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The inelastic and fusion excitation functions are analyzed using an interference mechan-

ism between the barrier and internal waves of the heavy ion optical potential. The un-

damped overlapping molecular resonances are found to be the main dynamical mechan-

ism for the gross oscillations in the excitation function. Our result suggests a rather in-,

teresting correlation between the total reaction excitation and the direct surface reaction

excitation function. Its origin may be understood as follows: At the resonance, the wave

function is pulled into the nuclear interior, and thus, the total reaction cross section is at

maximum. The direct surface reaction is, however, shifted by a small phase difference

near the surface region. This picture should be valid in the case of overlapping molecular

resonance of the heavy ion systems. Good agreement between calculated and experimen-

tal inelastic and fusion excitation functions for ' C+' C and' 0+' 0 is obtained.

NUCLEAR REACTIONS Effect of molecular resonance to the gross

oscillation in heavy ion inelastic and fusion excitation functions.

I. INTRODUCTION

Recently, Phillips et al. ' proposed an interesting
explanation of the C+ C and 0+ 0 low ly
ing state inelastic excitation functions. For these
systems of inelastic heavy ion scattering, the angle
integrated cross sections exhibit gross oscillations
as well as fine structures. Phillips et a/. ' pointed
out that the essential ingredient of these gross os-
cillations is due to the kinematic matching condi-
tion for the initial and final channels. Since the
direct inelastic scattering is a surface reaction, the
grazing angular momenta of the initial and final
channels play an important role in the reaction
mechansim. The reaction is considered to proceed
via two angular momentum windows around the
grazing angular momenta of the entrance and exit
channels. However, this simple interesting picture
has a rather serious drawback in that the angular
momentum window required in this diA'raction

model is too small to be consistent with that calcu-
lated from the heavy ion proximity potential.
Friedman et al. reinterpreted the work of Phillips
et al. as the kinematic matching condition of the
barrier top resonances of the initial and final

channels. Since the physics of the "barrier top res-
onance" is by and large equivalent to the physics

of the grazing angular momentum phenomena, we

do not distinguish between these two interpreta-

tions.
Alternatively, these data have also been analyzed

by the band-crossing model, where a set of rota-

tional bands has been assumed to couple strongly

to the entrance and exit channels. Then, an / or
J-independent absorption is used to simulate the

isolated resonances in the entrance and exit chan-

nels. The band crossing model is also quite suc-

cessful in fitting these oscillations with a number of
free parameters. It is not clear, however, what the

essential ingredient is of the physics behind this

picture. The model relies essentially on a very

weak absorption around the grazing angular

momentum. The physics of the / or J-dependent

absorption is interesting, yet it demands more ex-

perimental justification.
In this paper, we present a new explanation of

these observed gross oscillations in the inelastic

C+ C and 0+ O excitation functions. Our

analysis is based on the interference mechanism

between the barrier wave and the internal wave

amplitudes. %e shall try to use as few free param-

eters as possible. To this end, the Austern-Blair

(AB) model of the distorted wave Born approxi-

mation (DWBA) will be used in our study. This
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should be a fairly accurate approximation for the
low lying states of nuclei near the spherical region
with moderate absorption. The interference
mechanism between the barrier and the internal
waves has been observed in the elastic scattering of
many heavy ion systems. However, it has not yet
been applied to the inelastic scattering. Our sub-

ject is to study the essential physics of the gross os-
cillation in the inelastic exictation function within
the general framework of the interference mechan-
ism. The proximity potential for heavy ion
scattering will be used at large separation. At
short distances, we will parametrize the interaction
potential by a set of Regge trajectories (or rotation-

l

al bands) with two free parameters. The energy
dependence of the imaginary interaction potential
will be characterized by one free parameter. With
these three parameters, we will analyze the gross
oscillations of the excitation functions.

The organization of this paper is as follows. In
Sec. II we will briefly discuss the DWBA and the
Austern-Blair model. The difFraction model of
Phillips et al. is analyzed in Sec. III A. The in-

terference mechanism between the internal and bar-

rier waves is studied in Sec. III B, together with the

results of our calculations. Conclusion and re-

marks are presented in Sec. IV.

