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The analyzing powers of heavy ion induced transfer reactions are discussed within the framework of the distorted-
/

wave Born approximation using a semiclassical model to describe the conservation of kinetic energy in the transfer

process, It is found that the analyzing powers T„, with k odd have a strong dependence on g value. Those T„, with k

even have a weaker Q dependence and are specially sensitive to the deformed shape of the projectile. Strong j-
dependent effects are found in the analyzing powers of ('Li, 'Li) reactions, particularly in T,, and iT„, . Calculations

for the "Ni('Li, 'Li)"Ni reaction at E„,= 20.3 MeV are in good agreement with cross section and iT„angular
distribution data.

NUCLEAR REACTIONS: DWBA analysis of heavy ion induced transfer.
Ni( Li, Li) Ni, E=20.3 MeV; calculated (T(0), iTf/(8)& T2q(8)p iT3q(0)& )

pendent effects.

I. INTRODUCTION

In the past few years there has been an increased
interest in polarization measurements for nuclear
heavy ion induced transfer reactions. This work
has been mostly directed to the determination of
the type of reaction mechanism involved in the
transfer process. More recently it became possi-
ble to polarize heavy ion beams, in particular 'Li
and 'Li, and measurements of the analyzing pow-
ers of transfer reactions were reported.

It is well known that the analyzing powers of
light-ion induced transfer reactions are a power-
ful spectroscopic tool since they can be used to
identify the spin and parity of states in the residual
nucleus. For instance, this is the case of the
vector and tensor analyzing powers of (d, p) and

(d, o.') reactions. ' ' The analyzing powers in these
reactions are usually treated with the distorted
wave Born approximation (DWBA). This theory
generally provides angular distributions which are
in agreement with the data. The applicability of
the DWBA in heavy ion induced transfer reactions
is considerably more doubtful and the theory has
not been always successful in describing the angu-
lar distributions of polarization observables. '

The semiclassical nature of quasielastic trans-
fer processes between heavy ions makes it possi-
ble to use semiclassical models' to interpret most
of the qualitative features of polarizations pro-
duced in these reactions. However, reliable quan-
titative predictions are necessary if these reac-
tions are to be used in high precision nuclear
spectroscopy. Here we present a reaction model
which is founded in the DWBA formalism but where

the balance of kinetic energy in the transfer pro-
cess is treated semiclassically following an ap-
proximation proposed by Brink. ' ' This model
takes into account the recoil effects due to the
finite mass of the transferred particle and is spe-
cially adapted to describe the Q-value dependence
of the transfer amplitude.

We consider an unpolarized target and take the
case of no spin-orbit interactions in the entrance
and exit channels. Particular emphasis is given
to the discussion of the dependence of the analyz-
ing powers on the total angular momentum j of the
transferred particle in the projectile and residual
nucleus. This discussion is applied to ('Li, 'Li)
and ('Li, 'He) reactions. In particular we consider
the "Ni('Li, 'Li)"Ni reaction at 20.3 MeV, where
Tungate et al.' have recently observed strong Q-
value effects in the vector analyzing power.

II. SEMICLASSICAL MODEL IN THE DWBA

We consider a transfer reaction A(a, b)B, where
a = b+x and x is the transferred particle or clust-
er. Following the notation of Ref. 11 we write for
the DWBA transition amplitude in the "post" form
and in the absence of spin-orbit interactions

T= dR drX~'* r~ (&b V~„&a X," r,
(I)

Here X,, and X~ are the distorted waves, the vec-
tors R, r, r„and r~ are illustrated in Fig. 1, and

V~„ is the interaction between b and x. Performing
an expansion of the transition amplitude into terms
with definite angular momentum we can write
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FIG. 1. Coordinate vectors for a transfer reaction.

T= g (Z„m&,m, Ig, m, )(letjPS,
~ j,i~,)( l)'a-"

& (s, m, sq —mq
~ j~ M~) &~ ), (2)

where ~„, J~, s„s~ are the spins of &, 8, a, b

and L is the orbital angular momentum transfer in
the xeaction. The dynamics of the reaction are
contained in the B.",. which, in the notation of
Satchlel are given by

p;"r = fd*a fPrX,' '"(r,)Z;,"„(% r, r)r."(r.)-

are the reduced transition amplitudes, where the
transfer form factor is given by

E~" (r', r) =j 'x '2 Q (l2m, l, rn ~ I
II)R,

@
(r')

&& r", 2 (r') V„(r)a, , (x)l', ,*(x).

