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Using a set of equations that couple the E-S to the m.-d channel and satisfy two- and

three-body unitarity, we have studied in detail the reaction pp ~m.+d, and md —+md and

XN ~XX scattering. We find that the equations give a very good description of the dif-

ferential cross sections and some of the polarization data for both pp~tr+d and rrd~trZ
over the energy region 47 & T &256 MeV. We observe that for pp ~m+d, higher par-
tial waves (I d & 2) contribute significantly to both the differential cross section and

analyzing power. Including the I'»m-S interaction and thus true absorption in m-d elastic

scattering, we find a cancellation between the pole and nonpole parts of the P~& ampli-

tude. A major part of the effect of true absorption is in J =0+, which contributes little

to the absorption cross section. The sensitivity of the results to the D state of the deu-

teron and the choice of the md% form factor is investigated. For X-N scattering the

agreement with the experimental phase shifts is better in the singlet than triplet channels.

This is due to the absence of vector meson exchange in the calculation. The 'D2 phase
shift exhibits resonance behavior in the absence of a pole in the amplitude.

NUCLEAR REACTIONS pp~d, md~md. Total and differential

cross section, polarization. 47& T~ &256 MeV. N-X I =1 phase

shifts.

I. INTRGDUCTIGN

Historically, the reactions

(lb)

(lc)

have always been considered as three distinct reac-
tions with diferent models developed for each of
them separately. Thus, until very recently, E-X
scattering was described by a real potential and
most of the data and analyses were restricted to
below the threshold for pion production. For that
reason it was not considered important to include
into the theory the coupling to the a-d or X-6
channels. On the other hand, the quality of experi-
mental m-d elastic data did not warrant. the in-

clusion of real pion absorption into models that
described pion-deuteron scattering. However, with
the advent of the new meson facilities we have had
an increase in the quality of data for both X-X
scattering above the pion production threshold, and
pion-nucleus scattering over the full range from T

=25 MeV up through the resonance region. This
new high quality data required more re6ned calcu-
lations and, in particular, the inclusion of the cou-
pling between the different reactions. Thus, in low
energy pion-nucleus scattering, it became apparent
that true absorption plays an important role and
should be included to achieve a fit to the data. '
an the other hand, E-X scattering above the pion
production threshold required a model for the
inelasticity, as well as a possible explanation of the
resonance behavior observed in AoL, ——o'"(~)
—o"'(m) for p-p scattering. For example, this
resonance behavior might be due to coupling
between the N-S and S-6 channels, where the 6 is
a m-E resonance.

The first attempt, in the spirit of the present
theory, at a coupling between the reactions in Eq.
(1) was due to Varma. He calculated X%scatter--
ing in the I =0 channels and. allowed coupling to
the ~XX channel. This coupling was achieved by
having a bound state in the P~~ channel as suggest-
ed by Lovelace. This model, commonly referred
to as the bound state model (BSM), treats one of
the nucleons in the XX channel as a m-X bound
state. Although the results of Varma for the
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singlet N-N phase shifts were reasonable for high
partial waves, the discrepancy with experiment in
the 'P& channel was attributed to the inadequacy of
the one term separable PI& interaction. This basic
idea was further extended by Afnan and Thomas
to describe r dsc-attering, pion production (and ab-

sorption), as well as N Xs-cattering, with reason-
able success. However, it soon became apparent
that treating one of the nucleons as a ~-N bound
state implies that only one of the nucleons can emit
a pion and the resultant model excludes a whole
class of diagrams.

The success of the BSM in giving a unified
description of the reactions in Eq. (1) led to several
formulations ' of a unified theory of the NN-
~NN system. These different approaches mn be
shown to give the same final set of coupled integral
equations that satisfy two- and three-body unitari-
ty. ' These equations, which can be derived from
field theory, have the form of Faddeev equations
and overcome the difhculty of the BSM. In Sec.
II, we present a simplified derivation of the equa-
tions, starting from the Faddeev equations and re-
moving the undercounting problem. We then show
how the equations reduce when one assumes that
the two-body m-N and N-N input interactions are
represented by separable potentials. We proceed in
Sec. .III to show what the origin of the two-body

. input is, and therefore how critiml the final results
might be to the parametrization of the input two-
body interactions. In particular, .we construct the
m-N amplitude in the P» channel to fit the experi-
mental phase shifts, and show how we can divide
this amplitude into a pole part and nonpole part.
The pole part of this amplitude then determines
the mNN form factor. Since our final results
depend on the choice of PII amplitude, we present
various parametrizations corresponding to different
values of the P» scattering volume and range of
the mNN form factor.

There have been several calculations that have
examined (a) the effect of absorption on m-d elastic
scattering in the resonance region, ' ' and (b) the
inclusion of production in N-N scattering. ' How-

ever, with the exception of a preliminary report on
the present work, and the results of Betz and
Lee, ' who use a relativistic Hamiltonian to cal-
culate m-d elastic scattering and pion production,
ours is the first detailed calculation of the three
reactions in Eq. (1) where all three amplitudes are
simultaneously calculated from a single set of in-

tegral equations. We therefore devote Sec. IV to a
detailed analysis of each of the above reactions by

comparing the theory with most of the available
data (both elastic cross section and polarization) for
pion laboratory energy 47 & T & 256 MeV. We
find that for pion production we can reproduce the
experimental total and differential cross sections,
except at high energies where the total cross sec-
tion is slightly too large. This is most likely due to
the fact that we have used nonrelativistic kinemat-
ics for the nucleons. We also show that one
needs to include more than s-, p-, and d-wave

pions, and thus, the analysis of the experimental
differential cross section in terms of yo, y2, and y4
(the coefficients of 1, cos 0, and cos 8, respectively)
can be misleading. This is particularly the case
since y6 (the coefficient of cos 0) can be large. A
similar ambiguity exists in the analysis of the po-
larization asymmetry data in terms of A,o, A, I, and
A,z only. Here we find A,i and A,4 to be larger than
A, I, which might be the reason why most calcula-
tions disagree with the experimental value of
A, i. The most serious discrepancy between our
results and experiment is in A,o. However, we find
A,o to be very sensitive to choices of both the deu-
teron D-state probability and the range of the mNN

form factor.
Turning to m-d elastic scattering we find that

true absorption is quite important at all energies.
Furthermore, the contribution of the pole and non-
pole part of the PI I amplitude to the m-d differen-
tial cross section almost cancel each other. The
extent of this cancellation depends to a large mea-
sure on the choice of the mNN form factor. In this
way the m-d differential cross section is found to be
sensitive to the choice of the mNN form factor.
Comparing our results with the latest tensor and
vector polarization data we find good agreement
at 140 MeV. At 256 MeV, where theory and ex-
periment do not agree very well, the uncertainty in
the theory, especially in view of the sensitivity to
the PII interaction, is large enough to warrant fur-

ther investigation before one can point to a failure
in the theory.

Finally, we present our results for the I =1 N-N
phase shifts. Here the agreement with experiment
is not as good. This is due to the lack of heavy
meson exchange which the theory allows. In gen-
eral, the agreement in the singlet channels is better
than in the triplet, indicating the need for vector
meson exchange. We also show that one can ex-
tract a resonance width for the 'Dq channel on the
basis of speed analysis even though one might not
have a resonance pole. In Sec. V we present some
concluding remarks.
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II. THE THEORY OF THE NX-mNN SYSTEM

In this section we present a derivation of the
coupled equations for the NN-mNN system. The
method is based on the removal of the major
discrepancies in the three-body model of Afnan and
Thomas (AT). The advantage of this approach
over previous derivations, which are more rigorous,
is in the simplicity of the method and the fact that
it presents most of the basic physical ideas.

