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Approximate Coulomb correction to elastic N-d scattering
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An approximate Coulomb correction that includes Coulomb distortion of the strong
amplitudes is used to relate observables for the charge-symmetric branches of N-N and
N-d scattering. The approximate correction is nearly identical with an exact calculation
for N-N scattering, and tends to account better for the differences between p-d measure-
ments and three-body n-d calculations than Coulomb corrections currently used.

NUCLEAR REACTIONS Coulomb correction for mirror reactions;
applied to N-N and N-d scattering; predicted polarizations for n-d

scattering from p-d phase shifts.

I. INTRODUCTION

The vast majority of three-nucleon scattering
data' are p-d data. They are available at various
energies, but are more numerous in the region
below 20 MeV deuteron lab energy. There, first
and second rank analyzing powers have been mea-
sured over a wide range of angles by the Ziirich
group. Unfortunately, the theoretical treatment,
even of elastic p-d scattering, lags the experiments,
mainly because it is a difficult task to include the
Coulomb force in a realistic three-nucleon calcula-
tion. Faddeev type calculations, as well as other
methods, usually neglect the Coulomb force and
are therefore applicable in a strict sense to n;d data
only. Still, n-d calculations have always been used
to analyze p-d data, assuming that the interplay of
the Coulomb force with the strong interaction does
not contribute significantly. If one seeks only a
qualitative theoretical guideline through experi-
mental points this might very well be a reasonable
assumption. But a more quantitative description
requires at least an estimate of the Coulomb in-

terference (CI) effect on the strong amplitudes.
Configuration-space Faddeev calculations including
the Coulomb force have been performed for the
three-nucleon bound state. ' There have been also
Faddeev type calculations of p-d elastic scattering"
which included the Coulomb force to first order
exactly, but the underlying X-X interaction was too
simple to yield a p-d T matrix which would have
given nonzero polarization. A more refined calcu-
lation which would include the Coulomb force ex-

actly and simultaneously provide a fit to p-d
scattering data seems to be out of reach at the
present time.

Given this outlook for near future p-d calcula-
tions and the possibility of more n-d experiments
which would allow a comparison of charge sym-
metric reactions, it seems appropriate to search for
methods to describe the Coulomb corrections in p-
d scattering in an approximate way. In a series of
papers, Gruebler et al. ' have presented a first at-
tempt to analyze p-d data with an approximate p-d
calculation. In fact, they employ a n-d Faddeev
calculation, but do take into account the effect of
the asymptotic Coulomb phases. This is the
minimum Coulomb correction that can be made to
obtain p-d amplitudes from n-d, but it may in some
cases be the most important correction. The final
determination awaits an exact p-d three-body cal-
culation.

In this paper we move a step further seeking an
approximation to p-d Coulomb effects that arise
from the interference of the strong interaction and
the Coulomb interaction within the range of the
strong interaction. This short-ranged Coulomb
distortion effect has been approximated for the
two-body scattering system through an on-shell ap-
proximation that was quite successfully applied to
p-p phase shifts and later was used for an
analysis of X-N phase shifts ' and in the calcula-
tion of N-X observables. "

In Sec. II we briefly recapitulate the essence of
this N-X approximation method and, having in
mind its applicability to the three-nucleon scatter-
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ing system, propose how to use the method in a
slightly different way. Both versions of the ap-
proximation are then used to calculate the CI effect
on the nucleon polarization.

Haftel and Zankel' have shown that a similar
approximation can be derived from three-body
equations. An application to p-d scattering phase
shifts yielded for most partial waves a good quali-
tative agreement with the Faddeev calculation of
Ref. 4. Utilizing the results of Ref. 12 we present
in Sec. III an approximate formula to describe the
CI effect on the strong three-nucleon scattering
amplitude. The method essentially describes the
CI as a two-body effect, but we do account for the
finite charge distribution of the deuteron.

The main ingredients for calculating the CI con-
sist of the strong on-shell three-nucleon collision
matrix elements and their on-shell momentum
derivatives. If there were enough n-d data to allow
a reliable phase shift analysis we could construct a
realistic collision matrix to calculate the CI. Since
the lack of n-d data also makes it difficult to evalu-

ate the success of n-d potential model calculations,
we rather prefer to use p-d collision matrix ele-

ments, as given by the phase shift analysis of
Schmelzbach et al. ' as an input and to iterate our
equations to predict pure nuclear p-d observables.
These observables, which would be n-d observables
if nuclear charge symmetry holds, are shown and
discussed in Sec. IV. Also, we give examples
which demonstrate the influence of certain coupled

states and of higher order effects on the observ-
ables.

