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Low-lying spectra of transitional odd-mass nuclei described in angular momentum projected
one-quasiparticle states
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A previously proposed model of a particle coupled to a soft rotor is extended in order that both of the unique parity
and the normal parity orbits can be indiscriminately treated in the same framework. Numerical calculations are
performed for the odd-mass La and Pd isotopes, The low-lying energy spectra and variation of the spectra with mass
number are well reproduced.

NUCLEAR STBUCTUBE 2~ i ~ i ~33 3 La, i ~o ~0~ 07 0~I'd ca1culated levels,
J, m. Approximate angular momentum projection out of one-quasiparticle

states.

I. INTRODUCTION

During recent years, a great deal of experimen-
tal data of band structures of odd-mass nuclei
have been accumulated. ' Most of the band struc-
tures, except for the closed and nearly closed
shell regions, have been successfully analyzed and
understood in terms of the rotation aligned coupling
(RAC) scheme. The RAC scheme plays an im-
portant role not only in odd-mass nuclei but also
in backbending phenomena of even nuclei. Thus,
the RAC scheme is one of the fundamental coupling
schemes for low-lying nuclear states in various
regions of the Periodic Table.

Restricting ourselves to odd-mass nuclei, there
are two other well known coupling schemes, i.e.,
the Bohr-Mottelson strong coupling and the par-
ticle-core weak coupling schemes. In the former,
the deformation of intrinsic states is of primary
importance and the Coriolis force is treated as a
small perturbation. In the latter, on the other
hand, the core is implicitly assumed to be spheri-
cally symmetric. The HAC scheme is obviously
different from them, but has specific relations to
them. Under some circumstances, the Coriolis
force becomes very strong, and then the strong
coupling scheme is destroyed and undergoes a
change into the RAC scheme. ' On the other hand,
the particle-core coupling scheme tends toward
the RAC scheme as the deformation of the core,
measured by the quadrupole moment, grows. ' In
view of these relations, we can say that not only
the rotational excitatio~ of the core but also its
deformation felt by the odd nucleon are important
ingredients in the realistic RAC scheme.

The typical RAC scheme is actually observed not
in the well-deformed region but in the transitional

region where the core is not represented well by
a rigid rotor with an I(I+ 1) spectrum. Several
authors removed the rigid rotor assumption from
their calculations by using various methods such
as the variable moment of inertia (VMI) model. '
Application of the angular momentum projection
method to odd-mass nuclei was also proposed by
Ikeda, Onishi, and Sheline. "A feature of their
model is that the deformed intrinsic wave function
of the core is represented by a coherent state of
the quadrupole boson, which was introduced into
the nuclear physics by Haapakoski et a).' to repro-
duce the quasirotational ground band of '"Sm and
'"Gd. Recently, Ewart and de Takacsy'performed
a microscopic calculation for even Ba isotopes
using the idea of the coherent state. %ithout the
use of the coherent state or any other possible ap-
proximations, the angular momentum projection
method for the case of odd-mass nuclei would re-
quire too much numerical work to be a practical
method. Raduta et g).' performed calculations
similar to those of Ref. 5 by using the fourth-
order boson Hamiltonian to obtain a better fit to
higher spin states.

Although many theoretical works have been done
to study the nuclear structure of transitional, odd-
mass nuclei, almost all of them are concerned
with only the levels in which the intruder orbits
are involved. The other levels have not received
as much attention in the framework of particle-
rotor coupling models. This unbalanced theoreti-
cal development may be largely attributed to the
fact that the whole problem becomes more com-
plicated in the case of non-intruder orbits due to
the Nilsson mixing, which can be ignored in the
case of intruder orbits. However, we would expect
that such levels can also be described in terms of
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II. FORMULATION OF THE MODEL