The model of Afnan and Thomas considers the
m.NN system as a three-body problem with the
basic input being the two-body m-N and N-N am-
plitudes. The coupling to the N-N channel is
achieved by taking the m-N interaction in the P&&

channel to have a bound state with binding energy
equal to the pion mass. In other words, the m-N

amplitude in the P~~ channel has a pole at a total
energy equal to the nucleon mass. In this model

pion absorption is nothing more than the re-

arrangement reaction m+d ~N+N' in which N'

is the m.-N bound state in the P&& channel. Sim. ilar-

ly, nucleon-nucleon scattering is taken as N+N'
~N +N'. Since the model is a pure three-body

problem, the corresponding amplitudes satisfy the
Faddeev equations or the Alt-Grassberger-
Sandhas (AGS) equations

U(0) G
—ig +yg ~ G U(o) (2)

y

where 5ap=1 —5ap and Go ——(E —Hp) ' is the free
Green's function for the mNN system. For the
two-body amplitude t& we use the labeling scheme
where t; (i =1,2} is the m-N amplitude for the pion
scattering off the ith nucleon, while t3 is the N-N
T matrix. The superscript in U~p' is used to indi-
cate that this is a pure three-body amplitude.
These equations, used by AT to calculate s-wave
pion production and the effect of absorption on the
m-d scattering length, suffer from two major flaws
that lead to undercounting: (i) only one of the nu-
cleons N' can emit the pion, and (ii) the intermedi-
ate state of two nucleons (NN') violate the Pauli
exclusion principle in that N and N are not identi-
cal. This lack of symmetry between N and N'
leads to nonconservation of total spin in nucleon-
nucleon scattering. ' Both of these problems have
been overcome in the more recent theories of the
NN-m. NN system. ' '

We now show how Eq. (2) can be modified to
overcome the above problem of undercounting.
Although the procedure we follow does not put in
full perspective the problem associated with the
dressing of the mNN form factor and NN propaga-

tor, it does give the correct equations and illus-

trates the source of some of the dressing. Using
the notation that i,j, . .. =1,2 and a, It3, . . .
=1,2,3 we can rewrite Eq. (2) as

Uap = Go &ap++5aitiooUip(p) —1 (p)

+5 3f3 GP U3III
(p)

(3)

The m-N interaction t; in the P~~ channel can be
written as the sum of a pole term (t; ) and a non-
pole term (t; ), i.e.,

t;=t; +t; (in P» channel),

= t; (otherwise), (4)

with

Uap = Go ~ap+g~aifigifi+GOUip

++8., t,N'GoU, 'p'+S. ,t, GoU,'p .

The second term on the right hand side of Eq. (6)
is presented diagrammatically in Fig. 2(a). To
overcome the undercounting problem in the AT
model we need to include the diagram in Fig. 2(b}
on an equal basis with the diagram in Fig. 2(a),

(a)
FIG. 1. The effective n-N potential in the P~& chan-

nel. (a) The pole part. (b) The nonpole part.

P +t; =fig f
Here, f;+ is the dressed mN~N form factor and g;
is the N-N propagator with only the ith nucleon
dressed. This form for the m-N amplitude can be
deduced from a two-body equation involving the
potential given by the diagrams in Fig. 1.' In this
case t; is the amplitude due to a potential
represented by the diagram in Fig. 1(b); it corre-
sponds to the sum of all diagrams with at least two
pions in every intermediate state. In Fig. 1(a) we
have the diagram in terms of the bare m'NN vertex
and nucleon propagator.

We now can write the AGS equations as
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(b)
FIG. 2. Possible N-N iritermediate states. I,

'a) This
diagram is included in the BSM. (b) Diagram to be in-

cluded to overcome undercounting,

(a) (b) (c) (d)
FIG. 3. Dressing diagrams that arise as a conse-

quence of including the diagram in Fig. 2(b).

i.e., we need to add a term of the form

fi5lJgfj GOUjp 1'JGO Ujp. (7)

U(zp =5&pGp ++5&i ti Gp Uip+ +5(zi V&j Gp Uj p

Here we have dropped the (0) superscript in the

U&p on the grounds that the final amplitude will be
modified due to the additional diagram in Fig. 2(b).

The introduction of the mechanism whereby the
pion gets absorbed on one nucleon and is emitted

by the other nucleon solves both deficiencies asso-
ciated with the AT model. Firstly, the nucleon
that absorbs the pion does, not have to be the one
that will emit a pion at a later stage. In fact, ei-
ther nucleon can emit a pion with equal probabili-
ty. Secondly, by introducing the above mechanism
into the AGS equations, we have introduced con-
tributions from diagrams such as those in Fig. 3.
Here the diagrams in Figs. 3(a) and 3(b) give rise
to the dressing of the other (spectator) nucleon.
This puts the two nucleons on equal footing, and
the XN intermediate states satisfy the Pauli ex-
clusion principle. The inclusion of the two dia-
grams in Figs. 3(a) and 3(b) allows us to use the
fully dressed N-N propagator g in Eq. (6) rather
than g;. On &he other hand, the diagrams in Figs.
3(c) and 3(d) give the form factor dressing to
guarantee the fact that f; and f1+ in Eq. (7) have
been dressed to the same extent. Having included
the contribution of the diagrams in Fig. 3 in the
dressing of the NN propagator and ~XN form fac-
tor, we need to guarantee that with the dressing
completed we do not have any process whereby the
pion is emitted by the ith nucleon and then gets
absorbed or rescattered by the same nucleon; such
diagrams lead to overdressing. This is achieved by
introducing a 5; in front of the expression in Eq.
(7). We now can write our modified equation as

t& V&2 0

Vp) t2 0

0 0 t3

with

(10)

Tpv= Upv ~

Ti N=XUi J-Gofer

(1 la)

(1 lb)

Tiv~=gfi GoU (1 lc)

Tivjv =gfi+GoUijGofj ~ (11d)

and using Eq. (8) to get the corresponding equa-
tions for the amplitudes T&„, TzN, T~~ and Tzz.

For practical calculations it is essential to intro-
duce separable interactions for both the m.-N and
N-X input amplitudes. In this way, and after par-
tial wave expansion, we reduce our equations to a
set of coupled linear integral equations in one

t;=f;gf +t;".
We note that t; as defined in Eq. (10) is an opera-
tor in three-body Hilbert space to the extent that
both nucleons in g are equally dressed. This set of
equations is identical to those derived by Afnan
and Stelbovics' provided one used the m-N ampli-
tude in the P~~ channel either in the form suggest-
ed by Mizutoni and Koltun, or as a solution of
the Lippmann-Schwinger equation for the potential
given by the diagrams in Fig. 4, as was suggested
by Stingl and Stelbovics. '

It is now straightforward to derive the equations
of Avishai and Mizutani (AM) (Ref. 14) and those
of Afnan and Blankleider (AB) (Ref. 15) by intro-
ducing a new set of amplitudes given by

+&a3t36o U3p

where

=5 Hp '+X~-PrpGoU~p
XP (a) (b)

FIG. 4. The lowest order m-N interaction in the Pl~
channel.
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dimension. To achieve this we write the nonpole
part of the m.-N amplitude as

(12)

channel we will take IX&& to be antisymmetric,
while in the mNN channel we introduce the an-

tisymrnetric amplitudes for md ~Nh and NN
—+NA by taking

and the nucleon-nucleon amplitude as

t3=16 &ra&Pa
I

(13)

1
Xga —— Xg a —Xg a for a=N, d .2a )a

In writing Eqs. (12) and (13) we have introduced
the simplified notation of "d" for all N-N interac-
tions and "5"for all m-N interactions. In particu-
lar, the nonpole part of the P» interaction is in-
cluded in A.

The physical amplitudes for the reactions

(18)

X=Z+Z~X . (19)

Here the matrix elements of X and Z are X p and

Z~ji with a,P =N, h, d and the matrix r given by

%e now can write a set of coupled integral equa-
tions for the antisymmetrized physical amplitudes,
which in matrix form are

~N+6
~N +N

are now given by

(14)
with

[r] p=~ 5 p (20)

(21)
Xaa=&ba

I
GoU3sGo I ka&

Xa,.a=&Ca,. I
GoU 3Go l4. &

&~a=(X~ gfi+GoUi3Go 4)
1

+N 2g

The elements of the matrix Z are now given by

(22)

where Xz is the asymptotic NN wave function (i.e.,
it is a plane wave). In a similar manner we can de-
fine the physical amplitudes for the reactions

N +N—+N +N

~7T+d

to be

XNx=(Xx gf+GoU;Gof, Xx)

ZNN = XXN X~ijfl Gofj XN ),
1

ZaN = ~ I & Na, I Gof i I Xx &

—&0a, I Gof2 IXN &]

ZNd
——XN;+GO

(23a)

(23b)

(23c)

(23d)

Xa,.x=(da, . QGoU(;Gofj X~)

Xa+:(Ijka +Go U3j Gofj XQ )
%e observe from the above definition of the physi-
cal amplitudes that either nucleon can emit the
pion. It is now straightforward to derive a set of
equations for the physical amplitudes using Eq. (8)
and the definitions of the physical amplitudes [Eqs.
(15) and (17)]. However, to minimize the number
of coupled equations, and at the same time satisfy
the Pauli exclusion principle, we will antisym-
metrize the amplitudes in both the NN and ~NN
sector. To include the antisymrnetry in the NN

AT
Zap CapZap (24)

'4 Z 2VP
vz

zvZ vp ()

(25)

Zaa= ~2 [ &0'a, I
Go

I
4'a & &Na, I Go

I 4'a & I
1

(23e)

These equations are identical to those of AM (Ref.
14) and AB (Ref. 15) in the absence of heavy boson
exchange. Although these equations are similar in
form to those of AT, they do not have any under-
counting problems. In fact, one can relate the Z's
defined in Eq. (23) to those used by AT (Ref. 6) as
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We note that part of this difference is due to the
fact that the AT amplitudes X~~ need to be nor-
malized to get the physical amplitudes. In writing
Eq. (24) we have assumed that the initial and final

states are restricted to those allowed by the Pauli
principle.