II. APPROXIMATE COULOMB CORRECTIONS
AND APPLICATION TO N-X SCATTERING

sm251'(p)
5t"(p) = 51' (p)+cl, 2P

(2)

Here, JM denotes the reduced mass, p is the center-
of-mass momentum, and cl is an angular momen-
tum dependent constant
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with QI being the Legendre functions of the second
kind. This approximation has been modified to ac-
commodate the finite charge distribution of the
proton and has been extended to apply to coupled
states. The corrections to the nuclear bar phases
and coupling parameters read

The CI correction to X-N hadronic phase phase
shifts 5l' can be expressed through an extra residual
phase shift 5l' using the definition

~l ~1 +~l

with 5l' being the Coulomb modified nuclear
phase shift. In Ref. 7 the following first-order ap-
proximation for 5l' was found:

similarly for 5J'+i, and
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with j being the total angular momentum.
If we now take the phase parameters of, e.g., the

pure hadronic Paris potential' we are able to con-
struct with the help of Eqs. (4) and (5) the
Coulomb modified nuclear collision matrix and,
once knowing them, we can calculate various p-p
observables. For reasons already mentioned in Sec.
I we rather wish to proceed in the other direction,
namely, to start from the charged scattering system
and to predict the pure hadronic p-p observables
which are n-n observables if nuclear charge sym-

I

metry is assumed. For that purpose we use the
phase parameters of the Paris potential which in-
clude the Coulomb potential as input for Eqs. (4)
and (5) and perform an iteration to obtain the pure
hadronic phase parameters. Then we construct the
collision matrix elements and calculate the neutron
polarization.

Expressions similar to Eqs. (2), (4), and (5) can
be derived from three-body theory. However, the
possibility of having three partial-wave states cou-
pled for sufficiently large total angular momentum
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J creates a problem with the phase correction. To
obtain Eqs. (4) and (5), we made use of the additive
splitting of the total phase shift

~l ~l +~l ~

where ol is the asymptotic Coulomb phase shift.
For coupled states, this decomposition is possible
only for Stapp's "nuclear bar" parametrization' of
the Coulomb-distorted "nuclear" collision matrix.
Unfortunately, no completely general extension of
this parametrization has been worked out for 3&(3
matrices. Thus, we seek CI corrections to a dif-
ferent quantity that retains the additive and unitary
properties of the Stapp phases, but has no re-
strictions on dimension.

Corrections for such a quantity have already
been given in Refs. 7 and 12, which we shall apply
here to the case of two- and three-nucleon scatter-
ing. Nevertheless, we will continue to show, where
possible, comparisons of the new method with the
phase-correction method in order to maintain the
connection with earlier work, and to show the ef-

fects of truncating the T matrix expansion at dif-
ferent orders, which is essentially the difference
between the two methods. The nucleon-nucleon
calculations are a primary test for any CI approxi-
mation, since in that case the Coulomb eA'ects can
be treated exactly in terms of the two-body
Coulomb and nuclear (e.g., the Paris potential)
forces.

It is first necessary to mention some conventions
about nomenclature. Unfortunately, the symbols
for the various matrices of asymptotic amplitudes
for scattering processes are not standardized, and
we must switch notation for some of the quantities
used in earlier articles ' in order to be consistent
with the set most commonly used in descriptions
of three-body scattering. This is the set used by
Seyler, ' who adopted the notation of Lane and
Thomas, ' as we do here. In this notation, the col-
lision matrix U (the same as Wheeler's S matrix),
is related to the reactance matrix Q (the same as
Heitler's E matrix), by

U =(1+iQ)(1—ig)

If Q is real and symmetric, then U is symmetric
and unitary.