TARGET

FIG. 2. Polarization effects on the ( Li, Li) reaction
from the deformed shape of the Li- Li overlap. n is
the tangent to the Rutherford orbit at the point of closest
approach defined by the vector d. The deformed full
curve represents Li with a spin alignment axis parallel
to the incident beam direction {g axis of the 8 coordinate
system). The dotted circumference represents Li with
the spin alignment axis perpendicular to the plane of
the reaction.

In. heavy ion transfer x eactions the integrand on
the right hand side of Eq. (4) is strongly localized
in the displacement 8 between the heavy ion cores
6 and A. This localization results from the com-
bined action of the Coulomb barrier and of stron. g
absortlon fol small R with the lack of overlap be-
tween the bound states at large R. It is therefore
appropriate to make approximations when dealing
with the deviations from 8 in the argument of the
distorted waves. Performing a Taylor expansion
in r, we can write

r,'-'*(r, )X."(r.) = r"'X,l 'r( " H)r!'(rr),

where

l~, j» are the orbital and total angular momentum
of x in the projectile, E„j,are the orbital and tot-
al angular momentum of x in the residual nucleus,
and 8,,&,, R, ,~, are the corresponding normalized
radial bound state wave functions. The coefficient

in EQ. (3) fs given by

Here S, ), S, ) ax'e spectx'oscoplc amplitudes,
8„is the spin of the transferred particle, and
(2s+ l)"' is abbreviated as s. Uniess stated
otherwise we use the Madison convention coor-
dinate system $ with z axis along k, and y axis
along k xk„with k, and k„being the asymptotic
momenta in the entrance and exit channels. This
system is represented in Fig. 2.

P=-i " V~- —"V,

Here m,. is the mass of particle i and V, (V~) is the
gradient operator with respect to 8 and acts only
on the function X, (g,). The substitution of E@. (7)
into Eq. (4) shows that KP plays the role of the
momentum conjugate with the variable r in the
transition matrix element.

%e wish to replace the operator P by its eigen-
vectors. This type of approximation is well
known. '"' The usual procedure, used, for in-
stance, by Braun-Munzinger et al. ,"is to replace
RP by a recoil momentum g determined in a local
momentum approximation for the distorted waves.
Here we follow a different approach in which the
eignevectors of P are generated using a semiclas-
sical model of Brink." Energy conservation in
the transfer process gives the reaction Q value as
approximately
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p) —-p]n, 2=1, 2 (iob)

is the projection along the unit vector n. We
choose n to be in the reaction plane and tangent to
the projectile trajectory at the point where the
transfer is more probable. Hence in reactions
where the projectile can be approximately local-
ized in a Rutherford orbit n makes an angle of &/2
(& is the scattering angle) with the incident beam
direction, as shown in Fig. 2. The peripheral na-
ture of the reaction means that the larger contri-
bution to the kinetic energy balance in Eq. (9)
comes from the tangential components p, With
this assumption pl p2 in the transfer process and
using Eqs. (9) and (10) we can write

(iia)

1
P2= ——+ 2M~V ~

v
(lib)

Here v = (P, -P,)/m„ is the relative velocity be-
tween the heavy ions in the region of space where
the transfer is more probable.

When Eq. (7) is' substituted into Eq. (4) the eigen-
vectors of the operator P must be necessarily in
the reaction plane in order to conserve parity in
the transition matrix. In fact, it is easily proved
that only with this condition do the amplitudes
B~ z

(referred to the coordinate system &) satisfy
the relation"

( 1)' "B~-
ly2 "ah (12)

Here ~,~ is the sign of parity change in the reac-

q=(P, ' I,')/2m„, (9)

where Pl is the momentum of x relative to the
heavy ion core b in the projectile a and P, is the
momentum of x relative to the heavy ion core & in
the residual nucleus &. Hence P, is the momen-
tum conjugate with r and P, is the momentum con-
jugate with R —r (see Fig. 1). We now write P,. as
a sum of two orthogonal vectors