Numerical calculations in the angular momen-
tum projection method, if performed without any
approximation, would require too much computing
time even for even nuclei. The calculation for
odd-mass nuclei is usually more laborious than
for even nuclei. This situation led to a few prac-
tical approximations such as a power series ex-
pansion of the kernels, " and a classical field ap-
proximation which utilized coherent states of the
quadrupole boson. ' Both of them mere originally
developed for even nuclei. Ring, Mang, and Ban-
erjee~~ developed an approximate method to per-
form a variation-after-projection calculation for
even as well as odd-mass nuclei. Their method
is quite useful for well-deformed nuclei. Re-
cently Hara and Imasaki' have done exact calcula-
tions of angular momentum and number projection
out of the BCS wave functions based on the Nilsson
scheme for the unique parity states of the odd-
mass Yb isotopes. The present model, on the
other hand, is based on the use of the coherent-
boson model and intended to work for transitional
as well as deformed odd-mass nuclei.

The total Hamiltonian of the system consists of
three parts:

H=H +H +H,.„t . (2.1)

The Hamiltonian H, is for the core and is written
in terms of bosons of angular momentum 2 as fol-
lows

n, n ' XVI
(2.2)

where n and n' denote the number of creation and
annihilation operators for bosons which couple to
angular momentum I with seniority X and X', re-
spectively. A possible way to obtain the eigen-

a coupled system of a soft rotor and a particle
which moves in non-intruder orbits. It may happen
that the particle-soft rotor coupling model does
not result in the rotation aligned coupling scheme
when non-intruder orbits are involved, because
the Coriolis force may not be as strong as in the
case of intruder orbits. Therefore a realistic
and reliable calculation is required to predict the
resultant energy spectra.

The main objective of the present paper is to
use the particle-soft rotor coupling model in the
angular momentum projection method to calculate
not only the nuclear levels involving intruder orbits
but also the ones in which a particle moves in non-
intruder orbits. The formulation of the model wiQ
be presented in Sec. II. Results of numerical cal-
culations will be presented in Sec. III. We mill
discuss the results in Sec. IV.

states of the Hamiltonian H, is to use coherent
states to represent deformed intrinsic states:

l
$q) = exp [- -', ('+ t cosy b2t,

+ 2-'~'( sing(b', + 5', ,)] l
0) . (2.3)

The eigenstates can be obtained by superimposing
the coherent states (2.3) over ( and q with weight
functions f~g$q):

=Nz —, ~ J $'dt'sin3r~dg fez($q)
2m+1 '~ r

dQS~„Q R Q

where Q abbreviates the Euler angles (g, 8, y) and
R(Q) is the rotation operator. The integration over
the Euler angles is just the angular momentum
projection. The weight function f~P(q) can be de-
termined by solving the Hill-Wheeler equation of
the generator coordinate method. Useful approxi-
mations are obtained, especially for the descrip-
tion of soft rotor spectra, by taking only one in-
trinsic state. This intrinsic state is determined
by minimizing the expectation value:

( fply, l
t'g) = U, $'+ U, (' cos3q+ U $'+ ~ ~ ~ (2.4)

where U's are functions of h~„, (XX') of (2.2). Term
inating the boson Hamiltonian H, at the fourth
order, i.e. , n+n' 4, we obtain the minimum of
(2.4) at @=0 and

~
= [-3U, + (9U, —32U, U,)'~]/SU,

for U, &0, U, &0, and U4&0. Then the overlap and
energy kernels turn out to be

( f le', (&)
l
t) = exp( p[—1+P,(cos8)]f

and

((le &(~1)lt)l(flu(fl)lt) = , cC,+P, ( c8o)s

+ c4P4 (cos8) ~

where

(2.5)

Consequently, the rotational spectrum of the even
system is parametrized with the three parame-
ters (, c„and c,. The parameter c4 affects the
energy spectra only for high-spin states. Since
we are interested in the energy spectra of states
in the odd system which do not have high spins and
which consequently do not involve very high spin
states (J'& 10) of the even core, we put c,= 0.