A slightly diAerent reactance matrix,

was introduced in Ref. 12, in which it was shown
that the decomposition

R=R +R'

leads to integral equations for the "pure Coulomb"
part R and for the residual R' that are complete-
ly analogous to the two-potential forms for the T
matrix. To first order in e and the "pure strong"
part R', the equation for elements of the
Coulomb-distorted strong R matrix is

R R n+V G~R +R G~V (10)

where 6& is the principal-value free Green's func-
tion.

The integrals of Eq. (10) can be simplified by
making use of an on-shell approximation as
described in Ref. 7:
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Hereafter, we use the similar equations for Q in-
stead of those for R in order to avoid confusion
with Wigner's R matrix, which is the subject of the
Lane and Thomas' review. The final result for
the Coulomb-modified Q matrix is

Q'„(p) =Q'„(p)
2

+
2

lg'. 4»+pg". ] +
2p &m Cn

(12)

The second term on the right side of Eq. (12)
represents the approximate CI correction to the nu-
clear Q matrix. The simplicity of the correction is
striking; it involves essentially only the on-shell Q-
matrix elements and their momentum derivatives.
Thus, the reactance matrix provides the unitary CI
correction we seek which can be extended easily to
dimensions greater than two for treating the X-d
problem. The Q' of Eq. (12) (hereafter called
method 1) differ from the Q' that can be con-
structed with the Coulomb corrected phase param-
eters of Eqs. (4) and (5) (hereafter called method 2)
by higher orders in e and Q'.

To study the quality of the two methods we
compare them with the exact CI correction using
the Paris potential. In Fig. 1 we show the proton
polarization as obtained by taking the phase
parameters of the Paris potential, which includes
the Coulomb potential (solid curve). These phase
parameters have also been used as an input for
methods 1 and 2 which then, after performing an
iteration of Eqs. (4), (5), and (12), yield pure nu-
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clear Q matrices. The resulting neutron (or pure
hadronic proton) polarization agrees extremely well
'with the neutron polarization obtained by using the
phase parameters of the Paris potential where the
Coulomb potential has been switched off (dashed
curve). Figure 1 demonstrates that both approxi-
mations are almost identical to the exact calcula-
tion, implying that there is almost no influence of
higher orders. This picture might change slightly
as one proceeds to lower energies, but then, of
course, the nucleon polarization becomes very
small. Similar results are valid for other N-S ob-
servables as has been shown in Ref. 11 for the case
of method 2. The curves in Fig. 1 give no evidence
of the superiority of either method, but a closer in-

spection of the Q-matrix elements reveals that the
off-diagonal elements of method 1 are closer to the
exact values than those of method 2. The very
small corrections to these small off-diagonal ele-

rnents clearly do not affect the polarization in the
N-N case, but for stronger coupling, as, e.g., in the
three-nucleon system, the differences might enlarge
and finally influence the observables. Another
discrepancy between the two methods arises from
the diagonal elements of Q' whenever the Q' ele-

ments become large, which in the case of X-X
scattering happens at low energies where the polar-
ization is small, or at energies above 100 MeV
where the Coulomb effect is less important.

III. APPLICATION TO THE THREE-NUCLEON

SYSTEM

30 ~ 50 60 yp 80 90
~c.m.

FIG. 1. Nucleon polarizations I' at 20 MeV nucleon
lab energy.

was obtained in a manner similar to Eq. (12) by in-

voking the channel distortion approximation as
proposed by Bencze' and by making use of an on-
shell approximation previously introduced in Ref.
7. The method treats the CI effect in the three-
body system —when two of the particles are
charged —as a two-body effect but it takes into ac-
count the charge distribution of the deuteron.
Although this approach neglects mainly Coulomb
polarizing forces, its application to elastic p-d
scattering phase shifts has proven to be a surpris-
ingly good approximation (at least in a qualitative
sense) when compared to an exact Faddeev calcula-
tion and other approximations available. In view
of the success of this method it is feasible to think
of applying it to X-d observables, which would
provide a more stringent test for each approxima-
tion. Unfortunately, experimental information on
these charge symmetric reactions is very sparse,
mainly due to the lack of n-d data. Still, even in
the absence of both an exact CI correction and reli-
able information about experimental differences
between n-d and p-d, an approximate CI correction
to p-d observables seems to be desirable for study-
ing the order of magnitude of the two-body feature
of the CI effect. This information could be
relevant for future n-d experiments and might be
helpful in explaining some of the shortcomings
"realistic" n-d calculations encounter when com-
pared with p-d data.