P] «pf+pf y
2 «1y 2 (1Oa)

where

tion. Since p, is the component of P, in the reac-
tion plane we obtain from Eqs. (4) and (7)

PL% de X
(-)g A R

R —r r e&'~1 "g" R.a (13)

We notice that p, =O occurs when the Q value is
symmetric in the energy m„v'/2 of the transferred
particle. In this case of optimum energy balance
the transfer is more likely for x orbits relative to
b that are perpendicular to the reaction plane. The
phase factor in the integrand of Eq. (13) is then
equal to one and we get the well known no-recoil
approximation. " If, however,

~ p, ~»0, part of
the momentum of x relative to b must be used to
conserve energy in the transfer process. The
rapid oscillations of the phase factor exp(ir p,/@)
considerably reduces the transfer amplitude and
the no-recoil approximation is not expected to be
reliable.

It has been shown by various authors'~" that the
peripheral nature of heavy ion transfer reactions
makes it convenient to represent the radial bound
state wave functions as sums of Hankel functions,
This representation provides an accurate descrip-
tion in the important asymptotic region of large r,
and also it has the advantage of allowing the d'r
integration in Eq. (13) to be performed analytical-
ly. It then becomes simpler to study the depen-
dence of the reduced transition amplitudes on the
reaction parameters and in particular on the mo-
mentum p, . In order to simplify the argument we
represent the radial bound state wave functions
A, , and 8, , by only one Hankel function that de-
scribes the asymptotic behavior. Thus we write

(i4)

where N, ~
are the asymptotic normalization con-

'n&n

stants and P„P, the wave numbers corresponding
to the separation energies of x from the projectile
and residual nucleus. Using the methods developed
in Ref. 17 we can perform the d'r integration in
Eq. (13) for the wave functions (14) without requir-
ing further approximations. 'this integration gives

~ ~
2WI22 Ip I

d rF (R —r, r)e"''x "= pi'' '"'1Xz (ll)
~ g (lmL, M, ILK)YI~(A)Y, (p ).

1 lr~ ypgM C

Here p, , is the reduced mass of x relative to b,

r= ( 1)~~l, l.,i, lW(l, l, lL„IL,,)(l Olol& 0)(& 0&.oil 0)

is an angular momentum coupling coefficient, where
I

X, (ll)

and

Ll - ll —l PR
(2l+ 1)( I (2L + 1)I t lying &g jg P&y+&

(19)
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is the radialform factor [(2/+ 1)!!=(2l+1)(2/- 1). . .].
The angular momenta in Eq. (15) have a sim-
ple physical interpretation. In fact, the form
of the right hand side of Eq. (15) shows that L, is
the orbital angular momentum associated with the
displacement R between the heavy ion cores.
Therefore L, is the orbital angular momentum
transferred between the heavy ion cores in the re-
action. The l provides for the total balance of or-
bital angular momentum and is usually called the
recoil angular momentum. The selection rule (17)
implies l - l, and thus strongly restricts the range
of values that l can take. Finally we note that the
term with / = 0 on the right hand side of Eq. (15)

l

corresponds to the no-recoil approximation and
has no dependence on the momentum p, .

III. J-DEPENDENT EFFECTS IN THE ANALYZING
POWERS

To be definite we consider the analyzing powers
of the transfer reactions(a, b)B In. a spherical
tensor basis they are defined by

T, = Tr[TY, (s,)Tt]/Tr(TTt),

where &~, are the usual spherical tensor opera-
tors." Using Eq. (2) we can show in a straight-
forward manner that

o'T~, = g s,j~j', (-1)"'~& ~'W(ks, j,s~;s,j',) g W(j,j',LL'; kj,)(-1) (L ML'M-' ~kq)B&"& B&~&" *,
112 LM L' N' 12 12

where

o= Q ~B,'", ~'/(2L+1). (21)
g1)2 LM

The particular dependence of the T~, on the quan-
tum numbers l, and j, can be a useful spectroscop-
ic tool since it can lead to the identification of the
spin and parity of the residual nucleus. Usually

I

I
this dependence is an intricate effect and highly
sensitive to the reaction dynamics. However, in
certain cases the j, dependence of the T~, has sys-
tematic features which can be useful. In order to
study them it is most straightforward to consider
the case where J„=0, so that J~ =j,.

