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Pauli blocking in pion- He scattering including partial wave mixing
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Detailed calculations are presented of the Pauli blocking correction in ~-"He scattering
for the energy range T = 24 —220 MeV. Pion-nucleon partial wave mixing which is due

to the Pauli projection operator is taken into account for the first time. The first-order op-
tical potential of Celenza, Liu, and Shakin is used. The nucleon-core interaction is simulat-

ed by means of an effective m.-X subenergy. Satisfactory results are obtained for the cross
sections at low energies. However, at intermediate energies the elastic cross sections are
overestimated by 30—40'Fo. The partial wave mixing which is introduced by the Pauli

principle generates a small correction at low energies but in the resonance region it leads to
a clear increase in the cross sections by 10—20%.

NUCLEAR REACTIONS m- He scattering, T~ = 24 —220 MeV, ',

optical potential, Pauli-principle corrections.

An essential ingredient in a theory for pion-
nucleus scattering is the single-scattering process in

which the pion scatters from one nucleon at a time. '

Usually one takes as the optical potential for this

process the ground-state expectation value of the
free m.-X T operator, summed over all nucleons:

U, , = 3 (go
~

t(ar )
~ pQ)

where the m-X subenergy co depends on the way in

which the binding and Fermi motion of the target
nucleons are treated. In a three-body picture, the
m-X subenergy. is shifted downwards with respect to
the m-A c.m. energy by the kinetic energy of the nu-

clear core in m-3 c.m. and the binding energy Eb of
the struck nucleon in the initial state. This is the

prescription used by Liu and Shakin. However, in

this way the nucleon-core interaction in the inter-

mediate scattering state is ignored. To include this
"binding effect" several authors use a reduced
downward shift, e.g., I.andau and Thomas take an

unrealistically small value for Eb and Schmit et al.
use a prescription in which Eb is cancelled com-
pletely.

For an optical potential of the form (l), a mixing
of the n.-X partial waves into each m-A partial wave
in the partial wave expansion of the optical potential
only arises from the three-body kinematics of the
single-scattering process. However, in Eq. (l) the
Pauli principle for the intermediate scattering states
is not taken into account, and this can have impor-
tant effects in ~-A scattering. As shown in Ref. 6,

its neglect may lead, e.g., to an incorrect description
of the threshold behavior of the single-scattering
process. In a complete theory, Pauli blocking also
leads to a m-X partial wave mixing. Because of the
Pauli principle, one should use a 6 operator for the
~-X interaction rather than a T operator. In a 6
operator the intermediate propagation of the struck
nucleon in the occupied states is excluded. And, as
is well known from nuclear-structure studies where
the 6 operator was originally introduced, the Pauli-

projection operator which appears in the 6 operator
leads to a mixing of partial waves.

In this work I report on calculations of the
Pauli-blocking effect for m- He scattering. In these
calculations the m.-E partial wave mixing which is
due to the Pauli principle is fully taken into ac-
count. In this way the importance of this mixing
for pion scattering is established for the first time.
Furthermore, this approach allows for a reliable
evaluation of the Pauli-blocking effect at intermedi-
ate energies for which this mixing is especially
relevant, as we will see.

Frequently Pauli-principle corrections are calcu-
lated by means of nuclear matter procedures in
which a local density approximation is applied to
the nucleus. Then the phase space of the struck
nucleon is restricted by the Fermi sea of occupied
states. In these procedures it is standard to use the
angle-averaged Pauli operator, which amounts to
neglecting the partial wave mixing. For small nu-
clei one cannot rely on a local-density approxima-
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tion and in a calculation of the Pauli blocking effect,
rather than a Fermi sea, one should use a shell-

model description of the occupied states. This has
been done by Hirata et al. in the framework of an
isobar-hole description of the m-A interaction for the

P33 m-X partial wave. Recently, we have shown
how this can be generalized to all relevant m-X par-
tial waves for an optical-potential description which
was applied to ~- He scattering. However, in that
work the m-X partial wave mixing was ignored.
This restricted the applicability to the low energy re-

gime, where one expects this mixing to be the least
important.