Trying to utilize the phase correction method we
realize its limitation in the three-nucleon case. As
mentioned before, we can apply it to 2& 2 matrices
only, which is not sufficient for treating X-d
scattering. If we reduce the 3)&3 coupling to a
2)&2 by simply dropping the two smallest mixing
parameters in each J state we can find the Stapp
parametrization of the collision matrix and apply
the phase corrections. A preliminary calculation of
vector analyzing powers has already been report-
ed' in which p-d vector analyzing powers were
predicted based on ri-d phase parameters as given
by Stolk and Tjon. The formulas used for each J
are

sm25~ (q)5'(q)= 5' (q)+
n c~ (q) 2q cos2Z'(q)

Expressions analogous to Eqs. (1) and (2) have
been derived from three-body theory in Ref. 12.
The elastic Coulomb modified scattering amplitude

——qv (q),

and similarly for the coupled state n, and

(13)
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1 1+
c (q) c„(q)

Z" (q)+ [sin2F'(q)+sin[5' (q)+5„'(q)]]
2q cos2F'(q)

(14)

where q is the on-shell center-of-mass momentum. The labels m and n range over the three possible states
3 3 1 1 3 1(S=—,, l =J+—,), (S=—,, I =J+ —,), and (S=—,, I =J+—,), with S being the channel spin and l being the

nucleon orbital angular momentum. The quantity e is used in a generic sense to represent the mixing
parameter for the strongest coupling, i.e., Eq. (14) holds also for the other mixing parameters g and il. V(q)
represents the difference of the full electromagnetic potential of the deuteron and the pointlike Coulomb po-
tential. The angular momentum dependent quantity c, now also momentum dependent, is

x2dx i dy Pi(y)f[q (1+x —2xy)]
ci(q) =P «0,

1 —x 1 +x —2' (15)

where f denotes the form factor for the (spherical) charge distribution of the deuteron. We have employed
the same S-wave Yamaguchi form factor as given in Ref. 12. Although the phase corrections are limited to
treating matrices no larger than 2)&2, we retain them for calculating CI effects in the three-body system in
order to see the effects of neglecting certain couplings and higher-order terms in the collision matrix, and to

aintain continuity with previous papers.
The Coulomb-modified nuclear three-body Q matrix reads, for each J,

2

Q' „(q)=Q'.(q)+ + Q' „(q)+q Q' .(q) —& „—& .(q) .

The 5~„reflects the fact that in this nonrelativistic
treatment the Coulomb force preserves angular
momentum and spin.

Nucleon-deuteron observables were calculated
from the p-d phase shifts of Schmelzbach et al. ,

'

which give good representations of their measure-
ments at deuteron energies between 6 and 11.5
MeV (E~ =3—5.75 MeV) for partial waves up
through I =4 with unsplitted (but spin-dependent)
E and 6 waves. Two conventions need to be speci-
fied for the use of these phase shifts: the order in
which the nucleon (sz) and deuteron (sd) spins are
coupled to form channel spins (S), and the order in

which the channel spin is coupled to orbital angu-
lar momentum (l) to form total angular momen-

tum (J). The reversal of either convention has the
effect of changing the signs of all quartet-doublet
transition elements.

The Schmelzbach phase shifts can be considered
given according to the conventions S =sd 8 sz
and J=S tRI l, in agreement with those of Lane
and Thomas. ' They use the spin-one —spin- —,

generalization of Blatt-Biedenharn phase parame-
ters given by Seyler' in which the values of the
parameters depend on the ordering of the coupled
states for a given J . [We call attention to a mis-
print in Seyler's 3)&3 rotation matrix. The last
element in Eq. (98) should read u J33 =COSE cosg ].
An important difference in the ordering of states
assumed by Schmelzbach et al. ' and that given by

I

Seyler' for J = —, results in a change of sign for
1

Schmelzbach's largest mixing parameter, q', if
Seyler's ordering is used. This difference from the
stated conventions in Ref. 13 prevented us for some
time from reproducing their results.