The substitution of Eqs. (3) and (6) into Eq. (20)
gives

oT~,(Js)= Q C(Js)s, W(ksj~s~;sj~) Q (-1) "(L-ML'M' ~kq)LL'P)~~ P~, ~,
1 1

NN' g1J~ j1Jgy t

where

C(Js) =j j~W(LJskj~j zL')W(s„Js/', L';/2j ~)W(s Js/~ L/ j~2) .

(22)

(23)

To simplify the discussion it was assumed that all
spectroscopic amplitudes are equal to one. The
right hand side of Eq. (22) depends on Js through
two different factors: (a) the angular momentum
coupling factor C(Js); (b) the product of two re-
duced transition amplitudes. However, the ~~ de-
pendence of P~,"~ is much weaker than that of the
C(Js) because it only originates in Q-value effects
and through differences in the radial wave func-
tions resulting from the spin dependence of the
binding potential. The range of J- values allowed
by the selection rules, in the last two Hacah coef-
ficients on the right hand side of Eq. (23) is a func-
tion of J~. This mechanism is known to produce a
~~ dependence in the cross section. Becently this
has been observed by Kim e/ al."in the "Cr('Li,
'He)"Mn reaction at 28 MeV and for S - 10.

The particular dependence of C on ~& is made
clear if we consider the relation

g (2J, +1)C(J.)

= (-1)~ '2+Jf '«j,j', W(L'L/', /~; kl, )W(j ',j,l',l, ; ks„)
(24)

I

which is derived from Eq. (23) using a well known
sum rule for Hacah coefficients. ' We notice that
the right hand side of Eq. (24) contains a triangular
relation between l„l'„0 which is not present in
C(Js). Thus we conclude that

g (2 Js+l)C(Js) =0 for k&l, +l', . (25)
Ja

Using Eqs. (22) and (25) and neglecting the weaker
dependence of the reduced transition amplitudes
and of the cross section o on ~&, we obtain

Q (2 Js+1)T~,(Js) —= 0 for k& 2/~.

No l, mixing was assumed in the projectile; there-
fore l =l', .

Equation (26) describes the well known sign rule
type j dependence in which the angular distribu-
tions with different 4~ tend to be out of phase by m

and tend to have unequal amplitudes. This j depen-
dence was predicted by Newns" in (d, p) reactions.
Since then it has been extensively observed in the
k = 1 and k = 2 analyzing powers of light ion reac-
tions where the transferred particle is initially
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bound in an s state. It is the ease, for instance,
of (d, o') reactions. ' In the transfer from a p
state, as for example in ('Li, 'Li) and ('Li, 'He)

a t. s, thesam typ ofjd pe d 'so ly
present in the T„.

IV. CALCULATIONS FOR THE Ni( Li,6Li) Ni
REACTION

The reduced transition amplitudes i3&
&

were
computed using Eq. (13) and the d r integration
mas perfoxmed analytically through the represen-
tation of the radial bound state wave functions as
sums of Hankel functions. A program was devel-
oped to this effect for wave functions generated in
%oods- Saxon potentials. Using a variational meth-
od me find that by choosing carefully the initial
estimates of the parametex s in the arguments of
the Hankel functions, the wave functions can be
satisfactorily reproduced domn to distances of the
order of 2 fm. The relative error in the Hankel
function representation of neutx on bound states
was always smaller than 1% in the asymptotic re-
gion and of the order of 2% down to distances of
about 1 fm. For proton states a maximum rela-
tive error of the order of 4% is obtained down to
distances of 2 fm.

A computer code'~" has been pxogrammed in
Fortran to generate the distorted waves X„x, and

to calculate the reduced txansition amplitudes giv-
en by Eq. (13), with p, determined by Eqs. (10) and

(11). Good agreement was obtained in comparisons
of differential cx'oss sections of one nucleon tx"Rns-

fer reactions calculated with this code and with
full finite xange DNBA codes. +" Reactions where
recoil effects are known to be large mere specially
considered. This is the case, for instance, of the
"C("N, "NP'C ground state reaction. " The spec-
troscopic factors for this transition determined in
calculations using the present model and the full
finite range code LOLA differ by less than 10% at