In order to introduce single particle degrees of
freedom, we have to fix the relation of the intrin-
sic state of the even core (2.5) to single particle
operators. This is done by regarding the coherent
state (2.5) as a deformed BCS vacuum, i.e.,
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n, I(&=0, (2 6)

H~= q,. —A. c~. c,.

(2 'f)

where q,. —X are the spherical shell model single
particle energies relative to the Fermi level, G
is the pairing interaction strength, and (jm) de-
notes the time reversed state of ( jm). A very
simple form is assumed for the interaction Ham-
iltonian:

where n, » (nt») are annihilation (creation) opera-
tors of the BCS quasiparticle specified by the sym-
metry axis component of angular momentum E
and other quantum numbers 0.

The second term of (2.1) is

tion coefficients. Only the one-quasiparticle
states are employed in the present paper as the
intrinsic states, out of which basis functions are
projected:

&21+1 '~2
IIMoff& = n, »I dQB»„(Q)R(Q) n",

(2.18)

The Hamiltonian (2.1) is diagonalized in the space
spanned by the projected wave functions (2.13).
The basis functions are not orthogonal to each
other, and we need to simultaneously diagonalize
the Hamiltonian and overlap matrices.

Denoting by 0 a c number or a scalar composed
of fermion and/or boson operators, the overlap
and Hamiltonian matrix elements are of the form

&fu, oP, Io If~, o~, &

H. = 52„+ -1 "52~ „q„. (2.8a)
where

with

(2.8b)

The following form is adopted for V(z):

V(~) =hr'. (2.9)

The deformed BCS scheme mentioned above is
obtained as follows. First, H. , is averaged over
the intrinsic state of the core (2.5), giving rise to
a deformed field

I&&=2"& + &nl~'1'o(~p) IP&c'c,
erg

(2.io)

where only the I'» term survives because axial
symmetry has been assumed in (2.5). Then we
diagonalize the single particle energy term of H,
plus the deformed fieM (2.10), which is nothing
but the Nilsson model, to obtain deformed orbits
(oK)

2.11

where 8"&K are Nilsson coefficients. Then we apply
the BCS presciption to

h. .., (0; Q) -=&( In. , ( Q) n.,'», I (& (2.15a)

n«R(Q)On'. » I
$&. (2.15b)

The transformation property of quasiparticle op-
erators n~ and e is found by expanding them in
terms of the spherical shell model basis functions,

ft(Q)n'. »ft(Q)-'= n' [Q]

'
K 0 u K C'. —g K C .-

(2.16)

We calculate h, », » (0; Q) in an approximate
way. Substituting 0 = 1 in Eq. (2.15) and madding
use of Eq. (2.16), we obtain for the overlap ma-
trix

2.17

. where A'" and A"' stand for zero- and two-quasi-
particle configurations, respectively,

A'& (Q)=gw i »~ (Q)w~. ~
] i

a, + &~ la.
I

~& = g &, c', c„
(14p» Bg «+ V~ » Vg» )~l 1 2 2 ~1 1

(2.18)

1r C KC K-C .K'C E4 ff O' CF 0

to define the deformed BCS quasiparticles

eK —QoK CffK —V@KCfyK p (2.i2)

where u's and v's are the Bogoliubov transforma-

ff, K

x g W . X)»'» (Q) g '2 2, (2 ~ 19)

The A'2' term of h(1; Q) obviously vanishes when

(g, e, y)=($, 0, y) and, therefore, its contribution
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+v, » v, ») n(n),
2 2

(2.20)

to the integral of Eq. (2.14) is expected to be small
as long as 8 remains small. Its contribution to
the integral from rather large values of 8 can be
expected to be suppressed as much as that of the
A'+ term owing to the overlap function, which is
a rapidly decreasing function of 8 [see (2.21)]. In
addition to the different angular dependence of the
two terms, the factor (uv —uv) makes the A"' term
less important than the A'" term which has (uu+ vv)
instead. Based on these considerations, we ap-
proximately calculate h(1; n) by retaining only the
A" term. Then it is factorized into the odd par-
ticle part and the core overlap n(n),