II. -THE DISTORTED WAVE BORN APPROXIMATION
AND THE AUSTERN-BLAIR MODEL

We consider the direct inelastic scattering to the low lying collective states. i.e.,
A &(0+)+.8;(0+)~A&(0+)+BJ(J~). The distorted wave transition amplitudes T~; for the excitation of the

target nucleus from the 0+ state to the J state is given by

Ty; =(2J+1)'~ AJp™(8),

where

p' (8)= gi ' e ' (2lI+1)' I('('(lgO JO~ 10)(li —M JM
~

IO)YI™(8,0)
1)r

i f

and AJ is the sepctroscopic factor for the transition
of the nucleus from the

~

0+)~J Jn. ) state. In the
above we defined z =k;, y ~ k;xk~, and 0 as the
scattering angle. The radial integral I1'1.' is given

by

(fs (J)Pg (0+)
~

&T
~
1(s.(0+)((g,(0+) )

AJFJ(r) Yg~(r) .
J

(4)

In the collective model, the transition potential
is given by

Vr(r) =Ra g a~& Y~&(r )+O(a2) .
Xp

The corresponding spectroscopic factor AJ and the

II'I' —— I dr fI' '(kg, r)FJ(r)fI'"(k(, r),
(3)

where f J'(r) and fj~"(r) are the radial parts of the

distorted wave in the final and initial channels,

respectively and the radial form factor FJ(r) is de-

fined via the transition amplitude

I

radial form factor FJ(r) are given by

AJ i (2J +——1) ' 5p',

FJ(r) = aU

0

respectively, where 5J ' is the deformation length,
which can be determined from A (e,e'), A (p,p'). . .
experiments. The transition amplitude is given by

TJM (8) ~ ~I IBJM '

In the AB model, the radial integral I1' 1 is ap-ft j
proximated by

(J) lM ~ If ~9t
1~1,

—

where (qJ, AI ) and (q;,A; ) are the S matrix and

the grazing angular momentum of the final channel

and initial channel, respectively. The AB model is

usually misused with
1/2

iM ~'9f ~'9
(10)

p Bl) Bl;



S. Y. LEE, Y. H. CHU, AND T. T. S. KUO

Equation (10) agrees with Eq. (9) in the strong ab-
sorption limit. For weak to moderate absorptive
reactions, we should use Eq. (9) for the form factor.
Therefore, in the present work, we use Eq. (9) in

the analysis of the excitation functions. The validi-

ty of the AB model depends on the localization of
the angular momentum space for the radial in-

tegral Il 1 . The localization is due to the phasefi
averaging and absorption at low partial waves and
small penetrability at high angular momentum.
Because of large wave numbers and a moderate to
strong absorption in the heavy ion scattering, the
AB model should be quite reliable in heavy ion
scattering.

The angle integrated cross section is given by

I Zl,
0'g= (2J+1)(5J ) glII~' 0 0 0

l~l

where

I-(J) P I(Ji
1~1,.

=
~2 l~l,

7Tn

In the following section, we will analyze the energy
dependence of the inelastic excitation function and
study the effect of the molecular resonances on the
gross oscillations in the excitation functions.

III. THE ANALYSIS GF EXCITATION FUNCTIONS

A. The diffra, ction model

The diffraction model is literally equivalent to
the strong absorption model. The S matrix of the
diffraction model can be expressed. as the barrier
wave S matrix in the semiclassical theory ' '" of
the potential scattering. The diffractive
phenomenon in the heavy ion collision is related to
the strong absorption for the low partial waves and
the small penetrability for the large angular

momentum. Therefore, the S matrix in the diffrac-
tive phenomenon of a potential is given by the bar-
rier wave S matrix. At energies above the
Coulomb barrier, ' the semiclassical barrier wave S
matrix can be approximated by the Ericson
parametrization

1na(~=i+ —, ) =—ATE&.s-
1

—i y—(A, —A)/h,+e
(13)

R)R2
V(s) = —Vo e

Ri+R2
(14)

where R& and R2 are the radii of two ions, a is the
diffuseness parameter, and s is the distance between
the surfaces of two ions, s =r —R ~

—R2. The
grazing angular momenta of the entrance and exit
channels, A; and A~, can be evaluated by the in-

coming wave boundary condition model, i.e.,

where A, 5, and y are the grazing angular momen-
tum, the angular momentum diffuseness parameter,
and the nuclear phase shift, respectively. The con-
dition of the unitarity requires