N incident energies of 78 and I00 MeV.""
Calculations of analyzing powex angular distri-

butions were performed for the ~SNi('Li, 'Li)"¹
reaction at EL,. =20.3 MeV. ' Generally me find
that the analyzing powers T~, with k odd are very
sensitive to p, and therefore have a strong Q de-
pendence. Those with k even have a weaker de-
pendence on p, and Q but are more sensitive to
shape effects in the projectile. Figure 3 shows the
result of calculations of the cross section and iT»
angular distributions to the ground state and tmo

excited stRtes of ¹lusing Li optlcRl model poten-
tiaj.s of Ref. 27. The calculations mere pexformed
assuming a pure P ~ neutron configuration in 'Li
and P& and f-,' states were assumed for the unre-
solved first excited state in 59Ni. A g—,'configura-

tion mas assumed for the 3.06 MeV level in '¹.
We obtain a reasonable description of the sT
angulax distributions, in particular of its strong
Q dependence (the ground state Q value is 1.8
MeV) for»60'. The change of sign of iT» occurs
for Q=—-0.5 MeV, which corresponds to the con-
dition that P~=O in the present reaction. This Q
dependence could not be reproduced when using
the approximation of Ref. 13, where p, in Eq. (13)
is replaced by a local recoil momentuxn q.

Fox' bell shRped angular distributions such Rs
those of Fig. 3, Bonds has shown that the vector
analyzing power is expected to be independent of
8 over a wide range of angles near the peak in the
cross section. This type of behavior is clearly
seen in Fig. 3, but for angles smaller than the
peak, iT» is strongly reduced in a may that de-
pends on the values of l2 and j,. Thus, although
iT» depends weakly on l„j,in the angular region
mhere it is almost constant, l, and j2 dependent
effects are present at forward angles.

The calculations of Fig. 4 shorn that the T~ have
a much stronger angular dependence than iT». It
i.s straightformard to show, using the model of
Knutson et al. ,

"that the particular form of these
RQgulRI" distributions cRQ be understood Rs R coQ-
sequence of the oblate shape of 'Li. We take, fox
instance, T2o, mhich ean be measured using R

beam with the alignment axis parallel to the inci-
dent beam direction, as shown in Fig. 2. With this
spin orientation the cross section obtained with the
aligned beam a, is related to the unpolarized cross
section 0'„by

o, =o„(1+T, /M2 (27)

8i.nce the projectile follows approximately a Cou-
lomb trajectory, the transfer for large S (S &90')
is less favored in the aligned beam than in the un-
polarized beam because of the smaller overlap be-
tween the 'Li and the target. This is illustrated in
Fig. 2. Hence Eq. (27) implies that T» is negative
for 8&90' (see Fig. 4). The same argument also
shows that T2p must change sign as 6 decreases.

The results of Fig. 4 suggest that the T2, have a
strong dependence on l, and j, at formard angles.
To study these effects it is most convenient to con-
sider the observable

in which the angular dependence from the deformed
shape of 'Li is reduced to a minimum. In fact, the
measurement of A. , involves a 'Li beam aligned
along the y axis and with this spin orientation the
'Li mave function has radial symmetry in planes
parallel to the reaction plane, as shown in Fig. 2.
The result of calculations assuming different val-
ues of l and j in the Q=-j..3 MeV transition are
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FIG. 3. Comparison between distorted wave calculations using Eq. (13) and data from Ref. 4 for (a) cross section and
(b) i T~~ angular distributions to the ground state and two excited states of Ni. The neutron final state configuration
was assumed to be pl, p2, and g 2, respectively. For the unresolved first excited state (Itef. 4) the calculated i Ttt is
shown for p ~ and f ~~ states. E are the excitation energies.

2T2 (Zs =f2+ 2) = — 2 2T~(Js =f2 —2) . (30)

shown in Fig. 5. For angles larger than the posi-
tion of the cross section peak, &,„ is approximate-
ly independent of ~, but its value is strongly de-
pendent on E, and j,. This result indicates that &,„
measurements may be useful to identify the E, and

j2 values in. a given transition. In this context we
note that & has a much weaker Q-value depen-
dence than iT», as is illustrated in Fig. 6.