& ~ ln. o,H(n)nt

=
& ~

~

n,, o,nt, [n]H(n)
I (&

-«I~. -o.~t..,[n]I~&«IH«) I~&

01

(2.22a)

&~l+ „[n]o,&'. , I~&&gift(n)lg&,

where O~ is understood not to contain boson op-
erators. Applying the approximation (2.22a) to
H„we obtain

(2.22b)

with

u(n) -=& t IH (n)
I
t& = exp[- 5'+ ]'&„'(n)]. (2.21)

Other matrix elements can be calculated consis-
tently with h(1; n) using the following approxima-
tion:

h, «, » (H„' n) = f g Q (e) —X)W p ~W,'. i (u, » u,« —v, » v,„}
7' + j

(2.23)

where 4 denotes the pairing gap energy.
This expression appears to be asymmetric with respect to the indices, but it can be seen that it con-

serves Hermiticity in a representation in which the overlap matrix is a unit matrix. When 0 contains
boson operators as H, and H~„we operate first the boson operators on

I (& or on &. $ I
and replace them

with c numbers by using a simple property of the coherent state

b ec»»o'» IO&= o. ec» ~j IO&

Applying this procedure to II, and H. „we obtain

h (H; n) = px) (n)& (
I

[n]fl{n)
I

(& (2.24)

I.,». ,..«,(H., n) = &[&&I~.,»p. .~!,« In]ft(n)
I &&+ & & I«n}~.«, [n]~. .~!,», I

&&] .
Applying the approximations (2.17}to the above expectation values, we obtain

and

(2.25)

(2.24')

~, »,.»(H. t n}= & Z[h. » ..»(1 n}&«2I (~I». I~on&2&(u.»u. » —v.»v. » }

+ & a,Kx I v(x) I;o I
~H, & (u, «u, » —v, » v, )a,», » (1;n) ]. (2.25')

We can now calculate the Hamiltonian and the over-
lap matrices by substituting expressions (2.20),
(2.23), (2.24'), and (2.25') into (2.14).

The present model contains three phenomeno-
logical parameters $, c„and k in addition to
single particle energies q, and the pairing strength
G. The first two parameters determine the prop-
erties of the even core: $ fixes the spectral pat-
tern and c, works as an energy scale. We can

I

roughly estimate them by approximately repro-
ducing the yrast band of the adjacent even nuclei.
An approximate estimation of k can be obtained by
equating expression (2.10) to the ¹Isson potential

2k) = -0.95Pm, (2.26)

where the deformation P can be evaluated using
Grodzins's empirical formula. We perform numer-
ical calculations by varying the parameters around
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the values estimated above for a better fit to the
experimental data. Deviatj. on of the parameters
by a few tens percent from the starting values is
considered to be acceptable.

TABLE II. The values of parameters used in the
present calculation. P determines the strength of the
particle-core coupling through Eq. (2.26). The follow-
ing pairing strengths are used: G„=22.5/A (for Pd)
and Q&

——17.0/A (for La).

III. APPLICATION TO THE Pd AND La ISOTOPES c2( (MeV)

A. The Pd isotopes

One of the characteristic features of the odd-A
Pd isotopes is that all the ground states from
'"Pd„ to '"Pd„are —,

' and have fairly strong
single particle strength. " This is very difficult to
understand in the spherical shell model or in the
quasiparticle-vibrator coupling model, if either
one of 2d5/, or 1g7/2 is once assumed to be lower
than the other for all the Pd isotopes. The Purdue
group discovered —

~
—

~ and g bands in
+101,103,105pd 5 bands jn 101 103pd and 11- and

2 2 2

bands in all three nuclides are decoupled ~I= 2

bands, whereas the ' band in '"Pd looks like a
2

very perturbed rotational 4I = 1 band. Klarma
and Rekstad" found in '"Pd a -' level, which is

TABLE I. The values of p, x adopted in the present
calculation and additional energy shifts for several or-
bits.