The fact that our final equations are identical in
form to the Faddeev equations with separable po-
tentials allows us to use the same methods used in

solving the standard three-body problem for n.-d
scattering. In particular, we will use relativistic
kinematics for the pion, maintaining a nonrelativis-
tic description of the nucleons. This approxima-
tion was first used by Thomas for m-d scattering
with good success. In the present investigation we
shall adopt the same approximation used by Tho-
mas, and we refer the reader to his paper for de-
tails. This will allow us to use his a-N amplitudes
in the S~ i, S3~, P33 P3] and P~3. For the P~ i we
will need an amplitude which can be written as the
sum of a pole part plus a nonpole part. This we
will present in the next section.

III. THE TWO-BODY INTERACTIONS

In setting up the equations for the NN-mNN sys-
tem we have found it necessary to specify as input
both the m-N and N-N interactions. Furthermore,
to reduce the dimensionality of the final equations
we need to take these interactions to be separable.
Since we will be dealing with m-d scattering it
might be obvious that we need, as input, the m-N

amplitude to describe the multiple scattering of the
pion ofF the two nucleons, . and the N-N interaction
to generate the deuteron wave function. However,
because of the coupling between the m-d and N-N
channels, our equations give both amplitudes
simultaneously. We now have a bootstrap situa-
tion where we input the N-N amplitude to get an
N-N amplitude out. Before we proceed to specify
the input two-body amplitudes we should examine
how they were introduced into the theory.

The input N-N and m.-N amplitudes, in fact,
arise from the truncation in the field theory to el-
iminate any explicit two or more pion intermediate
states from the equations. This is most simply il-
lustrated if one considers the Hamiltonian where
the basic interaction is the mNN vertex. In this
case the input N-N interaction to lowest order is
given by one pion exchange with a spectator pion
[Fig. 5(a)]. This diagram with a two pion inter-
mediate state was replaced by a static N-N interac-
tion with a spectator pion. This substitution re-

moves the coupling to four particle states and in
the process we lose four-body unitarity (i.e., the
threshold for two pion production in N-N scatter-
ing). Thus the input N-N amplitude which is
described by a potential incorporates in a
phenomenological manner the contribution from
multipion intermediate states. Here we hope our
final results will not be very sensitive to the details
of this N-N interaction. The other role the input
N-N interaction plays is to describe the deuteron in
the m-d channel. Here one needs to introduce an

. N-N interaction that gives a good description of
the deuteron wave function. This is especially im-
portant as pion production (NN~~d) and absorp-
tion (rrd~NN) are particularly sensitive to the
short range behavior of the deuteron wave function
and its D-state probability.

Having established the origin of our input N-N
interaction we are now in a position to specify the
N-N interactions used in the present investigation.
For the Si- B& channel we need an interaction
that both gives a good description of the deuteron
wave function and is separable. This is best ob-
tained by taking the unitary pole approximation
(UPA) (Ref. 33) to one of the more sophisticated
N-N potentials. In this way, we have a rank-one
separable potential that gives the same deuteron
wave function as the sophisticated N-N interaction.
For the present investigation we use the UPA to
the Reid soft core (RSC) (Ref. 34) and Bryan-Scott
(BS) (Ref. 35) potentials. For the other N-N partial
waves we have neglected the tensor coupling (i.e.,
Vii =0 for /+I') and used the separable potentials
of Mongan which give a reasonable fit to the ex-
perimental phase shifts. From Mongan's many
parametrizations of the N-N potential we have tak-
en those of the form

Vi(k', k) = egg(k')Aha;(k), (26)

where

Ci;k'

(k P
ga k = (27)

alod, for convenience, the parameters in the dif-
ferent channels are given in Table I. The above
choice of N-N interaction is consistent with our
choice of nonrelativistic kinematics for the nu-
cleons.

The input m'-N interaction in our model can be
divided into two parts: (i) The nucleon pole part of
the amplitude (t ) which gives the mechanism for
pion absorption and production (ndmNN) This. .
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TABLE I. Parameters for the Mongan N-N potentials for the form factors in Eq. (27).

channel

(fm'+' 2~)

Pi i

(fm ') (fm'+' 2~)

Pn

(fm ')

'So

1p

3p

3p

3p

D2
3D

3g)

1
3

2

2

21.49867
35.593 82

94.608 38

14.258 89

8.72049
1.501 35

1.46647
35.15246

6.157

2.951

5.000

2.661

2.720

1.944

1.468

6.558

+1
+1
—1

1.945 558

1.922066

0.549 284

1.786

1.462

1.451

has been written in terms of the dressed mNN ver-
tex and nucleon propagator [see Eqs. (4) and (5)].
(ii) The nonpole part of the amplitude (t ) which
describes the multiple scattering of the pion off the
two nucleons. This second part of the amplitude
arises from the elimination of explicit two-pion in-
termediate states in our equations. Thus, for the
Hamiltonian, where the only interaction is the
m'VN vertex, the lowest order contribution to t is
given by the diagram in Fig. 5(b). To eliminate
two pion intermediate states from the equations,
we replace diagrams like Fig. 5(b) by a static po-
tential that gives the nonpole part of the m-N am-
plitude with a spectator nucleon. Because of isos-
pin and angular momentum conservation, the pole
part of the m.-N amplitude contributes only to the
P&~ channel. Thus t, in all channels but the P&&,

has to be adjusted to fit the experimentsl m-N

phase shifts. Such a parametrization of the m-N

amplitude in terms of one-term separable potentials
is given by Thomas and was used by him to solve
the Faddeev equations for ~-d scattering. Since
our choice of kinematics is identical to that of
Thomas, we will use his parametrization of the ~-
N amplitude.

In the P~~ channel the full m.-N amplitude is the
I

V= iu)A, (u i, (28)

where the form factor
~

u ) =(
~

u& )
~
u2) ) and the

strength matrix is given by

[A,];1=5;Jk;, i,j =1,2.
The corresponding amplitude can be written as

(29)

sum of a pole part plus a nonpole part (i.e.,
t =t +t ) The th.eory of the N¹NN sys-
tem' ' demands that the pole part be of the form
given in Eq. (5) with the dressing in both the nNN
vertex and nucleon propagator written in terms of
the nonpole part. of the amplitude. Such a
parametrization of the P~~ channel leads to both
mass and wave function renormalization, as well as

energy dependence for the mNN vertex. To avoid
the renormalization problem and the energy depen-
dence of the mNN vertex, we have fit the experi-
mental phase shifts and scattering volume with a
two-term separable potential. The requirement of a
two-term potential is dictated by the fact that the

P] &
phase shifts change sign at an energy T —150

MeV. To divide the amplitude into a pole and
nonpole part we have adjusted the parameters of
the potential so that the amplitude has a pole at
the nucleon mass. To see how this division is
achieved, we write our two-term potential in ma-

trix form as

t(E)=
i
u)r(E)(u i,

where

r(E)=[A, ' —G(E)]

(30)

(a)
FIG. 5. Two-pion intermediate states that are re-

placed by a static N-N (a) and m.-N (b) potential. with

N(E)
D(E) (31)
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[G(E)];J=G J(E)

=(U]
i
Go(E)

i
vj. ),

D(E}=det[r '(E)],
(32)

(33)

thus determined the vrNN vertex
~ f ), which in

this case is independent of energy. If one thinks of
the pole as a ~-N bound state, then the normalized

wave function for the bound state is given by

i g) =Go(M)
i f ) . (39)

N]](E)=Ay ' —G22(E),

N22(E) =A] ' —G]](E),

N2](E)=N]2(E)=G]2(E) .