The relation between the 6 operator for m.-X
scattering ~ and the T operator t is given by '

1
7 = t —t—R7-.

Here the m-3 propagator is denoted by 1/e and R is

a projection operator which projects on the

space of occupied states. In this way the nuclear

ground state is also excluded, as is required for an

optical potential. Numerically, however, the

ground-state exclusion represents a much smaller

correction than the Pauli-blocking effect. Follow-

ing the approach of Ref. 9, we expand v. and t into

partial waves. This gives

r = grTjjP PjjP
Tj l

r = gr»IP'P, 'P
Tj l

(4)

where P' projects on a m-X partial wave with orbital

angular momentum I, and where PlJ and P are

projection operators which project on the m.-X spin

and isospin space, respectively. Substituting Eqs. (3)

and (4} into Eq. (2) gives

r

rTjl PIP tTjlP rTj1 ~+Tjr g g T j'I' I I~ &'Tj IPl j T l 11 l l' J 1 l J T
J e J

lt~l e

In Eq. (5) the last term represents the partial wave mixing contribution. We write the optical potential U,~, as

the sum of its m-1V partial wave contributions

U,~, = gU j, where U j'=4CTC~~ (Is ~&TjIP
~

ls) .
Tj l

We will restrict ourselves to m-N S and P waves. The coeAicient CJl is 1 for S waves. For P waves CJl is 3
2 . 1 3 1 1 2 3

and —, for j = —,, and —,, respectively. The coefficient CT is —, for T = —, and —, for T = —,. The factor 4

comes from the number of nucleons, and
~

ls ) denotes the orbital part of the He ground state. We can also

write the optical potential Uppt which is defined in terms of ~ instead of t, as

U,~, = gU, and U =4CTC&~(ls ~rTjjP'~ ls) .
Tj l

In a shell model in which the four nucleons occupy the 1s orbit and in which Coulomb eA'ects are ignored, the

projection operator R simply equals
~

ls ) ( ls
~

. We can then derive from Eq. (5) the following set of relations

between U and U J:
3 3

U(S») = U(S») ——„U($&))—U(S») ——, U(P») —U($») + U(P&3}—U($)))
e 4 e e

U($3)) = U($3)) ——,U($3))—U($3)) —
g U(P3))—U($3)) + U(P33}—U($3))

e e e

9 1—
U(P i)) = U(P ti) ——,U(P i i)—U(Pi i) ——„U(Sii)—U(Pii), (8c)

9 1—
U(P3&) = U(P3&) ——,U(P3&)—U(P3&) ——, U($3&) U(P3])— (8d)

9 1— 3 1—
U(P)3) = U(P)3) ——, U(P)3)—U(P)3) ——,U(S)))—U(P)3),

9 1— 3
U(P33) = U(P33) ——„U(P33) U(P33) ——, U(—$3))—U(P33) .

(8e)



1556 J. de KAM

~=pw E~(
(m)

F=j'EA(P), 7]
(A) (A-1)

[Eg(k') k']

(A)

FIG. 1. A graphical representation of the CLS optical
potential. The dashed, light, and heavy lines represent
the pion (m.), nucleon (1V), nucleus (A) and residual specta-
tor nucleus (A —1), respectively. p, I', and Q are the 4-
momenta for the pion, nucleus, and spectator, respective-
ly. The nucleus and the spectator are placed on their
mass shell.