Energy shifts in the unit of (AQ7p}

Pd p„{N= 4)
x„K=4)
p„(V= 5)
x„@1=5)

La p& (N=4)
x~ @7=4)

V& K= 5)
xp (V=5)

0.35
0.0637
0.42
0.0637

0.6
0.0637
0.6
0.0637

-0.10 for 3sf/2y 2d3/2y M5/2
0.13 for lgv/2
0.13 for 1',»/2

-0.08 for 2d3/2
—0.03 for lg &/2

0.10 for IA &&/2

In order to fix the single particle energy term
of H„we use the harmonic oscillator model with
the [i' —(t')„]and f s terms included, which is
just the Nilsson Hamiltonian in the spherical limit
specified by coefficients p, and K. Several sets of
(p, z) values have been proposed in the course of
energy surface calculations" "and spectroscopic
studies"" in these mass regions. It is found that
all of them, when used in the present model, yield
the characteristic features such as the '-,', —,

'', and

—,
' ' ~I=2 bands in the Pd isotopes, but that the
bandhead energies are rather strongly influenced
by the set used. From the overall quality of agree-
ment between experiment and theory, particular
sets of (p, , ~) values with certain modifications
are selected for the Pd and La isotopes (see Table
I). The present single particle energies are sim-
ilar to the ones of Befs. 14, 16, and IV.

101pd
103pd

'"pd
'"pd
'"Id
12'fL
'"La
'"La
133L

'"I.a

1.72
1.87
1 ~ 93
1.92
1,95
2.35
2.28
2.10
2.02
1.88

1.16
1.19
1.23
1.20
1.07
1.06
1.05
1,09
1.26
1.37

0.195
0.214
0.224
0.225
0.246
0.195
0.183
0.155
0.133
0.113

strongly connected to the ground state, and de-
coupled '-,' and —,

' bands using the (a, ny) reaction.
Numerical calculations were carried out in the

present model for these nuclei. Values of the par-
ameters are listed in Table II. Variations of the
lowest levels of each spin value with mass number
are shown in Fig. 1. It is remarkable that the cor-
rect spin value is obtained for all the ground states
from '"Pd to '"Pd. In the spherical shell model
an increase of the number of particles results in
the monotonic filling of successive orbits, but in
the present model particles are distributed over
various orbits because of the deformation and the
pairing'correlations, and the d,/, orbital remains
partially empty throughout the isotopes investi-
gated. Actually, —,

' [422] stays very close to the
Fermi level from '0'Pd to ' 'Pd and this is the
reason &' remains as the ground state for all
these nuclei. The variation of the '-,' bandhead en-
ergy with the mass number is also well repro-
duced. However, our calculations predict the -"
states slightly too low in all the nuclei, and we
are not successful in describing the behavior of
the lowest -' levels. It may be worth noting that
any shift in the single particle energy of d, /2 does
not improve the situation. The calculated and ex-
perimental energy spectra of '"Pd, '"Pd, and
"'Pd are illustrated in Figs. 2-4. The illus-
trated experimental data are consistent with
the adopted levels of the Nuclear Data Sheets. '
Those levels which are observed to constitute
bands in in-beam experiments are shown separ-
ately from the others. The calculated levels are
also classified into those which constitute bands
and those which do not. The classification is easi-
ly done by investigating the structure of the wave
functions.

The calculated '-,' bands in Figs. 2(b), 3(b), and
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(a) Theoretical results and (b) experimental data. Twice
the spin value is noted instead of J' itself.