(34)

l =1,2.
(k'+P )

'
u;(k)=

To fit the experimental data we take the form
factor for the potential to be

Ck'
(40)

In the above equations Go(E) is the free m N-
Green's function. For E=M we can write

D(E}=D(M)+(E —M)A

+(E —M)'8(E) . (35)

i
U)N(M)(u i

(E —M)A

If& f I tp(E) (36)

where

—
I
02 ~

I
N22(M

I

'"s]

with s being the sigh of [A,]
' —G]](M)]. Having

defined the pole part of the amplitude, we can
write the nonpole part as

rN'(E)=r(E) —t'(E) . (38)

In this way we have divided the amplitude and

The requirement that the m Namp-litude t(E) have
a pole at the nucleon mass (i.e., E =M) is
equivalent to taking D(M)=0 Thus .our ampli-
tude in the vicinity of the pole is given by

The requirement that the wave functions have the
correct asymptotic behavior implies that n

&

——1,
n2) 1, and 2m; ~ n;.

To test the sensitivity of our final results to our
choice of P» interaction, we have constructed
several parametrizations of the potential (see Table
II). These potentials give different values for the
scattering volume a] ~ and mNN coupling constant,
but give similar fits to the phase shifts for T & 2SO

MeV as illustrated in Fig. 6. The experimental
data is that of Carter, Bugg, and Carter. The
failure of all these potentials to fit the higher ener-

gy phase shifts is due to the fact that our ampli-
tude does not incorporate the Roper resonance.
However, it is possible to build this resonance into
the amplitude and improve the high energy phase
shifts if found necessary. Two of the potentials,
8/8 and C$8, have difFerent analytic expressions
for U;(k) but give approximately the same scatter-
ing volume and m.NN coupling constant. In this
way we can test the sensitivity of our results to the
"range" of the mNN form factor. In Fig. 7, we
give the n.NN form factor k 'f (k) as a function of
momentum. In categorizing the difFerences
between the mNN form factors shown in Fig. 7, we
shall use both the scattering volume a», which to
a large extent corresponds to the maximum values

TABLE II. Parameters for the Yamaguchi form factors of Eq. (40). used to describe two-

term separable potentials in the P11 channel. The resulting potentials are named according

to the values of n; and m;, and the values of the scattering volume a» they generate.

Potential m 1 n2 m2

label
2—2'

1(fm ) (fm) (fm ) (fm)
—3m

8/5
8/8
B11
C$8

3
3
3
2

24.359291 3.10
20.560 579 2.80
16.092 255 2.50

906.18622 3.65

1.306 7105
1.254 628 2
1.134301 3
1.131228 7

4.45
4.00
3.05
3.80

—0.0506 0.040
—0.0807 0.068
—0.1099 0.102
—0.0814 0.073
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20—

15—

of the form factors at k =0, and the term range to
specify the behavior of the form factors in the re-

gion 0&k &6 fm '. In particular we note that the
8/5, 8/8, and 811 form factors, which all arise
from the same analytic forms, have similar falloff
rates and therefore never cross, while C$8, ori-
ginating. from a diAerent analytic form, has a
slower falloff and, in fact, crosses the 811 curve at
k —1 fm '. This, in effect, means that by range
we shall imply some particular analytic form for
the Pi& interaction. Beyond 6 fm ' all form fac-
tors are similar and small. We will see that our fi-

nal results for pion production are very sensitive to
the choice of this form factor.

I I I I I

100 150 200 250 300 350

T~ (MeV)

Having established our equations for the NN-

mNN system which give the amplitudes for the
reactions

FIG. 6. The P~& phase shifts resulting from two-term

separable potentials 8)5 (——-), B)8 ( ), 8 1 1 (""),
and Cpg (—~ ——) The experimental points are from

Carter et al. (Ref. 37).

and

(41a)
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FIG. 7. Plot of k 'f (k), where f is given by t

=f'(E +m ) ' and results from a two term separable
potential. The curves are labeled as in Fig. 6.

(41b)

and having specified the input to these equations,
we can proceed to discuss the success of this model
in predicting the experimental results for the above
reactions. We will restrict our results to the energy
region 47 & T &256 MeV, i.e., from just above the
threshold for pion production through the 6 reso-
nance. However, before we proceed to the discus-
sion of our results, we should point out certain lim-

itations that have been imposed on our calcula-
tions:

(i) In the general formulation of the XN m.XE-
equations there is the scope for introducing heavy
meson (p, ro, . . .) exchange as an approximation to
nonladder multipion exchange diagrams. ' In this
initial calculation we have neglected such heavy
meson exchange contributions. This can have its
most serious effect in our description of N-N
scattering, where the absence of vector meson ex-

change leads to almost no spin-orbit interaction.
The absence of p exchange from our description of
pp~m. d is not as serious, in that we may be able to
compensate for it by our choice of the ~NN form
factor. Furthermore, it is not definite that p ex-

change is important in pion absorption and elastic
scattering.
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(ii) In the last section we showed how we con-
structed a P» amplitude that fits the phase shifts
and scattering volume, and how we split that am-
plitude into a pole and nonpole part. In this way
we obtained a nNN form factor that was a real
function and independent of energy. However, the
formal theory prescribes how the P» is to be
split. ' In that case the ~NN form factor is ener-

gy dependent and complex, and the energy depen-
dence of this form factor is required to prove
three-body unitarity. ' In that respect our results
do not strictly satisfy three-body unitarity. We
will also discover that the m-d elastic cross section
may be sensitive to the way the P~& amplitude is
divided.

(iii) Considering the fact that we will be investi-

gating the reaction pp —+md up to proton laboratory
energies of 800 MeV, we should use relativistic
kinematics for the nucleons. Unfortunately, there
are ambiguities in the choice of a relativistic theory
short of the Bethe-Salpeter equations. To avoid
this ambiguity, and be consistent with the common
description of pion elastic scattering and produc-
tion in heavier nuclei, we have used relativistic
kinematics for the pion and nonrelativistic
kinematics for the nucleons. This procedure was
first used by Thomas for low energy m-d elastic
scattering, and we refer the reader to that paper for
the details of the kinematics.

(iv) Finally, we have made two approximations
in order to perform the numerical calculations.
First we had to restrict the two-body input. For
the m-J interaction we limited ourselves to s- and
p-wave amplitudes since the d-wave n Nphase-
shifts are small in the energy region of interest.
On the other hand, for the X-X input interaction
we have included the S-, P-, and D-wave ampli-
tudes given in the last section. Even with this re-
striction on two-body input, the number of coupled
integral equations is too large for all practical pur-
poses. We therefore have restricted our three-body
channels to those found most important for the fi-
nal cross sections. ' Second, in converting our in-
tegral equations to algebraic equations, we have
used the method of contour rotation commonly
used in the solution of the Faddeev equations.
For the Gauss quadratures we used 20 points for
all integrals except the J =2+ channel, where we
needed 32 points. The need for a 32 point mesh in
J =2+, the largest amplitude, was required to get
a smooth energy dependence for the total cross sec-
tions. With this choice of quadratures and a con-
tour rotation angle of —10.2, we have at most an

error of 5% in all amplitudes except the N-N,
where in some cases the error was as large as 10%.

In this section we will basically examine the
three distinct reactions md~ad, pp~m+d, and

pp —+pp in some detail. Although in our formula-
tion the corresponding amplitudes come from a
solution of a single integral equation, traditionally
these reactions have been discussed separately. For
convenience we will continue this tradition and dis-
cuss our results for each reaction in turn.

A. Pion production in N-N scattering

One of the main features of the present theory is
the coupling between the m-d and N-N elastic
channels. With it we can calculate the eA'ect of
pion absorption (production) on n d(N-N) -elastic
scattering. However, before we can study these ef-
fects on the elastic channels we need to know how
successful the theory is in describing the coupling
between the elastic channels, i.e., the reaction
pp~m+d. Furthermore, pion absorption on the
deuteron has been of considerable interest in recent
years because it is the (m,p) reaction on the sim-
plest nucleus, and several models have been
developed to describe the mechanism for this reac-
tion. We will compare our results with these
models.

As most of the recent experimental data has
been devoted to measurements ofpp~~+d and
np~m d where only the projectile proton is polar-
ized, we will restrict our discussion to the predic-
tions of our model for the observables of the reac-
tion pp —+m+d. In this way we also will be able to
compare our results with those of other models.
The differential cross section for @pan.+d is usual-
ly written as

[(yo+yicos 8+y4cos 8+ )
2 4

A.+P.N sin8( A,o+A, i cos8

+A,2cos 8+ . . )],
(42)

where P is the polarization of the incident beam, N
is a unit vector in the direction k~ X k (with the
z axis defined to be along the incident proton's
momentum k~), and 8 is the angle between kz and
k; the coefficients y; (i =0,2,4,...) and g,
(i =0,1,...) may be expressed in terms of bilinear
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combinations of the transition amplitudes aI; I, for
the reaction pp~m+d. In the partial wave

analysis we have retained amplitudes up to h-wave

pions in the final state. The resultant possible am-

plitudes are enumerated in Table III, and for con-
venience we have given them a sequential designa-
tion a; (i =0, . . . , 14). Note that ao, ...a6 are the
same amplitudes (including normalization) as de-

fined by Mandl and Regge and used by Dol-
nick. They are related to our amplitudes X of
Sec. II by

1/2

at ——4ir p;pf(21;+1) Xt,
k;

where k; (kf) is the initial (final) center of mass
momentum, I; specifies the initial orbital angular
momentum, and p; (pf ) is the "reduced" mass in
the initial (final) channel and is given by

(43)

coi(k)co2(k) co3(k)c04(k)

roi(k)+cop(k) f c03(k)+co4(k)

(44)

where aij(k) =(k +mj )'; here, m i and m2 are
the masses of the initial particles while m3 and pl4
are the masses of the final particles.

