= exp Tr In(1 —WGp), (5.20)

where 60 is the single particle Green's function:

z) = &0o I
a (u &) tt(u2) I ko&

in presence of the external field W".

G '[W]= G ' —W

The density matrix is related to G by

p(t) = lim G t — ,t+——
2 2

(5.23)

(5.24)

(5.21)

Equation (5.19) can also be derived from (3.16) (see
Ref. 18). Application of the saddle-point approxi-
mation on the integral over W lepds to the equation

W V ' = V ' W = Gp(1 —WGp) ' = G [fP]

(5.22)

It satisfies the equation of motion

B,p+ [Hp —W,p] = 0, (5.25)

which is the time-dependent Hartree equation writ-
ten in imaginary time. The expansion around a
static solution. is obtained easily. Let W0 a static
field, solution of

where G [Wj is the single particle Green's function [Ko —Woipo] = 0 (5.26)

The expansion of (5.19) in powers of W' = W —Wp reads

&Pole e ~
leap& =Ne f &Wexp f —,W'V 'W' ——, f TrW'G(Wp) W'G(Wp)

P
)( exp Tr ——G W0 ~ W' " .

8 &2
(5.27)
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In order to calculate the remaining integral, we first regroup the two quadratic terms defining

(5.28)

Qaprs(ui —u2) = Gpy[Wpui u2]G&~[Wp, uz —ui] (5.29)

Using a standard procedure, one introduces a source term for the field 8" and treats in perturbation the terms
of order higher than 2 in 8", in the exponent of (5.27). One then gets

pH0 pH &
—(p/2 )po. V.po —1/2 Tr 1n( 1 —VQO)

(Iflp~e e ~Pp) = e e
n'

P
&& exp —g f tr—6( Wp) — e -(1/2) .r

n 5j

where the factor e ' J J comes from the Gaussian integral over 8"

e&& (1/2)w r—'-w+ j.w

e
—(1/2)j 1 j

~~ (1/2) W I ~. W

j=O
(5.30)

(5.31)

The diagrammatic interpretation of the formula (5.30) is very simple (we consider vacuum-vacuum diagrams
corresponding to the ground state energy). The first term is the Hartree energy

(5.32)

The second term is the sum of all ring diagrams (calculated here with direct matrix elements), plus actually
the exchange counterpart of (5.32)

tr In (I-vQo) = + g it) + (5.33)

To pursue the analysis we give the following representation of I

V
+ g + g (5.34)

Thus (5.33) can be represented by

(5.35)

and

n

g —Tr 6(W ) —e-""»"J
2n 5j j=O

(5.36)

is the sum of all diagrams with one closed fermion loop and an arbitrary number of I lines:

+ ~ ~ ~ (5.37)

The single particle Green's function can be written as fo11ows:

P
VR exp —, O'V 8 + Trln 1 —%Go G~p W;u1 —u2

6 p(ui —uz) =
P

&K exp —, W. V ' 8' + Tr ln 1 —8Go

(5.38)

Following a derivation similar to the one which leads to (5.30), one obtains the following expression:



17SS J. P. BLAIZOT AND H. ORLAND

G p(ui —u2) =
n'

exp — tr g —G(R ) — G &
-(it'2) r.

n 5j $j j=0 I.
(5.39)

where the symbol I II means that we have to consider only the linked diagrams. G has the following di-

agrammatic representation:

+ 0 ' ~

The first term may be veiwed as the classical propagator. It describes the motion of a particle in the field 8'o.
The other terms which describes the coupling of a particle to a vibration, upwith propagation of the Vibration, are
the quantum effects which are left out in the classical approximation.

VI. CONCLUSIONS

The functional integrals built on overcomplete
sets of the Hilbert space provide a unifying under-

standing of different approaches to the nuclear
many body problem. The role and the significance
of the overcomplete set are best understood when

calculating the functional integral using the saddle-

point approximation, and its successive corrections.
Then, it can be seen that the parameters which are
used to label the states of the overcomplete set obey
classical equations of motion. The state labels may
then be viewed as classical coordinates in a general-
ized phase space. The classical equations of motion
are identical to those obtained applying a time-

dependent variational principle, using as trial states
the states of the overcomplete set. But in contrast
to the variational principle, the functional integral
does provide a way of calculating corrections to the
variational solution. A proper treatment of the fluc-
tuations around the classical path introduces a
quantization of the classical coordinates in terms of
boson degrees of freedom.

As we have seen throughout this paper bosons

play an important role in the functional integral for-
malism. In particular boson coherent states appear
to be very useful because they are eigenstates of the
destruction operators. This greatly facilitates the
calculation of matrix elements. But more than that,
it makes the structure of the functional integral
simpler. Also we have seen that some changes of
variables are allowed only if the overcomplete set is

a set of coherent states. We have also shown that
the functional integral transforms a fermion theory
into a boson theory in very much the same way as
the usual boson expansions do.