4(b) are just the h»&, decoupled band as expected.
Actually the parameters c and ( are adjusted to
reproduce the '-' -'-,' energy difference and the
ratio [E('-' ) —E('-,' )j/[E('-' ) —E('-,' )]. It is a success
of the present model that the excitation energy of
the —,

' level relative to the '-,' is obtained correctly
in ' 'pd and probably in ' 'Pd. The calculated —,

"
ground bands from ' 'Pd to ' 'Pd are essentially
the d,&, decoupled band and compare very well with
the experimental data. It should be noted, how-
ever, that the calculated &'- —,

' ' energy difference
is slightly too small in all three isotopes. This
energy difference is most strongly influenced by
the parameter c. However, this parameter has
already been fixed as described above. In the cal-
culated —,

' bands starting at 0.169, 0.172, and
0.172 MeV in "'Pd, ' 'Pd, and '"Pd, respectively,

the g,&, orbital is dominantly involved. These
bands can be identified with the g» decoupled
band. They correspond very well to the experi-
mental data. We obtain another —,

' band in '"Pd
and '"Pd starting at 0.482 and 0.452 MeV, re-
spectively. They are characterized by strong in-
volvement of d,& and can be identified with the un-
favored d,&, decoupled band. In '"Pd, the —,

'' state
at 0.702 MeV and the & state at 1.533 MeV have
similar character but we cannot trace to higher
spin levels because of heavy mixing. The "un-
favored" —,

' ' band compares well with the experi-
mental data in '"Pd where the —,

' ', M = 2 ground
band and the —,

' ', 4I= 2 band taken together appear
to constitute a &I= 1 rotational-like band. We are
not totally successful here, however, because the
calculated —,

' 4I=2 sequence grows faster in en-
ergy than the -' 4I= 2 sequence, in disagreement
with the experimental data. In '"Pd, the —,

' un-
favored band seems to correspond to the experi-
mental levels with spins &' at 531.8 keV and —',"at
1329.1 keV.

B. The La isotopes

As gs wel]. known, the unique parity decoupled
bands were observed for the first time in ' ' "La
using (heavy ion, any) reactions. " Chiba'4 ef al.
performed in-beam experiments using rather light
projectiles of comparatively low energies and suc-
ceeded in locating two nonunique parity &I= 2
bands in '"""La. Similar experiments were done
recently on '"La by Morek" e] a/. with higher in-
cident energies, and the level scheme has been
extended to higher spins. A third 4I= 2 positive
parity band starting at 88 keV with spin -' has
been found. The latter authors also found some
unfavored states, with spins '-,' and '-,', which
have different positions than those proposed by
Chiba et al. In contrast to the Pd isotopes, the
last odd nucleon is the proton in the odd La iso-
topes, and obviously the number of protons does
not vary throughout the isotopes. Therefore, the
variation of level structure from one isotope to
another comes primarily from the change of the
number of neutrons, which is taken into account
in the present model by the phenomenological
parameters describing the core. The variations
of the experimental and calculated lowest states
of each spin with the mass number is shown in
Figs. 5(a) and (b). The increase of the energy
difference between the '-,' and —,

' ' states with the
mass number has been reproduced well in the cal-
culation. The —,

' and —,
' ' states behave similarly

with respect to the '-,' states and are described
well by our calculations, although the order of the
—,
' '

and —,
' states is reversed in '"La. It should be
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(a)
E(MeV)

' 'Pd
Experiment

(b)
E(MeV)

101
p
Theory

21+

17+

13+

1g+

15+

19

15

( 7+)

23+

1g+

1S+

7+

13+
1S+

3+
g+

7
11+
13+

s+
1+
3+

g4Is
).533~"

3+

11+
13+

g+

( 7+)

s+
g+

0.702 7+

0 s+

7+ (3+, s')
g+

s+

0.169 7+

3+
1+

FIG. 2. Comparison between (a) theoretical and (b) experimental energy spectra of I'd. The levels which constitute
a band are separately drawn from the others.