Because of the sensitivity of the cross section for
~+d—+pp to the ofF-sheH behavior of the m-N in-
teraction in the Pi i channel (i.e., the n.NN vertex),
we have chosen the potential in this channel (8/8)
which fits the m-N data and gives the best fit to the
total cross section at one energy. In this way we

might have compensated for the lack of p exchange
in our description of m+d —+pp. In Fig. 8 we com-
pare our total cross section for m+d~pp with the
corresponding experimental data from Richard-
Serre et al. The agreement between theory and
experiment is, in general, very good except at high
energies, where our model gives a slightly larger
total cross section. This good agreement between
theory and experiment indicates that the inelastici-

ty in both m-d and N-N scattering is of the right
magnitude.

To sm if the mechanism for pion production (ab-
sorption) is correctly represented, we need to exam-
ine the differential cross section with unpolarized
incident proton, the coeAicient of sin8 in Eq. (42)
is zero. In Fig. 9, we compare the results of our
model with experiment for the differential cross
section for pp~w+d at proton laboratory energies

Tp ——382.9, 425.0, 451.4, 492.9, 533.0, 567.4,
647.3, 751.3, and 799.3 MeV. %e have followed
the common practice of plotting these versus cos 0,
as then any deviations from a straight line will im-

ply the presence of m-d partial waves with l d &1.
The displayed experimental data of Hiirster et al.
(Tp ——382.9, 425.0, 451.4, 492.9, 533.0, and 567.4
MeV) have been scaled, as in their original form
they were normalized to give do./dQ=1 at 8=0'.
The other experimental data are due to Axen
et al. (T~ =382.9 MeV), Dolnick (T~ =425
MeV), Aebischer et al. (Tz ——451.4 MeV),
Richard-Serre et al. (Tz ——567.4, 647.3, 751.3
MeV), and Nann et al. (Tz ——799.3 MeV). Up to

TABLE III. The partial waves, up to h-wave pions, contributing to the reaction pp~m d.

Designation
J

OI Ql'S', 1S

Pion
wave

Il

(md)

S'
(md)

S
(pp)

p-p
state

ao
a)
Q2

Q3

a4
a&

a6
Qp

as
Q9

a&o

Qt)

a)3
Q14

0+
1

2+
1

2
2
3
2+
4+
3

4
5
4+
6+

p

d

h

h

0
I

1

1

3
3
2

3
3
5
5
4
6

'So
3p
'D
3p

'F2

F3

16
3F
3F

H4
'II,

'I6



24 UNIFIED THEORY OF NN —+md, md~md, AND NN~NN. . . 1583

12-
JD
E 10

~ e
CL

li 6

4

2

I

50 100 .&50 200 250 300
Tn (MeV)

FIG. 8. The total cross section for m+d~pp. Experi-
mental data are of Richard-Serre et al. (Ref. 46).
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the resonance region ( Tz ——567.4 MeV), the calcu-
lated difFerential cross section is in very good
agreement with experiment and shows very little
deviation from a straight line. At 425 MeV, our '

calculation favors the data of Buster et al. over
the ones of' Dolnick, which seem to have too
large a slope. Above the resonance region, our
cross sections become progressively larger than ex-

periment, although we still reproduce the shape of
the angular distribution quite well. A similar ef-
fect appears in m-d scattering and has been shown

by Rinat and Thomas to be due to the use of
nonrelativistic kinematics for the nucleons. Thus
our choice of kinematics might be the reason for
the calculated cross section being too large at high
energies.

The experimental data is often analyzed in terms
of the parameters y; and A,; [see Eq. (42)]. This
analysis is commonly based on including only s-
and p-wave pions and more recently d-wave pions,
i.e., in Eq (42) on.e usually retains only yo, y2, y4,
A,o, A, &, and A,z terms. Furthermore, some of the
models for pp —+m+d present their results by com-
paring the theoretical values of y; and A,; with
those extracted from experiment. To check the
convergence of the partial wave expansion given in
Eq. (42), we have included the parameters y6, ys,
A 3 and A,4 in our calculation. They arise from at
least f-, g-, d-, and f-wave pions, respectively. In
Fig. 10 we present our values for yo to y8 as a
function of the pion laboratory energy T .
Perhaps the most interesting feature of our results
is the relatively large size of the commonly ignored

y6. This throws doubt on any analysis in terms of
just yo, y2, and y4, especially regarding extracted
values of y4. In addition, the parameter y8 be-
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FIG. 9. Differential cross section for pp~m+d using
the UPA to the Reid soft core potential and P~~ interac-
tion B$8. The experimental results are those of Axen
et al. (Ref. 48) (Cl), Dolnick (Ref. 45) (0), Aebischer
et al. (Ref. 49) ( & ), Richard-Serre (Ref. 46) (), Nann
et al. (Ref. 50) (8), and Hiirster et al. (Ref. 47) (k).
The data of Hiirster was scaled since it was normalized
to 1 at zero degrees.

1.0

comes appreciable above the resonance and may
not be neglected, especially around T =200 MeV,
where y4 goes to zero.

Having established the importance of the higher



1584 B. 8LANKLEIDER AND I. R. AFNAN

40—

30

10

-10—
0 50 't00

T& (MeV)
200 250 300

FIG. 10. The y; coefficients defined in Eq. (42), as a
function of pion laboratory energy.
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FIG. 11. The efFect of excluding the J =3 or 4+
amplitude on the differential cross section for pp~md.
( ) full calculation, (——-) no 3 contribution,
(—- —- —) no 4+ contribution. The experimental
results as in Fig. 9.

y; terms (l„d & 2), we see from Table III that one
needs to retain partial wave amplitudes at least up
to J =4+ (l d

——3). Although Niskanen first
pointed out the importance of the "higher partial
wave" J =3 (I z ——2), the role of the J =4+
wave has so far not been investigated. To examine
this point we compare, in Fig. 11, the effects of
neglecting the J =3 and 4+ on the differential
cross sections at both the low energy T =383
MeV and the resonance energy T =567 MeV. We
find that neglecting these higher partial waves

changes the shape of the angular distribution. In
fact, with all partial waves included, the difFerentia1

cross section versus cos 0 is almost a straight line
even at the higher energy. This has often been in-

terpreted as absence of any contribution from par-
tial waves with /~d ~1. Yet removal of the J =3
or 4+ amplitude from the calculation of the cross
section gives an angular distribution that deviates
from a straight line. An analysis of the data in
terms of y0, y2, and y4 could have given a small
value for y4 which in turn could be erroneously
considered as evidence for small contributions from
amplitudes with I d )2. This illustrates the ex-
treme care that must be taken when interpreting
data in terms of the y; parameters. To make
matters far worse, the parameters y4, y6, and y8 are
highly correlated, so that they cannot be unambi-

guously determined even from the most accurate
available experimental data. Thus, the importance
of higher partial waves leads us to suggest that one
compare theory directly with the measured cross
section.

Comparing our results with those of Chai and
Riska we note that they found p exchange impor-
tant in determining y4. In particular, y4 calculated
with just m. exchange was always positive and p ex-
change was needed to bring its value down to the
usual negative "experimental" value. In view of
the uncertainty in the experimental value of y4, the
large contribution from y6, and the fact that we fit
the experimental cross section, it is no longer clear
that (for pion production) one needs a mechanism-
llke p exchange to produce agreement with the ex-
perimental unpolarized differential cross sections.

%e now turn to the polarization parameters A,;
(i =0, 1,...). In Fig. 12 we compare the calculated
values of kp A l and A,2 with the corresponding ex-
perimenta1 values. 5 Although we get a good
agreement for the largest parameter A,2, we fail to
reproduce the experimental values of A,p and A&.