We have also obtained a clear physical interpreta-
tion of the classical features of the mean field ap-
proximations. In the language of boson representa-
tions, this approximation is obtained by replacing
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APPENDIX

We construct explicitly the measures which have
been used in Sec. II E to construct closure relations.
The general idea underlying the method is to associ-
ate the parameters Z with some group operation
and to construct the invariant measure over the

group. In the case of the Slater determinants the

group to be considered is the group of unitary
transformations in the space of single particle states.
A general element of the group is represented by
the matrix

U= C D, UU =UU=18
(A1)

the boson propagators, e.g., the propagators corre-
sponding to the RPA vibrations, by their classical
approximation. This implies that only the static
part of the particle-vibration interactions are taken
into account in the mean field approximation. This
point is further illustrated by diagrammatic expan-
sion around the mean field. The processes involving
a real propagation of a phonon between the time
when it is emitted and the time when it is absorbed
appear as quantum corrections to the mean field.
Another equivalent statement, also suggested by the
functional integral formalism, is that the mean field
has at each tiime a given classical value. The func-
tional integral allows for possible approximate
schemes for calculating the "quantum" fluctuations
around this value.
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whereA, B, C, and D are nI, g nI„n~ X n&,

np Q n$ and nrp X n~ matrices, respectively. These
matrices satisfy:

IZ'& = N IIl&s'(~ + B»s'h
h

+. b ~ (C + DZ) p] ~0)

AA +BB =1, CA +DB =0
AC +BD =0, CC +DD =1
A~A +C~C =1, A~B+ C~D =0,
B A + DfC = 0, BfB + D~D = 1 .

(A2) where

=N'g(a~ + Z aa
h

Z ' = (C + DZ )(A + BZ )

(A10)

(A 1 1)

Let us now consider the states (2.43), normalized:

Z a~a
~z & N. '»"'&

~y, &, (A3)

iz ) =siz) . (A4}

We look for an invariant measure p(z) such that

where N is a normalization constant. Let S be the
unitary transformation which camas

~

Z ) into

This is the desired transformation law. From this it
is easy to evaluate the Jacobian which appears in

(A5). First we write

Z'(A + BZ) = C+ DZ

then differentiate,

dZ'(A + BZ ) + Z'BdZ = DdZ

%e replace Z by its expression in terms of Z' by in-

verting the equation (Al 1) and finally put Z' = 0.
%e then get

p(z ) = p(z')
~

J(z',Z )
~

= p(0)
i
J(O,Z )

i
(AS)

[J(O,Z)
)
= )(detD) "det(A —BD 'C)

(A12)

fZ) = N g(a& +Z pa ) /0) (A6)

where J(Z',Z) is the Jacobian of the transformation
, which transforms Z into Z'.

The law of transformation of the coordinates Z
the transformation (A4) is easily derived. Indeed

~Z) can be written

Using the relations (A2} one easily shows that

/
det(A —BD 'C)

/

=
/

detA
f

' =
f

detD
/

so that the Jacobian takes the form

[
J(O,Z ) ]

=
[
de~

[

""""

(A13)

(A14)

Under the unitary transformation (A4), this be-

comes

~Z) =Ng(as +Zsa ) ~0)
h

where

bs ——Sass, bj, = Sai,'S' S

(A7)

(A8)

It remains to relate the matrix A to the matrix Z.
For that purpose one can use the following coset
decomposition:

A B 1 —Z U 0 Ai 0

C D Z 1 0 U' 0 Di
(A15)

where U and U' are, respectively, n~ )& n~ and

n& )& n& arbitrary unitary matrices. A
~

and D& are,
respectively, n~ && n~ and nz && n& matrices to be
determined so that the matrix

To the operator S is associated a matrix U of the
form (A 1) which realizes the linear transformation
of the creation operators

A B
C D

(b„b, ) = (a„a, ) C D
B

(A9)

satisfies the conditions (A2). One solution is

3i ——(1+Z Z) ' D = (1+Z"Z)

Replacing bs and b~ in the equation (A7) by their
expression in terms of aI, and az given above, one
gets:

(A16)

These equations define the matrices A and D, with

respect to an arbitrary transformation of the form
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U 0
0 U'

which does not change the state of the system and
which can be ignored. It is easily checked that the
transformation thus defined carries the state

~

Z )
into

~
$0). Therefore, the Jacobian (A14) can be

written

~
J(O,Z)

~

= [det(1+ ZtZ)]

= [det(1+ ZZ )] ~ " . (A17)

The expression of the measure used in (2.24) follows
trivially. This measure can also be obtained by
identifying the set of Slater determinants with a
complex Grassman manifold. This method was
used in Ref. 14. The method presented here is
more elementary and similar to the methods used in
Ref. 33 and Ref. 34. (See also Ref. 35.) We con-
sider now the change of variables (2.27)

It is easily seen that the Jacobian of the transforma-
tion (A18) is precisely given by (A17). When the P
are chosen as coordinates, the measure is, therefore,
extremely simple. The domain of integration is
complicated, however. The volume 0 of this
domain can be calculated. This fixes the arbitrary
constant in the measure. One has

1!2!.. . (ns —1)!1!2!.. . (n„—1)!
lT

1!2!.. . (n~ + ns —1)!

(A21)

a = (1 —P~P) U P=PU (A22)

where U is a nh & nh unitary matrix. It is easily
seen that the integral over p transforms into

Finally it is convenient to introduce new variables
a and P defined as follows:

A B
C D

of Eq. (A15) takes the form

( 1 PtP)1/2 p—
( I PPt )

1/2

Pps
——g Zph [(1 + Z» '

1» h .
h'

The expression of Z~h in terms of pt, s is

Zth = QPth [(1 —PP) ]h'h .
h'

In terms of these new variables, the matrix

(A18)

(A19)

(A20)

f dpdp" = f dpdp dada~5(a"a + p p —1)

(A.23)

But a and p are the expansion coefficients of a set
of N single particle states on a fixed basis. Any
basis may be used to write (A23). In particular, we
can choose a wave function representation, in which
case we shall write the integration measure (A23) as
follows:

N N

f rIIId~*( )dV'( )II@(V IV &
—& )

(A24)
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