~ y ~

(vr/2. Semi-
classical analysis ' of the heavy ion optical model
potential shows that b, =(1/vr) [(8,/a)
(1+Vc/2E)]' for moderate to strong absorption
and 5 ~ ka for a very strong absorption and at
high energy. R„a, Vc, and E are, respectively,
the strong absorption radius, the diffuseness
parameter for the real potential, the Coulomb po-
tential evaluated at r =R„and the center of mass
energy. k and a~ are the wave number and the
diffuseness parameter for the imaginary potential,
respectively. The Ericson parametrization has
poles in the first and fourth quadrants in the com-
plex I plane. These poles are useful in simulating
the diffractive phenomenon at energies higher than
the Coulomb barrier. ' ' ' The grazing angular
momentum depends essentially only on the tail of.
the nuclear potential because of the large Coulomb
and centrifugal barrier in the heavy ion collision.
We choose the proximity type potential ' for the
ion-ion interaction at large distances, i.e.,

Vc(A;/) a
A;I ——k;gR;) l—

R
1 —2a

R;g

' 1/2

The internal wave amplitude in the incoming wave boundary condition model is completely absorbed.
Therefore, the elastic S matrix satisfying the incoming wave boundary condition is given by the barrier wave
S matrix. The transition form factor in the AB model becomes



24 MOLECULAR RESONANCE EFFECTS IN. . . 1505

8II ) ———i
f) i

4(h 6;)'~ cosh +i cosh
A, —A- y-

2h; 2

(16)

Ioo—
'pq p

---- D=l 0 y-~/2
——-6 =0.8 y=~/2

For low-lying state inelastic transitions, we expect
that the ion-ion interaction potential is the same
for the entrance and exit channels. Therefore, we
take 4f —Af ——6, yy ——y; =y, and A~ and A; are
calculated from the prescription we discussed in
the previous paragraph, Eq. (15). The parameters
of the potential are taken to be Vo ——24 MeV/fm,
a =0.68 fm, and R =R&+R2 ——1.25(AI' +22' )

fm. These parameters are chosen to give a reason-
able grazing angular momenta for the heavy ion
systems.

Figure 1 compares the experimental integrated
cross section for the ' C+' C~' C+' C"(2+, 4.44
MeV ) reaction with the cross sections calculated
with different 4 parameters. The calculated cross
section is then normalized to 130 mb at E=30
MeV. Our result has shown that (1) the b, parame-
ter must be around 0.8' in order to account for the
gross oscillation in the experimental cross section,
and (2) at low energies, E, &20 MeV, the experi-
mental inelastic cross section is much larger than
the barrier wave cross section. The 6 parameter in

the Ericson parametrization is most sensitive to the
diffuseness parameter a of the ion-ion interaction
potential in Eq. (14). The 6 parameter, calculated
from the optical potential, which fits the elastic

scattering of heavy ion collision, has a value nor-

mally larger than 1.(Hi. It is almost impossible to
obtain a 6 parameter around 0.8' in any standard
optical model calculation. This is because the dif-

fuseness parameter and the nuclear radius are
known to have an error of less than 30 jo. Thus,
the small angular momentum window used by the
diffraction model serves only to mock up the gross
oscillation in the excitation function. The kinemat-
ic matching condition emphasized by the diffrac-
tion model cannot be the essential mechanism of
the oscillatory behavior in the excitation function.
Besides, the angular momentum window must be
smaller than 0.4A in order to give a gross oscillato-

ry behavior in the total reaction cross section.
It.is known that the diffractive scattering process

does exhibit an oscillatory angular distribution and

an oscillatory fixed-angle excitation function. This
oscillatory feature has been attributed to the in-

terference effect of far-side and near-side rays of the
surface waves. ' ' It is, however, incorrect to as-

sociate the oscillatory structure of the angle-

integrated excitation function to the. interference ef-

fect in the diffraction model. This point of view is

trivial from Eq. (11) that the cross section is an in-

coherent sum of the radial integrals II& I, which is(J)

a smooth function of l& and l; in the diffraction
model. Thus, the interference effect must exhibit
itself in each term of II I, i.e., interference betweenf'i
the internal and barrier waves. We therefore con-

clude that the internal wave contribution and the
resonances of the heavy ion system must be very

important in understanding the gross oscillation in

the excitation functions.

Ij
/ .

IO I'l

I

C( C, C) C (2,4.44MeV)
B. The interna1 wave S matrix and the molecu1ar

resonance of the heavy ion system

10

I

20
I

30
I

40

E (MeV)

FIG. 1 The experimental excitation function {solid) is
compared with that calculated from the diffraction
model. The Ericson parametrization is used to represent
the barrier wave S matrix of the diffraction model.