The transitions to s states are particularly in-
teresting because we predict&„ to be independent
of e (see Fig. 5) and to have the value

A,„=(5v 2) '.
This relation, proved in the Appendix, is exact on
the condition that we neglect spin dependent dis-
tortion effects and the P~ admixture in, 'Li.

Finally we consider the analyzing powers iT~, of
('Li, 'Li) reactions. In view of Eq. (26) they are
predicted to satisfy the relation

The calculations of Fig. 7 for P 2 and P& final states
show that the j dependence described by Eg. (30)
is quite distinct at forward angles although the i T3,
are relatively small.

Up to now it was assumed that the neutron is ini-
tiaQy in a pure Pa state. This is the case of ('Li,
'He) reactions. In ('Li, 'Li) reactions the effect of
a p & and P& admixture in the 'Li-'Li overlap on the
analyzing powers is determined by the difference
between the reduced transition amplitudes corre-
sponding to these two states. Since the transfer
process is preferentially localized at large 8,
particularly at Coulomb energies, the dnference
in P,i" i and P,i" i, have their origi~ mainly i
tail of the bound state wave functions. Hence it is
a good approximation to assume

P,i„, (&, ,i, I&, ,—g,)P„„, (31)

This relation is exact when the neutron radial wave
functions in 'Li are chosen as in Eq. (14).

Using Egs. (22) and (31) one can relate in a
straightforward manner the analyzing powers of a
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mixed initial state w'ith those of the pure initial
states. In the particular case of transitions to s
states this gives

ir„=c,ir„(3/2),

C.N.
FIG. 4. Calculated T2 for the same reaction of Fig. 3

to the g.s. of Ni. The full curve is obtained with the
peripheral model applied to the transfer from a pz to
an s state. The dash and dot-dashed curves are dis-
torted wave calculations using Kq. (13) corresponding
to s-,' and p-,' final states.

ec.m.
FIG. 6. Distorted wave calculations as in Fig. 5 for

the Q-value dependence of A.~ in a transition from a
p z state to a pz final state.

(s2b)

(ssa)

In Eq. (33)

r„=c,r„(s/2) .
Here r„(3/2) are the analyzing powers for a pure
p & configuration. The proportionality factors in
Eq. (32) are given by

c,= (I+4& 5 ~/ii+ io~'/ii)/(i+~'),
c,= (i+4M5z)/(i+a') . (ssb)

I

Ni( Li, Li) Ni Q=-I.& Meg0.l5—

t

Ni( Li, Li) Ni

O.lo—
«««««««

IT~ I 0
lg-O. t tg

I~~~ J

-o.o5 i

--——S 1/P.

«~«p 1/P

0.2— P
I y

0

0

I

304
I

90
I

150

l0( ~««««

/-0.1
—wz

ec.m.
FIG. 5. Distorted wave calculations using Eg. (13)

f t 't' from ap —to an 8 state (dashed curve),
p—state (dot-dash curve), and g- state (full curve).
The effect of a p~ admixture in the initial state is to
multiply A by C2.

30o 150O

C.m.
FIG. 7. Distorted wave calculations as in Fig. 5 for

the g.s. of Ni assuming it to be a p2 state (full curve)
and a p~ state (broken curve).
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S11/2 11/2( 13/2 13/2) (s4}

V. PERIPHERAL MODEL

The essential features of the analyzing powers
in the 33¹('Li,'Li)"Ni reaction can also be inter-
preted using a considerably simplified peripheral
model for the transfer process. In view of the
relatively good l matching and because only a rel-
atively narrow band of partial waves contributes
to the reaction, lt ls now assumed that the trans-
fer is completely localized at the point of closest
approach in the Rutherford orbit of the projectile.
This type of model was first suggested by Knutson
et al. for deuteron stripping reactions at aub-
Coul. omb energies. Since the distorted waves tend
to peRk Rt tile distRllce of closest Rpp1'oRcll d (I'ep-
resented in Fig. 2), the product of distorted waves
in Eq. (13) is replaced by 5(8 —d). In this approx-
imation the reduced transition amplitudes are giv-
en by

PLM d3&FLM (d ) Ig ~ 31/3
f/' 2

and using Eq. (15) we obtain

AIR I IPLM Q )I-)2+( F~ (d) PI
1)2 P 1 f~

'c
C

& g (Imr. ,M, ~r./d)yM (d)F;*(p,).
(3't)