Equations (Sa)—(Sf) are Fredholm-type integral

equations which can be solved numerically by
standard matrix-inversion techniques. Here the
standard notation L,2T+& 2J+& is used. One ob-
serves from Eqs. (8a) —(Sf) that the Pauli principle
leads to a partial wave mixing. In addition to
spin-orbit effects mixing comes from charge-
exchange reactions with an intermediate Pauli-
blocked state. These can take place both for mN 5
and P waves. It is easily verified that similar equa-
tions can also be written for the m- He partial wave
contributions to U», and U,„, separately. Because
of this, one can conclude that the effect of the
"mixing terms" depends crucially on the ~-N par-
tial wave admixture in the m.- He partial wave con-
tributions to U,~, . If this admixture is small, e.g.,
at low energies, one expects little effect from the
m-N partial wave mixing, introduced by the Pauli
principle.

In a calculation of the Pauli-blocking effects by
means of Eqs. (Sa) —(SI) we need to introduce a
model for U,~, in which the nucleon-core interac-
tion is taken into account. The proper way to con-
struct U,~, is by means of a three-body calcula-
tion. " Only very recently has this problem begun
to attract serious attention, "' and the common
practice is to use a much simpler method, in which
one aims at approximating the results of such a
three-body treatment as well as possible by means
of a clever choice for the m-N subenergy. ' %hile
a three-body treatment is currently under investiga-
tion, ' it will be interesting to see to what results
we are led for this simpler procedure in the present
discussion of the Pauli-blocking effect.

As in Ref. 9, I use the Celenza, Liu, and Shakin
(CLS) optical-potential model' for U,~,. In the ap-

plications of this covariant model by Liu and Sha-
kin, the m-N collision energy co = &s is obtained
from the four-vector relation

s = (&+p —Q)', (9)

where P, p, and Q are the four vectors of the nu-
cleus, pion, and spectator, respectively, which is il-
lustrated in Fig. 1, and

Q =Mc (10)

where Mc is the mass of the spectator nucleus.
This, however, is precisely the choice for u in which
intermediate binding effects are completely ignored,
as can be seen more clearly in the nonrelativistic
limit, for which Eqs. (9) and (10) lead to co = T
—K~ —E „,where T, K~, and E ~ are the
asymptotic kinetic energy of the pion in the m-A

c.m. , the kinetic energy operator for the spectator,
and the single-nucleon separation energy, respective-
ly. To incorporate binding corrections, I adopt a
method which is based on an observation made by
Schmit eI; al. They have shown that in a first ap-
proximation the binding correction cancels the
downward energy shift due to the separation energy.
This suggests that binding effects can be included by
taking instead of Eq. (10)

Q = (Mg —M~)

in which Mz and Mz are the masses for the nu-
cleus and the nucleon, respectively. Now we have
in the nonrelativistic limit co = T —E~. One
may notice that taking binding effects into account
in this way results in a description for U», which is
very similar to the scheme proposed by Schmit
et al. ' Like CLS they carry out the complete
Fermi averaging. However, they ignore Pauli-
principle effects. The present results will therefore
be relevant also to their optical potential and closely
related optical-potential models such as the Landau
and Thomas model. Furthermore, the present
scheme is essentially equivalent to the isobar-hole
description of Hirata et a/. , if their "spreading po-
tential" is turned off and if the Pauli corrections in
the S and the small P waves plus the mixing term
for the P33 partial wave in U», are ignored, which
also allows for interesting comparisons to their
results.

Calculations for the differential cross sections
have been performed for three cases. First I ig-
nored the Pauli blocking completely, taking U,„, for



24 PAULI HALOOCKING IN PION-- He SCATTERRING INCLUDING. . . 1SS7

1Q2

10

0 ~ i \ j ~

~+
NO PAULI BLOCK.