The internal wave S matrix describes the scatter-

ing process that the incident wave enters the interi-
or potential well and reemits. At the potential res-

onance, which is defined as the standing wave in-

side the potential well, the internal wave undergoes

multiple reflections and at the same time the inter-

nal wave also interferes destructively with the bar-
rie}r wave component. As the strength of the ima-

ginary potential increases, the effect of the multiple
reflections within the potential well diminishes.
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Yet the interference between the barrier and inter-
nal waves remains as the indicator of the potential
resonance. Most of the heavy ion optical poten-
tials, which fit the elastic scattering data have
moderate to strong absorptions. Therefore, the ef-

fect of the multiple reflections is not important.
The resonance exhibits itself essentially through the
interference phenomenon. In this section, we will

study the internal wave S matrix with overlapping
resonances and their interference with the barrier
wave component. We will not discuss in this paper
the possible l or J dependence or the surface trans-
parency in the imaginary part of the optical poten-
tial.

The internal wave S matrix for a moderate ab-
sorptive heavy ion optical potential can be ex-

pressed as

(17}

where A, 6&, and yr are the grazing angular
momentum, the angular momentum diAuseness,
and the nuclear phase shift near the surface. The
grazing angular momentum is the same as that of
the barrier wave. The angular momentum diffuse-
ness 61 for the internal wave S matrix is about half
that of the barrier wave S matrix, " i.e., 61 6/2.
51(A, ) is the phase shift of the internal wave S ma-
trix.

The transition radial integral in the AB model is
given by

kf —Af
cosh +cosyg

Af Af
cosh 2 +cosyI

exp12i[5 (Af) —5 (Af)+pf]I

k; —A;
cosh +Cosyg

x 1 —2I»(0}I
A,; —A;

cosh 2 +cosyr

expI2i[5 (A,;)—5 (A,;}+P;]I

with

y; =tan '

k- —A- yg
sinh sin

2A 2

h
A, .—A yg

COS COS

—tan
—1

A, - —A- yr
sinh- sin

2

cosh cos
2

(19)

It I is the barrier contribution [Eq. (16)], and

25 (A, ) and 25 (A, ) are the internal wave and the
barrier wave phase shifts for angular momentum

1

A, =I + —,, respectively.
If the heavy ion optical potential is deep, e.g.,

the real depth Vo & 100 MeV, we can show that '
25 (A, )—25 (A, )=25p(E) —lm . (20)

The phase shift 25p(E) depends only on the interac-
tion between two ions at short distances. We can
parametrize the phase shift as

5p(E)=Ci+C2E . (21)
This parametrization is equivalent to having a

I

linear Regge resonance trajectory for the composite
heavy ion system, i.e.,

l„(E)= 2n —1+—2C~/m+(2Czlm)E . (22)

The linear trajectory should be a fair approxima-
tion to the band of the molecular resonances of the
composite heavy ion system in a limited energy
range of interest, e.g., 20 MeV &E, &40 MeV.
By allowing a slow energy dependence of the e2

parameter, the parametrized Regge trajectory [Eq.
(22)] can also simulate the rotational band of the
molecular resonances. The energy spacing of these
molecular resonances is given by n/2 [2C2.
+2E(dC2/dE )].
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The energy dependence of the internal wave am-

plitude,
~
rll(0) ~, and the energy dependence of the

imaginary potential are related by
~
r)l(0)

~-W,(E),=e ' ', derived from the semiclassical analysis
of the optical potentials. We therefore use

(23)

to represent the phenomenological linear depen-
dence of the imaginary strength on the energy. We
set ys yl ——n/2 ——to be independent of the energy.
This is because the magnitude of the integrated
cross section does not depend sensitively on the
phase y~ and yr, and besides, y~ and yr depend
slowly on the energy. "

We have therefore only three parameters,
CI, Cz, and C~, in our model to fit the data. The
grazing angular momenta A; and Ay are calculated
from the incoming wave boundary condition model
with the proximity potential in Eq. (15). The
parameter 6=1.0 is used. Using 6=1.0-1.3
does not change the analysis dramatically. Figure
2 shows the experimental 2+(4.44 MeV) inelastic
excitation function of the ' C+' C system and the
calculated excitation of this model. The parame-
ters CI, Cq, and Cq are adjusted to fit the data.
We obtain C&

——0.2, Cz 0.57/MeV, and

C3 —0.085/MeV. The Cq (E) as a function of ener-

gy is shown in Fig. 3.
The total reaction cross section is given by

~ g(2~+1)(1—
I ni ~

')
I

, g(2I+1)(1—[gr (')—,g(21+1)
)
gg'['