Equation (37) provides some insight on how the
orientation of the transferred orbital angular mo-
mentum L depends on the scattering angle and on

P,. In particular we notice that high values of ~/lf,
~

are favored for & &I//2, since d makes an angle of
(&+2')/2 with the z axis. This result means that
for small ~P, ~, L preferentially points in the re-
action plane. However, for ~Q~ »m„I/'/2, ~p, ~

is
large and the contributions from high ~m

~
can

align L perpendicular to the reaction plane. In
the particular case whereP, =0, Eq. (3V) reduces
to the form

is the xatio of vertex constants. Using values of
asymptotic normalization constants generated in
Woods-Saxon potentials and spectroscopic ampli-
tudes froxn Ref. 29, we obtain A, =0.93. Hence C,
=1.36 and C,=5.00. Equation (32) shows that the
effect of the p2 state is considerably larger in T~
than in iT». The obsexvable &» is pax ticularly
suitable to extract information on R since it is pre-
dicted to be independent of angle and to have the
value

a„,=C,(5')-I .
The anisotropy in A.„provides information on spin
dependent distortion effects.

P,'", =. (-I)'Ii, (I,OI, O~I,O)i'I-"X, (d)IM (d).
1~2 P~

iT„=C, tanh(2~),
1I' 641O

T~ = -C,—— [sin2u& Y22(5, 0) + cos2&ul';(y, 0)] .2 5 5
(39b)

Here C„C, are given in Eq. (33),

u= tanh 'x,
~=tan 'x,

(4Oa)

(4ob)

(40c)x=P,d[1(1+P2d)] ',
hand y and & are the angles that d and p, make with
the incident beam direction. Equation (39a) shows
clearly that iT» is independent of & (except for the
weak dependence of d on 8) and has a strong Q de-
pendence since it is approximately linear in p, .
In particular iT» changes sign with p, . It is inter-
esting to note that the formula of Tungate et al.~

fol' iTII cRn be deI'ivecl froII1 Ecl. (39R). In fact,
I=P,/(@P,—) for P, &P, since in the prior form of
the transition amplitude, used in Ref. 4, 2 = p, /(pp, )
in the limit d - ~. This result is understand-
able because the projectile trajectories are as-
sumed to be straight lines in Ref. 4, which is a
condition obtained in the limit d- ~. The strong
Q dependence of iT», as given by Eq. (39a), can-
not be obtained when p, is replaced by the xecoil
momentum q obtained in a local momentum ap-
proximation. This is a consequence of the fact
that q is a slowly varying function of Q value.

The T~ have a quadratic dependence on p~ ac-
cording with Eq. (39b). For smallP, the sin'&u

term is negligible and the angular dependence of
T~ is approximately given by I"2[(I/+S/2), 0]. Fig-
ure 4 shows that there is good agreement between.
the predictions of the peripheral model and calcu-
lations using Eq. (13), except at forward angles
where the complete localization of the transfer
process is not a good approximation.

Using Eq. (22) one can easily show that because of
the selection rule La+~2+I =even, the analyzing
powers 7~, for k odd are identically zero. In par-
ticular iT» vanishes for p, =0, as already noted in
Sec. III. However, the 0 = even analyzing powers
do not necessarily vanish for P, =O.

The substitution of Eq. (37) into Eq. (22) gives
closed analytical expressions for the T~, as a func-
tion of d and p, . %e consider here the explicit
form of these expressions for a, case of particular
interest in the ('Li, 'Li) reaction. It is shown in
the Appendix that in a transfer from a mixed P ~,
p~ state to an s state



164 F. D. SANTOS AlVD A. M. GO1VQALVES 24

VI. CONCLUSIONS

We have discussed the analyzing powers of heavy
ion induced transfer reactions within the frame-
work of the DWHA and using a semiclassical ap-
proximation to describe the conservation of kinetic
energy in the transfer process. Calculations with
this model reproduce satisfactorily the cross sec-
tion and iT» angular distributions in the "¹('Li,
'Li)"¹ireaction at an energy of 20.3 MeV. In par-
ticular, good agreement is obtained with the Q-
value dependence observed in iT».