PAULI BLOCK.,
NO hAIXING

PAULI BLOCK.,
+ Ml XI NG

1Q
2

10

o 10o

P

C

10
L)

0
U
UJ, o

Z
0
U 101

4.
4

10

)00 0
~ ~ ~ ~

0~ 2

0

/

I
I

/

I
I

I

60 120
C & SCAT, ANGLE

180

10o

10
0 60 120

CM. SCAT. ANGLE

180



1558 J. de KAM

the optical potential. Then I included Pauli-, .

principle effects, ignoring the mixing terms. Finally
a full calculation was carried out, using U,„,. The
results are displayed in Figs. 2 and 3. In Fig. 2 m+

scattering is examined at 24, 51, and 75 MeV. Fig-
ure 3 shows the results for m scattering at 110,
150, and 180 MeV. For comparison I also plot the
available experimental data. ' Considering first the
low energy results for ir+ scattering (Fig. 2), we find

a poor agreement with the*experimental data if the
Pauli-blocking is ignored completely. The curves
exhibit a strikingly different behavior for 24 MeV
compared to 51 and 75 MeV. %'hile for 24 MeV
the cross sections are much too low, they are
strongly overestimated at 51 and 75 MeV, particu-
larly at forward angles. This difference reflects the
dominance of the repulsive ~-E S waves at 24 MeV,
while at the higher energies the attractive P33 takes
over. However, both for 24 and for 51 MeV and 75
MeV, we obtain an important improvement by
taking into account Pauli-blocking corrections. One
can also judge from these results that the mixing of
m-X partial waves due to the exclusion principle
indeed represents a minor effect for low energy
scattering. It mainly leads to a slight increase of the
cross sections at forward angles and a small de-

crease at backward angles. Examining now the m

results (Fig. 3) for the higher energies, we notice
that the effect of the partial wave mixing is larger.
Again we find an increase of the cross sections at
forward angles and a reduction at backward angles.
For 180 MeV the increase at forward angles even

leads to larger cross sections at the first minimum

as compared to the results obtained with U pt On
the other hand, if the mixing terms are ignored, a
deepening of the minimum results for all three ener-

gies considered. Furthermore, we also find that at
intermediate energies the Pauli-blocking correction
does not improve the agreement with the experi-
mental data (except, perhaps, at extremely back-
ward angles; however, a single scattering theory is

not very reliable at these large momentum
transfers). At forward angles, the Pauli effect even

worsens the agreement, particularly if the mixing
terms are 'included. This contrasts markedly with

the low-energy regime. Furthermore, we find that
the results for U,p, indeed compare very well with

those obtained by Maillet et ah. ' and that the dot-
ted curves agree with the results of Hirata et al. , ' if
they do not include a spreading potential.

The tendencies that we found in the differential

cross sections can be seen very clearly also in the in-

tegrated elastic cross sections (Fig. 4). At low ener-

gies (T & 100 MeV) we see that using U», strong-

ly overestimates the data, e.g., at T = 75 MeV by
almost 50lo, and the Pauli-blocking corrections lead
to a considerable improvement (Now at 75 MeV the
calculated value falls within the experimental error. )

Furthermore, it is interesting to see that the results
in which the Pauli blocking is taken into account
are quite close to the results for U,~, in which the
I.iu and Shakin choice is made for the m.-N suben-

ergy [Eqs. (9) and (10)), i.e., in which the inter-

mediate nucleon-core interaction is ignored. This

suggests an important cancellation between binding

and Pauli-principle corrections, which is very

reasonable: The Pauli principle blocks the prohibit-

ed bound states, which arise in the nucleon-core in-

teraction.
For the intermediate energies, the results are quite

different. Here we have a reasonable agreement
with the data using U,„„and much too large values
if the Pauli blocking is included. At resonance the
elastic cross section is overestimated by 20—30% if
partial wave mixing is ignored and by 30—40% in

a complete calculation. Although here the magni-
tude of the cross sections shows no evidence of a
cancellation between binding and Pauli effects, we
do find an upward energy shift of the resonance
peak by about 20 MeV due to the Pauli correction,
bringing it very close to the result for U,p, in which
the binding effect is ignored.