I I

z g(2l+1)
~
rlrrII

~

cos 25I(l) —25s(l)+
I

(24)

In Fig. 2, we also compare the calculated total reac-
tion cross section with the experimental fusion cross
section. ' The fusion cross section should be equal
to the total reaction cross section minus the total
direct reaction cross sections. From Fig. 2, we ob-
serve that the oscillations of the fusion cross sec-
tion match quite well with that of the total reac-
tion cross section. When the entrance grazing an-

gular momentum A; passes through a resonance,
25I(At) —25a(Ai)+(7'I+Pa)/2+/;=2(n+ z )m,

the reaction cross section is at maximum. This is
related to the fact that the wave function is well

matched at the resonance and is pulled into the nu-

clear interior to give rise to a large reaction cross
section.

By comparing Figs. 1 and 2, we find that the
low lying state inelastic excitation function can be
fitted by the difFraction model or by the interfer-
ence mechanism between the internal and barrier
waves. In the diAraction model, one has to use a
very small angular momentum window, 6 (0.8',
in order to simulate the effect of the kinematical
matching condition for the reaction. The parame-
ter 5 &0.8A is, unfortunately, inconsistent with
that obtained from the standard optical potentials.
As a second explanation, one emphasizes the col-
lective effect of the overlapping resonances to the
phase shift and the interference of the internal

I

wave with the barrier wave S matrices. The gross
oscillation in the inelastic excitation function is due
essentially to the resonance interference mechanism
but not to the kinematic angular momentum
matching condition.

Figure 4 shows the similar fit to the
' 0+ ' O~' 0+' 0 (3 ' 6.13 MeV) inelastic ex-
citations function. ' We obtain CI ———0.2,
Cz 0 78/MeV, a. nd Cq 0 085/M——eV. The ene.rgy
dependence of Cz(E) is shown with the Regge

. slopes of the ' 0+' 0 system. The Regge poles of
the ' 0+' 0 systems are taken from the calcula-
tion by Tamura and Walter' for the optical poten-
tials which fit the ' 0+' 0 system. ' The slope
of the solid line, drawing through the D and 6, is
1.35/MeV in the energy range 20 MeV &E & 45
MeV. This is in good agreement with that of our
analysis, 2C+2E(dCz/dE) =1.31/MeV at E=32
MeV. Figure 5 also shows the Regge trajectories
of the a+ Ca system, which are taken from the
semiclassical analysis' of the optical potential of
Michel and Vanderpoorten. The Regge slope in
our analysis is undoubtedly related to the moment
of inertia of the composite system.

C Discussion

Our results show that the molecular resonance

plays an important role in the heavy ion excitation
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FIG. 3. The energy dependence of the C2 parameter
of the Regge slope.
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FiG. 2. The inelastic excitation function for the
' C+ ' C system (dashed line) calculated with the in-

terference effect between the internal and barrier wave

amplitudes is compared with the experimental excitation
function (solid line). The calculated cross sections are
normalized with a deformation length 52

' ——1.00 fm,

, which is equivalent to a.deformation parameter P 0.2.
In the upper part of the figure, the fusion cross section
(see Ref. 16) is compared with the calculated total reac-
tion cross section. The grazing angular momenta and
the important Regge trajectories of the entrance and exit
channels are also shown in the lower part of the figure.
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functions. The peak energy of the total reaction
cross section and the fusion cross section Inay be
associated with the entrance channel resonances at
the grazing angular momentum, i.e., when
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7I + PB

1=2(n+ —, )n. (25)

happen at an integer grazing angular momentum
1

I-; =A; ——,, the total reaction cross section has a

FIG. 4. Experimental inelastic and fusion excitation
functions of the ' 0+' 0 system are compared with the
calculated excitation functions. See caption of Fig. 2 for
each curve. The deformation parameter 5=1.12 fm for
the ' 0 (3 ) state is obtained. The data is taken from

Ref. 17.
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FIG. 6. Ex crimp mental angular distribution (Ref. 21)
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terf

e = . and that of the in-

c erence model (6=1.0A' and 6=1.2A).

peak. On the other hand wh h

the en
, w en t e exit as well as

tion
e entrance channel phase shifts s

' fi s satis y the rela-

25r()j ) —25m(A )+2$r,f(A )

1=2(n+ —, )n, (26)