noted that this agreement is not brought about
through shifts of single particle orbits from one
isotope to another. The experimental excitation
energies of the lowest -' states become lower in

lighter isotopes and the —,
' states become the

ground states of '"""La. This behavior is not
reproduced in the present calculation. Any shift
of d3/2 s ingle partic le energy does not improve
the situation as in the Pd case. There is not suf-
ficient experimental data on the lowest -',

' states
to compare with the calculation. The experimental
and calculated energy spectra of '"La are shown
in Figs. 6(a) and (b). There are four distinct
&I= 2 sequences in the calculated spectra. In the

ground band d,&
is predominantly involved and

can be identified with the d,&, decoupled band.
This band compares we1.1 with the experimental
data. The calculated -' and —,

' bands are made
up of g,/2 particle and core excitations, and can
be identified with the favored and unfavored de-
coupled bands of g,&,. There is a good agreement
between theory and experiment with respect to the

band. There is also a good correspondence be-
tween the calculated -' band and the —,', ('—' '),
and ('-,' ) levels of the experimental —,

' ' band.

IV. SUMMARY AND DISCUSSION

The point of the model proposed in this paper is
that both the unique parity and the normal parity
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FIG. 4. Comparison between (a) theoretical and (b) experimental energy spectra of 5Pd. The levels which constitute
a band are separately drawn from the others.

states are treated in a framework which is suitable
for describing the rotation alignment. The model
can be regarded as an approximate angular mo-
mentum projection method out of axially sym-
metric, weakly deformed one-quasiparticle states.
The approximation is made through the use of the
coherent boson states for the even core. The
closure approximation, (2.22a) and (2.22b), is
used to evaluate the overlap and the energy kernels.
Our model can be characterized by the nonrigid
rotational excitation of the core and an explicit
incorporation of the deformation which defines
realistic single particle orbitals. The present
numerical calculation has given the following good
results:

(I) In addition to the '-,' decoupled bands, the —,
' ',

&I=2 bends observed in xoz, ios, iosPd are all re-
produced as the decoupled bands based on the g7/2
orbital.

(2) All the -'' bands observed in 'o""""Pdare2
described very well. Especially, the change of
the —,

' band from ~I= 2 to b, I= I character at '"Pd
is reproduced. It is explained as a lowering of
the d, &, unfavored band relative to the d,&, favored
band, which is caused by an increase of the par-
ticle number, and which leads to an alternate
order of the levels belonging to the two bands. The
same applies to '"La, where the —,

'', AI=2 band
and the —,', 4I= 2 band taken together constitute
a 4I= j. rotational-like band.

(2) The correct spin and parity, -', is obtained
for all the ground states of '" '"Pd. The agree-
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ment is achieved with a proper location of the
Fermi level in the deformed single particle spec-
trum, which changes from isotope to isotope as
the deformation is varied consistently with the
energy spectrum of the unique parity decoupled
band. It gives strong support for the consistency
of the present model.

(4) The variations of relative positions of the
- lowest —,', —,

'', and '-,' states with mass number is
reproduced quite well both in the Pd and La iso-
topes.

The even Pd isotopes have long been considered
to be typical vibrational nuclei. However, the
present calculation shows that the explicit incor-
poration of deformation makes it possible to under-
stand many features of the experimental energy
spectra.

Some states with low spins, such as —,
' and —,',

at low excitation energies are not described well
in the present calculation. In a recent (n, y) ex-
periment" performed by Casten et a). , several low-
spin, negative-parity states were found in ' Pd

at low excitation energies, which the authors re-
ported would not be described in terms of a simple
rotation-aligned coupling scheme. . The present
calculation for '"Pd does not reproduce those low-
spin negative-parity states either. Since our mod-
el has worked very well for the states with r~ j
we can expect that the approximations used in the
model do not break down for low-spin states
either. Therefore the inability to describe the
states with I&j should be attributed not to the ap-
proximation but to an insufficiency of the model
space. An attempt to include three-quasiparticle
configurations in the model space is underway.
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