As Chai and Riska have shown, including p ex-
change does not improve the situation at low ener-

gies (although above the resonance region there
might be some efFect). A careful examination of
the contributions to A,0 shows that it is very sensi-
tive to the J =3 (i.e., E3 N /channel) ampli--
tude. The absence of p exchange in our X-X chan-
nel can affect the distortion in the triplet X-X
channels and in this way afFect our calculated
value of A,0. In addition A,0 is very sensitive to both
the range of the vrNN form factor and the D-state
probability of the deuteron. This is illustrated in
Fig. 1&, where the analyzing power (which at 90'
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FIG. 13. The asymmetry parameters defined in Eq.
(42) as a function of pion laboratory energy.
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FIG. 12. The asymmetry parameters defined in Eq.
(42). The experimental data are from Refs. 50—52.

50 100

is just ko/yo) is given at T~ =383 MeV for dif-

ferent deuterons and mNX form factors.
For comparison with experiment of the parame-

ter A,
&

(Fig. 12), it is interesting to note that our
calculation together with those of Chai and Ris-
ka, Niskanen, and Maxwell et al. all give neg-

ative values around the resonance energy regions,
while the empirical values are positive. As was the
situation with y4, we attribute this to the fact that
Inost experimental analyses ignore the contribution
of higher angular momentum [i.e., they neglect y;
(i=3,4. . .)]. In Fig. 13 we compare the relative
sizes of the asymmetry parameters A,o to A,4. Not
only are the usually ignored A,3 and A,4 significant,
they are comparable in magnitude to A,o and larger

than A,
&

in the present model. Moreover, both A, 3

and A,4 are positive and may therefore account for
the positive values of A,

&
extracted from experiment.

It is interesting to note that while A,o, A.2, and A,4

display resonance behavior, A, ~ and A, 3 do not, at
least in the energy region we have considered.

This is easy to understand when one considers that

the large P33-dominated amplitude a2 does not

contribute at a11 to A,
~

and A,3. Curiously, though,

both Chai and Riska and Niskanen get k~ to
obtain a strong minimum' value at about the reso-

nance energy.
It is by now clear that the use of the expansion

given by Eq. (42) is not satisfactory for comparing

theory with experiment. As we have shown, this is

due to the slow convergence of the expansion.

However, the derisive problem is the large degree

of correlation among the higher y; and A,; parame-

ters making their determination from experiment

very inaccurate. To remove the problem of corre-

lations and possibly improve convergence, it has

recently been proposed to expand the pp~m+d
observables in terms of orthogonal functions rather

than powers of cos8 as done in Eq. (42). In partic-

ular, it has been suggested that the differential

cross section for pp~m+d be written as

JEST

1
I [ao+a2P2(cos8)+a4P4(cos8)+ ' ]

dQ 4n

+P N[b & P& '(cos.8) + b zPz'(cos8)

+ b3P3'(cos8)+ ][, (45

where I'I and I'I' are the associated Legendre func-

tions I'~ with m =0 and m =1, respectively, and

the coeKcients a; (not to be confused with the am-

plitudes of Table III) and b; are the counterparts of
the parameters y; and A,;, respectively. To test the
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convergence of this series we have calculated the a;
and b;, and compare their relative sizes in Figs. 14
and 15. We find rapid convergence for the a; with

as being two orders of magnitude smaller than the
already small a6. Likewise for the b; we find that
b2, b&, and b5 are, in general, a magnitude smaller .

than b& and b3, with higher terms a magnitude
smaller again. This may be contrasted with the
convergence of the y;, where y8 is appreciable, and
the especially slow convergence of the A,;, where we
find even A,6 to be of a comparable size to that of
A 3 and A,4. We conclude, therefore, that Eq. (45)
holds promise of providing a much more practical
partial wave decomposition of do jd0 for
pp~lr+d than does the standard one of Eq. (42),
and we look forward to its use in future analyses of
experimental data.

Before we proceed to a discussion of the effect of
absorptloll (pl'odllctloll) oil 77 d(X-Ã) e-lastlc

scattering, we should demonstrate the sensitivity of
our results to the input two-body interactions.
Having established the importance of comparing
theory' with the directly measured cross section, we
have chosen to study the eAect of the deuteron and

P&i interactions on the differential cross section
and analyzing power A (8) given by

1.6—

0.4—
t0

xf0

where I' is the polarization of the incident beam.
In Fig. 16 we present the differential cross section

at T =383 and 567 MeV using the Reid soft

core (Pd ——6.56%) and Bryan-Scott (Pd —5.36%)
potentials. We find that the larger the D-state pro-

b5xtQ
I l l I l
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FIG. 15. The asymmetry parameters b; for pp~~+d
as defined in Eq. (45), as a function of pion kinetic ener-

gy.
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FIG. 14. The a; coeAicient (da. /d Q)(pp~~+d)»
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FIG. 16. The effect of the deuteron D-state probabili-
ty on (do/dQ)(pp~md). { ) UPA to Reid Soft
core (P~ ——6.56%), (——-) UPA to Bryan-Scott
(Pq ——5.36%). Experimental data as in Fig. 9.
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bability of the deuteron (Pd ) the flatter the angular
distribution. Furthermore, the total cross section
increases with a decrease in the D-state probability.
This is consistent with the results of Niskanen.
To show the sensitivity of our result to the choice
of P» interaction we present, in Fig. 17, the dif-

ferential cross section for the different m-N poten-
tials. We find that for a given form factor the
cross section increases with increasing P1& scatter-
ing volume or coupling constant which is naturally
expected. However, we get a substantial increase
in cross section even when the scattering volume
a i i is kept constant but the analytic form {or
range) of the mls% form factor is changed (compare
cross sections for potentials 8/8 and C$8).

Finally, in Fig. 18 the analyzing power is given
for the two different deuteron wave functions and
the four mNN form factors. We observe that de-
creasing the D-state probability brings down A„(8)
and this is mainly due to change in A,0, which
again is consistent with the results of Niskanen.
On the other hand, we find that A„(e}is not sensi-

tive to the scattering length but very sensitive to
the range of the mNN form factor. All this indi-

cates that the major source of uncertainty is the
mNN form factor. To overcome this uncertainty,
we need to resort to some other experimental con-
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cos e
FIG. 18. The sensitivity of the analyzing power

A (8) to (a) different deuterons and (b) different P» in-
teractions. The curves in (a) are labeled as in Fig. 16
and those in (b) as in Fig. 6.

+1.0

straint on the form factor. Alternatively, we might
be able to rHort to more fundamental models such
as the bag madel to determine the mNN vertex.

160— Tp = 383 MeV B. Pion-deuteron elastic scattering
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FIG. 17. Se»itivity of (do./dO)(pp n.d ) to P» am-
plitude. The curves correspond to different P» interac-
tion and are labeled as in Fig. 6.

Having established that our model gives a good
description of pion absorption (production) we now
can proceed to the study of the effect of real pion
absorption on ~-d elastic scattering. Although we
have discussed the effect of real pion absorptian an
low energy m-d elastic scattering elsewhere, .for
the sake of completen'ess we will cover the full en-

ergy range from T =47 to 256 MeV. In all calcu-
lations we have included as many partial waves as
was necessary up to a total angular momentum of
J=7. In Figs. 19 and 20 we present the differen-
tial cross section for T =47.7, 140, 180, 217, 232,
and 256 MeV. The calculations correspond to the
cross section with absorption (solid line) and with
no absorption (dashed line). Also, at T =47.7,
140, and 256 MeV we have included our results for
the case of no absorption or Pi i rescattering (dot-
ted line}. The experimental data are due to Axen
et al. (T =47.7 MeV), Pewitt et al. (T =140
MeV), Holt et al. (T =140 MeV), Gabathuler
et al. ' (T =140, 180, 217, and 256 MeV}, and
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FIG. 19. (do/dQ)(m+d~m+d) for T =47.7 MeV.
The curves correspond to full calculation ( ), no ab-

sorption (——-), no absorption or P» rescattering ( "- ).
The results are for the Reid Soft core and the P» poten-
tial 8/8. The experiment is that of Axen et al. (Ref.
48).

Cole et al. (T =232 MeV). We observe that at
all'energies considered the effect of absorption is
considerable. In fact, above the resonance
(T~ & 140 MeV), the result with absorption gives a
better fit to the experimental data.