FIG. 2. The differential cross sections for m+ scatter-

ing at T~,b equal to 24, 51, and 75 MeV. The dashed,
dotted, and solid curves correspond, respectively, to the
results in which the exclusion requirements are ignored;
the exclusion requirements are taken into account, but in

which the mixing terms are ignored; and the full calcula-
tion of the exclusion requirements, including the mixing
terms. The data for 24 MeV are from Nordberg and

Kinsey and for 51 and 75 MeV are from Crowe et al.
(Ref. 16).

FIG. 3. The differential cross section for m scatter-
ing at T&,b equals 110, 150, and 180 MeV. The dashed,
dotted, and solid curves correspond, respectively, to the
results in which the exclusion requirements are ignored;
the exclusion requirements are taken into account, but in
which the mixing terms are ignored; and the full calcu-
lation of the exclusion requirements, including the mix-
ing terms. The data are from Binon et al. (Ref. 16).
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data are obtained from Binon et al. (Ref. 16). The dot-
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FIG. 5. The total cross section 0.~ and the reactive
cross section 0&. The legend of curves is the same as in

Fig. 4.

The total cross section o.
T and the reactive cross

section o~ are displayed in Fig. 5. For U,~, we
find a reactive cross section which is remarkably
close to the data. This, however, is not desirable in
view of the absorption channel which we have ig-
nored completely. Including the Pauli-blocking
corrections leads to a reduction which is consider-
able at low energies. Compared to the data, the
complete calculations fall short by typically 30 mb
at 51 MeV. The experimental data' on the ex-
clusive absorption cross section suggest that such
discrepancies can be explained from our neglect of
the absorption channel. The results for o;~ and o,
imply a total cross section which is not too far off
compared to the data at resonance, but which un-

derestimates the data at low energies.
Summarizing the results, we have seen that the

present model for the single-scattering process, in,

which the Pauli blocking is treated very carefully,
but in which binding effects are taken into account
by means of an effective m-N subenergy, leads to sa-

tisfactory results at low energies. The discrepancies
with the data at these energies are reasonable in
view of the neglect of the absorption channel, which

is known to be important, especially in the low-

energy regime. Furthermore, if the Pauli principle is

ignored but if the binding correction is retained, we
found cross sections which are very similar to those
of Maillet et al. ' This indicates that much of the
failure of their model at low enery'es can be attri;
buted to their neglect of the Pauli principle.

For the resonance region, the total cross sections
are in reasonable agreement with the data', however,
the present model severely overestimates the elastic
cross sections, in particular if the m-N partial wave

mixing due to the Pauli principle is taken into ac-
count. To a slightly lesser extent, this has also been
found by Hirata et al. in their isobar-hole calcula-
tion. Notice that in an isobar-hole formalism the
mixing terms do not arise naturally. Hirata et al.
could achieve improvement by means of the
phenomenologica1 spreading potential. In an at-
tempt to interpret the spreading potential, they em-
phasized the role of the absorption process. Besides
pion absorption, a treatment of the binding correc-
tion by means of a genuine three-body calculation,
rather than a constant energy shift as is used here,
may also lead to more realistic values for o.,/o.,~. In
particular the m-d calculations by Woloshyn et al.
suggest that the binding correction should lead to an
important increase in the absorptive part of the opti-
cal potential, giving larger values for the ratio
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o-,/o-, ~. The energy shift by means of which the
nucleon-core interaction is simulated in our discus-
sion indeed leads to an increase of this ratio at lower
energies [e.g., at 51 MeV the ratio o„/o, t

——0.43 for
the Liu and Shakin choice for' the m-X subenergy
Eqs. (9) and (10), while using Eqs. (9) and (11) leads
to o„/o.,&

——0.90]. In the intermediate-energy re-
gime, however, we do not find such an increase.
This indicates that in order to account for the bind-

ing correction at resonance energies, a simple energy
shift may not be adequate.

Lastly, we have studied in some detail the eA'ects

of the m.-N partial wave mixing due to the Pauli
principle. %e found that this mixing leads to small
modifications at low energies; however, at resonance
energies it gives an increase in the cross sections of
typically 15%.
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