In general we find that the analyzing powers T„
with k =1 and 3 have a strong dependence on the
reaction Q value and tend to change sign. at Q
=-m„v'/2. The T„with k =2 do not have this
property and show a weaker dependence on Q.
Furthermore, their angular distributions are
largely determined by the deformed shape of the
overlap between the projectile and ejectile.

We showed that strong j-dependent effects are
present in the analyzing powers of ('Li, 'Li) reac-
tions. Analogous effects are also expected in
('Li, 'He) reactions. A,„ is particularly interest-
ing in this context. Calculations for the "¹('Li,
Li)"¹ireaction show that A„, is approximately

isotropic for angles larger than the cross section
peak. The value of A,„ in this angular region
shows a strong dependence on the quantum num-
bers of the neutron final state. In the particular
case of transitions to s states A„, =—C,(5&2) ',
where C, is a function of the asymptotic mixing
ratio between the P2 and P~ components of the 'Li-
Li overlap. Calculations of the iT„analyzing

powers show that they have a strong sign rule
type j dependence. This j dependence is similar
to that observed in the vector analyzing powers of
light-ion induced transfer reactions.

Closed analytic expressions for the analyzing
powers are obtained using a simplified reaction
model, where it is assumed that the transfer pro-
cess is completely localized in space. This peri-
pheral model provides a qualitative description of
the essential feature of the j and Q-value effects
in the "Ni('Li, 'Li)"Ni reaction.

We assumed that there are no spin dependent
interactions in the Li optical potentials. The de-
termination of the type and strength of these
forces is presently being actively investigated in
the elastic scattering of polarized Li beams. '~"
Spin dependent interactions are likely to affect the
calculated polarizations in transfer reactions. We
are presently studying the analysis of these effects
in the ('Li, 'Li) reaction.
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APPENDIX: TRANSFER TO AN s STATE

A. Isotropy of Ayy

ln a nucleon transfer from a p-,'state into a s~
state, l, = 0, L = l, = 1, and j, = s„=—, in Eq. (20).
With these conditions the inversion of Eq. (20)
gives

B~)2,)g~(2, )2
——oQ(-I) (1 —M1M' ~kq)T~, /A»,

(Al)

where

g (1010~I0)T„(S )/A, =o.

Noting that A (S)=~T20(S'), Eqs. (A2) and (A3)
give

(A3)

A (S) = (5~) ' . (A4)

With p& and p& mixing in the projectile, Eq. (20)
gives

A„= ~(1 —4M~/5„, )/[I + (I „,/h„, )'],
(A5)

1N 1Ng 1g I2y = Be ~ B,]2,]2B3],,]2, b~
——~ B~, ], 2

(A6)

Here the amplitudes B,'. »2, are referred to the co-
~1

ordinate system S'. Notice that Eq. (A5) reduces
to (35) with the approximation (31). The relation
(A4) is not valid when spin dependent interactions
are included in the optical potentials. In this
case, L in Eq. (2) is the overall orbital angular
momentum transfer and therefore it is not re-
stricted to the value 1 in transfers to s states.

A, = 8(-1)'"W(k2 —,'1;—,'-,') W(23 2 ll;02 ) . (A2)

In a coordinate system S' with z axis along k, xk,
the amplitudes B~3»», vanish unless (-1) =w, ~=-1. Thus for M =M' =0, Eq. (Al) gives
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8. Peripheral model

In a transition to an s state the angular momen-
tum coupling in Eq. (16) implies that L, =L, and l
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(A7)

where
2~ ~/2

13/Pl 3/2 ll/2 11/2 3 ~ 2 I
p, ~P~

a = iP2h, (iP2d),

I =I,(iP,d) .

The substitution of Eq. (A7) into Eq. (20) gives

can be either 0 or 1. For /=0, I., =1 and T' =1,
while for l =1, I,=0 and 1" = -1. Using these
values in Eqs. (3) and (37) gives

a', /, „,=is[a&", *(d) + ip, I I"",*(P,)J,

iT» ——C, 6&I0 &
2 sin(y —S),

2

, F'2(5, 0)+,Y', (y, 0)

Here y and 5 are the angles that d and p, make with
with the z axis and

x =P,d[II(1+P2d) I
'
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