We may compare our results with those of Fa-
yard et al. , ' who used the same XX-md% equa-
tions in a calculation of ~-d elastic scattering. In
their work, however, they used relativistic kinemat-
ics and divided the P~i amplitude in a way dif-

ferent from the one employed by us. In general,
we find only limited agreement regarding the effect
of true absorption, which might not be surprising
in view of the different description of the P&i chan-
nel. In particular, our results are in better agree-
ment with the experimental differential cross sec-
tions at backward angles (0 & 90 ) for T =180 and

256 MeV where we find, contrary to Fayard et al. ,
that inclusion of absorption lowers the dip at
0-100'. Gn the other hand, our results are similar
to those of Rinat et al, ' although too strict a com-

parison is not possible due to the fact that they use

equations that do not self-consistently couple all

the physical amplitudes. Also, in their calculation
they did not include P» rescattering. Nevertheless,
we agree with their results at 217 and 232 MeV in

that the curve including absorption has a deeper
minimum than the curve without absorption. We
also agree with their result in that at 217, 232, and
2S6 MeV the curve without absorption is flat at
backward angles, while the one including absorp-
tion has a characteristic rise past the 100
minimum. Finally, we compare our results with
those of Betz and Lee. ' Their theory, which in-

cludes three-body unitarity, is based on a relativis-

100
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E
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t 100
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bIc
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0.1

1.0

10

0.1
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0.1 0.1

I I I I I I I I

0 20 4 0 60 80 100 120 140 160 180
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FIG. 20. The differential cross section for md elastic
scattering. Curves labeled as in Fig. 19. The experi-
mental data are those of Cole et al. (Ref. S9}(/), Ga-
bathuler et al. (Ref. S8) (I},Holt et al. (Ref. 27) ($), and
Pewitt et al. (Ref. S7) (Q).

tic Hamiltonian approach and couples the XN to
the md% channel. They take the mechanism for
absorption to be md —+X4~XE, where the
XA~EN is described by a potential. %'e find
that, in general, we agree with their results that the
inclusion of absorption lowers the cross section in
the backwad angles (8& 100'). However, their
cross sections with and without true absorption are
flatter than ours past the minimum (8 100').

The phase shifts for m-N scattering in the Pi~
channel at low energies (T &200 MeV) are gen-
erally small. W'e therefore might expect the m-d
cross section to be insensitive to the inclusion of
the Pii channel. This, in fact, is the case if we
take a Pii amplitude that fits the low energy phase
shifts with no nucleon pole. To investigate the
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overall contribution of the P» amplitude to m-d

elastic scattering in the present investigation, we
compare the solid and dotted curves in Figs. 19
and 20. We find, in general, that the total contri-
bution of the P» is smaller than the efFect of ab-
sorption alone. To understand this difFerence, we
recall that the m.-N amplitude is the sum of a pole
part and a nonpole part. The inclusion of the non-

pole part of the P» amplitude tends to increase the
differential cross section in the background direc-

tions. This is the result of m-X rescattering in the

P» channel. On the other hand, when we include

the pole part of the amplitude as well, in the calcu-
lation of the cross section, we observe that the
curve moves in the opposite direction to that ob-

tained on including P» rescattering. This is evi-

dence for a cancellation between the pole and non-

pole parts of the amplitude. Indeed, the polar part
of the amplitude gives negative phase shifts and is

repulsive, while the nonpole part is attractive and

gives positive phase shifts. The fact that these two

parts of the m.-N amplitude are weighted differently

in the m.-N and m.-d systems might give us a tool to
study the off-shell behavior of the a-X amplitude
in P» channel.

To test the sensitivity of the differential cross
section to the strength of. the md% vertex (or P~ ~

amplitude), we have compared in Fig. 21 the dif-

ferential cross section at T =47.7 and 140.0 MeV

for the three P~i scattering volumes a &&
———0.05

(dashed curve), —0.08 (solid curve), and —0.11

m (dotted curve). We observe that the sensi-

tivity to the scattering volume is more at low ener-

gies, where the cross section increases with increas-

ing scattering length, than is the case at higher en-

ergies, where the opposite effect takes place. On

the other hand, if we keep the scattering volume

approximately the same and change the range of
the m.XN form factor we see a more dramatic
change in the cross section, particularly at higher

energies, i.e., compare the cross section for the po-
tentials 8/8 (solid line) and C$8 (dash dot line).

This means one might be able to adjust the range
of the ~XN form factor and the scattering volume

or coupling constant to fit both ~-d elastic cross
section and pion production. Of course, this pro-
cedure is not only impractical but aesthetically not

pleasing. Here again it is seen that we need to
know the md% form factor before we can uniquely

predict the m-d elastic cross section.
To gain further insight into the mechanism for

true pion absorption and its efFect on elastic n.-d

scattering, we have examined the effect of includ-

I I
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08- I

I

I

0.4— I

100 =
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0.1
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e,

120 180

FIG. 21. The sensitivity of the differential cross sec-

tion for m+2 elastic scattering to the m-N interaction in

the P~~ channel. Curves labeled as in Fig. 6.

ing absorption in certain partial waves. Since the
cross section for a+dip is dominated by the
J =2+ channel in the energy region we are inves-

tigating, we might expect most of the contribution

due to true pion absorption to be in this channel.

In fact, in heavier nuclei one often uses the total
cross section for md~pp to determine the contribu-

tion of true absorption to the pion nucleus optical
potential. In Fig. 22 we demonstrate the effect of
absorption on the m-d elastic cross section at
T =47.7 and 140 MeV by successively including

absorption in the J =0+, 2+, 1, and 2 . The
first surprising fact is that a considerable contribu-

tion due to absorption comes from the 0+ even

though this channel contributes minimally to the
cross section for ~+dip. In particular, for
T =47.7 MeV the absorption in the 0+ gives

most of the change in the difFerential cross section

for 40'&8&120'. In addition, for Og 140', the 0+
gives approximately half the contribution to the

change in cross section due to absorption. Thus,
had we neglected the effect on the cross section due

to absorption in the 0+ on the ground that the
contribution of this channel to m+d~pp is negligi-

ble, we would have missed a major contribution of
absorption to m-d elastic scattering. In fact, if we

compare the total and total elastic cross sections
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TABLE IV. The effect of absorption on total and
elastic cross sections for ~-d scattering at 47.7 MeV.

I

for m-d scattering when absorption is included in
the 0+ and 2+ channels separately (see Table IV)
we find:

(i) The change in the elastic cross section due to
inclusion of absorption in either 0+ or 2+ is of the
same magnitude in both cases. This implies that
both channels are of equal importance in the con-
tribution of absorption to the elastic cross section.

(ii) Most of the change in the total cross section
due to inclusion of absorption in the 0+ comes
from change in the elastic cross section, i.e., the in-
clusion of absorption in the 0+ does not change the
reaction cross section. On the other hand, almost

all the change in the total cross section due to ab-
sorption in the 2+ comes from the change in the
reaction cross section.

To examine the large contribution of absorption
through the 0+ we examine the first term in the
multiple scattering series for a-d elastic scattering
and pion absorption. For w+d~pp, the first term,
given by the diagram ln Fig. 23(a), gives an on-
shell amplitude of —0.004 fm at T =47.7 MeV.
On the other hand, for md~md, the lowest order
diagram given in Fig. 23(b) gives an on-shell am-
plitude of —0.048 —i0.001 fm which is an order
of magnitude larger. This -means that the off-shell
value of the amplitude given by the diagram in
Fig. 23(a) is much larger than its on-shell value.
This illustrates the error one can incur in con-
structing the pion-nucleus optical potential when
one relies on the cross section for m+d~pp to ob-
tain the contribution of true absorption.

%e now turn to the polarization experiments in
m-d elastic scattering. To date there are two mea-

surements; the first is a measurement of the tensor
polarization f2O at 140 MeV of Holt et al. , the
second is a recent measurement of vector analyzing
power (i T~&) by @alger et al. ' at 143 and 256
MeV. In Fig. 24, we compare our results with the
above experiments. Here the solid curve is our full

calculation, the dashed curve is with no absorption,
while the dotted curve corresponds to the calcula-
tion with no P» (i.e., no P» rescattering or ab-

sorption). The agreement between theory and ex-

periment is very good at T 140 MeV, although
the experimental errors are too large to put a con-
straint on the theory. The results at T =256
MeV, though not in good agreement with experi-
ment, are very interesting. This data has been re-

cently used as evidence for a I'3 dibargon reso-
nance. If we compare our different theoretical
results with experiment, we note that the shape of
the polarization curve is very sensitive to the in-
clusion of absorption. In particular, our results at
T =256 MeV with absorption have a small dip at
70' and are negative at backward angles. This sug-
gests that it might not be necessary to assume a

Channels with
absorption (J ) None 0+ All

8.55
17,68

9.02
18.13
0.47
0.45

8.05
22.81

—0.50
5.13

8.54
23.89

—0.01
6.21

(b)
FIG. 23. Lowest order diagrams for (a) md~pp and

(b) md~md.
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new mechanism to explain the data. %e will ela.-

borate on this possibility in the next section. At
this stage, we can conclude that both theory and
experiment need to be refined before any definite
conclusion can be drawn on the failure of the
theory to fit experiment.