Our analysis is based on the DWBA. Th
indicates that these mole

. The result
ese molecular resonances are over-

apping. At energy E & 20 MeV,
e ore, the multiple reflection (MR) in the

at the exit or entrance c."channel angular momentum
=A, ——, around the re grazing angular rnomenta, the

inelastic excitation function has a eak. Th
e pea positions in the excitation fu

tion of the tota
ion unc-

tic cross
a reaction and the integ t d

'
1ra e ine as-

ss secttons is clear from E s. (25'
e angu ar momentum matching condition d

g' 'se to a dynamical origin of these r
oscillations in hthe excitation functions. To investi-

gate the implication of a
window 6 aram

a small angular momentum

p ameter, we calculate the an ular dis-

tribution of the 12C+ 12C 12C 12 +

e at E, =25 MeV. Figure 6 shows the dif-

ferential cross sections with 6 =0.
, respectively. It is clearly seen that the 6

parameter must be larger than 1.0fi in order
wi the slope of the angular distribu-

internal wave amamplitude is not important. Th
ou d be a good approximation. The

corresponding damping width I'
MeV would be about 2.5 MeV

~28'p at E=20

rom
I rlr(0)

~

e ' '. The elastic width can
e igner limit, i.e.,

f2
i r-3 I'r(E) (

MR' ' 4C2J
' (27)

where we have used hE A /MR 2J n 2C
The escape width I' is t ic

I
i J is typically only of the order

g gular momentum foro . MeV at the grazin an
and O "O+ + systems in our study. We

lati
'

i
o serve, therefore, that these reson hnances ave a re-

atively small partial width t h
reaction channels. Th

i o t e elastic and irect
s. e major part of the width

goes to the absorption I'. Th fere ore, the terminol-

ogy of molecular resonance rn be may e inappropriate,
yet the elastic width can still be the 1

width in I . 0
i e t e argest partial

in „,. Our analysis shows that the defor-
'mation length extracted from the de ata is not very

ge an is t erefore consistent with th D%'
tment. The partial width to th 1o ese ow lying

sma . ese overlap-o ective states must be also 11 Th
ping resonances, yet, show up th 1emse ves in the in-

terference mechanism of th b
waves.

e arrier and internal

At energy E &20 MeV, the ' C+' C data have

y interesting fine structures. The multiple re-



1510 S. Y. LEE, Y. H. CHU, AND T. T. S. KUO 24

flections in our analysis become important at ener-

gy E &20 MeV. The coupled channel effect is im-

portant. Experimental and theoretical investiga-
tions at these energy ranges will be fruitful in pin-

ning down the detailed physics of the fine struc-
tures. These fine structures are beyond the scope
of the present investigation.

IV. CONCLUSION AND REMARKS

We have investigated the physical implication of
the diffraction model interpretation to the angle-

integrated inelastic excitation function for low-

lying collective states. We find that the model re-

quires a very small angular momentum window,
i.e., 6 (0.8(Hi, in order to account for the gross os-
cillation in the experimental data. The heavy ion
proximity potential at large separation, however,
predicts a much larger angular momentum diffuse-

ness, b, & 1.(% This discrepancy implies that ei-

ther the model is inadequate or we have to aban-

don the concept of the heavy ion interaction poten-
tial. We do know, through many elastic scattering
data, that the interaction potential between ions at
large separation is not very much different from
the proximity potential. We therefore believe that
the diffraction model is inadequate and serves only
to mock up the gross oscillation in the excitation
function.

On the other hand, we have shown that the
gross oscillation in the excitation function can easi-

ly be explained by the interference mechanism

between the barrier and internal wave S matrices.
The interference between the barrier and internal
wave amplitudes is a manifestation of the existence
of the potential resonances. We have assumed a
set of Regge trajectories for the heavy ion interac-
tion. The direct surface reaction probes only the
resonances near the grazing angular momentum.
When the resonances overlap with each other, the
effect of multiple reQection is not important. In
this case, the wave function is pulled into the nu-
clear interior at the resonance due to a good
matching condition at the barrier. Thus, the total
reaction (and probably the fusion) cross section is
at maximum. On the other hand, the wave func-
tion at the surface region is modulated by a phase
shift at the surface region of the interaction poten-
tial; we reach a small energy shift in the gross os-
cillation of the inelastic excitation function. The
correlation between the fusion and the direct sur-
face reaction excitation functions (see Figs. 2 and 4)
gives strong support to our model.
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