Finally, in Fig. 25 we present our results for the
m-d total cross section o„,. The very accurate data
are due to Pedroni et al. ' Since we reproduce the
experimental cross section for m+d~pp very well

except at high energies, the present discrepancy
between theory and experiment is due to our failure
to reproduce the m.-d elastic cross section. This
can be due either to the way we have split the P»
amplitude, or the choice of the ~NN form factor,
as well as relativistic eAects. These points are
currently under investigation.

Although we do not expect the model, as it
stands, to reproduce the experimental N-N phase
shifts for the lack of heavy meson exchange, there
are several features of the model that are not in-

cluded in most other descriptions of N-N scatter-
ing. In particular, we have (i) included inelasticity

through pion production in a unitary way, and

since we fit the production cross section, our
inelasticity is of the right magnitude, and (ii) we

have included the coupling of the N-N to the N4
channel with our 6 being a genuine m.-N resonance.
Furthermore, this coupling is included to all orders
in our solution of the equations.

In Fig. 26 we present some of the I =1 N-N

phase shifts. obtained from the same calculation
that gave our results for pion production and ~-d
elastic scattering. The experimental data are from
the analysis of Bystricky, I.echanoine, and Lehar.
Except for the higher partial wave phase shift I'3,
and to some extent '64, our model does not repro-
duce the experimental data very well. %e note,
however, that for the singlet channels 'Sp and 'D2,
our results are much more reasonable than for the
triplet channels. If we take into consideration the
fact that there are no vector meson (i.e., p, co) ex-

changes in our calculation, and thus little spin-
orbit interactions, then we are able to understand
the above observations. In fact, since the spin-orbit
interaction'is repulsive for J&L, and attractive for
J=L +1, then the J=L, L —1 phase shifts would
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FIG. 26. Some I =1 N-N phase shifts (deg) calculated with present model. Experimental data -are from Ref. 62.

become more repulsive on including the spin-orbit
interaction, while J=L +1 phase shifts become
more attractive. This is consistent with the present
discrepancy between the model and the results of
phase shift analyses for the triplet channels. For
the singlet channels, we would expect some effect
from short-range interactions on inclusion of vector
meson exchanges. Also, the inclusion of p ex-
change would cancel part of the tensor force, and
would thus reduce the value of the coupling
parameter E'2.

If we compare our results with the ones of Kloet
and Silbar, ' who. use a covariant version of
BSM, in which the undercounting is overcome by
adding half a static one pion exchange, we find
qualitative agreement in all channels except the
I'2. This is probably due to the fact that they do

not have any X-X rescattering in intermediate
states, which we find to be very important. Com-
paring with a diA'erent unitary three-body ap-
proach, namely that of Brayshaw's boundary con-
dition formalism, we again find agreement with
his quoted 'D,2 phase shifts. We conclude that all
the considered three-body unitary approaches 'give

approximately the same results (except possibly for
the P2 channel), and all therefore reflect similar
needs for higher mesori exchanges. These have re-
cently been included by Kloet and Silbar in their
model resulting in improved agreement with ex-
periment.

T =S„Tg+T (47)

Tz is usually parametrized by a Breit-Wigner form

I,i/2
TR

Eg —E—iI /2
(4&)

where E is the two-body center of mass energy, Ez
is the resonance energy, I is the total width of the
resonance, and I,&

is the partial width for the elas-
tic channel. The "speed" is then defined as the
derivative

~

dT/dE ~, and for Eq. (48) this gives

One of the most important recent developments
in nucleon-nucleon scattering has been the subject
of dibaryon resonances. Perhaps the strongest evi-
dence for these has come from a series of measure-
ments by Auer et al. of the total cross section
difference b,o.J.

——cr'"(a) —o'"( ) for p-p scatter-
ing in initial longitudinal spin states. In particular,
the authors found that Ao.L displays a remarkable
energy dependence at a beam momentum of about
1.5 GeV/c. These results were interpreted by Hi-
daka et ah. as evidence for a I"

3 diproton reso-
nance. Later measurements discovered more spin
structure in p-p scattering, suggesting the possibili-
ty of 'D2 and 'G4 resonances.

If an elastic amplitude T contains a resonance,
then one can, in principle, separate out the
resonant (Tz ) and background (S„,T„)com-
ponents. These are related by



24 UNIFIED THEORY OF EN m.d, md nd, AND N1V XN. . .

I
dT„/dE

I

= 1 1

I (r/2} (g E)~
+1

(I /2)'

(49)

For slowly varying background, speed is well

represented by Eq. (49). Then both Ea and I can
be deduced from the peak energy and the full

width at half-maximum, respectively.
Despite the deficiencies of our model for N-N

scattering, we suspect that resonance behavior
might occur because of the coupling to the N-5
channel. It would therefore be very interesting to
perform an analysis on our N-N amplitudes in
terms of argand plots and speed curves, to examine
whether our model can simulate the behavior usu-

ally attributed to a dibaryon resonance. As we are
solely interested, at this stage, in the effect of cou-

pling to the N-5 channel, we have performed a cal-
culation in the dominant 'D2 (J =2+) partial
wave, retaining only the deuteron, nucleon, and P33
channels.

In Figs. 27(a) and 27(b) we present our results
for the D2 argand plot and speed curve, respec-1

tively. The argand plot displays the typical
counter-clockwise motion of a resonant amplitude.
Even more typical of a resonance is our result for
the speed curve. In fact, we obtain from Eq. (49)
that E~ ——2160 MeV and I =200 MeV. This may
be compared with the phase shift analysis of Hosh-
izaki, who obtained Ez -2170 MeV and
I -50—100 MeV. Although the two results look
suspiciously similar, we cannot draw any definite
conclusions without further investigation. For in-

stance, we have not as yet examined the complex E
plane for any poles on the second sheet. (However,
a preliminary investigation of eigenvalue trajec-
tories, suggests that no such poles exist in our
model. ) We also have not investigated the true ef-

fect of background, or the effect of short-range
forces. Consequently, we cannot say with certainty
whether coupling to the N-6 channel is able to
reproduce all the structure seen in N-N scattering.
Indications are, however, that this is a distinct pos-
sibility.

V. CONCLUSION

The model that we have been investigating cou-

ples the N-N to the mNN system and is a lineariza-
tion of a field theory of pions and nucleons which
preserves two- and three-body unitarity. In the last
section we have demonstrated that the present
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theory gives a very good unifying description of all

three reactions in Eq. (l) below the threshold for

two pion production. The basic input into the

equations are the mNN form factor together with

the m-N and N-N interactions. These two-body in-

teractions arise from a truncation in the field

theory to states of no more than one pion. We

have shown that much of the discrepancy between

the theory and experiment is due to uncertainty in

the input. The biggest source of uncertainty at this

stage is the mNN form factor and particularly its

range. A knowledge of that form factor not only

determines the magnitude of the cross section for

pp~~+d but the division of the P~& amplitude into

a pole and nonpole part. This in turn governs the

net contribution of the P» to m-d elastic scattering,
and may remove the discrepancy in the total cross
section. Another source of discrepancy is the use

of nonrelativistic kinematics which causes the total
cross section at high energies to be too large. One

could overcome this problem by employing one of
the available covariant equations. ' Unfortunate-

ly, however, they do not have the correct clustering

properties. Alternatively one can use a relativis-

tic Hamiltonian approach in which case pion ab-

sorption and production is through the 6 reso-

nance and one does not have a basic mNN vertex.
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The largest discrepancy between theory and ex-
periment was in N-N scattering. Here the source
of the disagreement is the lack of multipion (or
heavy boson) exchange in our calculation. This is
straightforward to incorporate and has been includ-
ed in a similar model by Kloet and Silbar to im-

prove the fit to experiment. Of course, the in-
clusion of heavy meson exchange (p, co,...) will im-

prove the fit to the N-N channel and also improve
the distortion in the initial state for the reaction
pp~m+d. This can possibly explain some of the
discrepancy in our value of A,o.

Having established that one can account for the
present discrepancy between theory and experi-
ment, we can conclude that the present theory has
enough flexibility to describe the reactions in Eq.
(1) in a unified way with a minimum number of
parameters. Finally, we remark that it is possible

to adjust the input parameters to improve the fit to
experiment for one of the reactions. This, however,
might destroy the fit for other observables. Thus,
within the. framework of the present theory one
should describe all three basic reactions simultane-
ously.
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