The p-d curves shown in Figs. 2 —10 are calcu-
lated from spin-space matrix elements of the transi-
tion operator

~

JMS'I') Ts

is(�(

JMSI
~

JMS'l'Sl

where the reduced matrix elements Tz l zl, taken
between spin-angle eigenfunctions of total angular

p-d
----- .-- p —d no pure Coul.——n-d

~ 0.25—

D."~ 0.20 '-".--. .

b~ 0.15—
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000' - ~ ~ I - ~ ~ ~ ~ ~ I. . . . I. . . . I. . . . I. . . . I
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FIG. 2. N-d differential cross sections at 5 MeV nu-

cleon lab energy.
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FIG. 3. Nucleon vector analyzing powers at 5 MeV
nucleon lab energy.
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FIG. 5. Deuteron vector analyzing powers at 10 MeV
deuteron lab energy.

momentum and parity
~

JMSl ), are related to the
phase-shift parameters through the collision ma-
trix, and to the reactance matrix, by

part of the T matrix, the p-d calculations using
Eqs. (17)—(20) require the addition of the asymp-
totic Coulomb phase shift

T=—.( U —1)=Q(1 —iQ)
1

2l
J it~, ,+~, )

Ts'I'si Ts'I'sl (21)

The relations for the cross section and analyzing
powers are given in terms of Wolfenstein's M ma-
trix,

by

Ms'p', sp (SP i
7

i SP),

o =Tr(MM )/Tr(1),

A;J =Tr(Md';JM )/Tr(MMt),

(19)

(20)

where 1 is the unit matrix, and , J. is the appropri-
ate operator, in the direct-product spin space of the
deuteron and nucleon. Since the phases of Ref. 13
parametrize only the Coulomb-distorted nuclear

and the addition. of the Coulomb amplitude to the
diagonal elements of M.

The curves labeled "p-d no pure Coulomb" in

Figs. 2—10 are calculated as described above, but
omitting the asymptotic Coulomb phases and am-

plitude. This is the type of Coulomb correction or-
dinarily used to relate p-d measurements and n-d
calculations, although it is applied in the oppo-
site direction (n, d +p d). ---

Correcting, in addition, for the Coulomb distor-
tion of the nuclear T matrix parametrized by
Schmelzbach's phases gives the curves labeled n-d.
The Q-matrix correction of Eq. (16) (method 1) is

0.16

014 '

0.12 '-

Q10-
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n-d method l

n-d method 2
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0.06-

0.05-

0.04-
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C
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~ - -: . . ~ . . ~
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FIG. 4. Nucleon vector analyzing powers at 5 MeV
nucleon lab energy when the collision matrix is truncat-
ed to two coupled states in each J .

FIG. 6. Deuteron vector analyzing powers at 10 MeV
deuteron lab energy when the collision matrix is truncat-
ed to two coupled states in each J .
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FIG. 7. Deuteron tensor analyzing powers Tqo at 10
MeV deuteron lab energy.
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FIG. 9. Deuteron tensor analyzing powers T2~ at 10
MeV deuteron lab energy.

used for the full-coupling case (up to 3)& 3 ma-
trices), and for comparison, the phase-parameter
correction of Eqs. (13) and (14) (method 2) is used
in a limited case where the coupling is restricted to
at most 2)&2. In both cases, the correction (p-
d~n-d} is applied in the opposite sense to that im-

plied by the equations (n-d —+p-d} in an obvious
iterative way. For instance, Eq. (16) can be
rewritten as Q'=Q' +Q "(Q'), where Q' is insert-
ed as a first approximation to Q' in Q; which con-
tains the higher-order terms in the deviation of Q'
from its exact value. %hen successive approxima-
tions to Q' are then inserted in Q", the procedure
typically converges in less than four iterations.
The steps used to calculate n-d observables from
p-d phase parameters are summarized schematical-

U' (phase parameters of Ref. 13)

~T' ~Q' (Eq. 18),

Q' ~Q' [iterative inversion of Eq. (16)],
Q'~T'~n-d observables[Eqs. (17)—(20)] .

IV. RESULTS AND DISCUSSION

As was noted in the Introduction, we prefer in
this work to obtain the n-d amplitudes from p-d,
since the latter are more firmly established from
measurements. The price we pay for this approach
is that the inevitable fluctuations in the energy
dependence of single-energy phase shifts can intro-
duce anomalous values for the momentum deriva-
tives involved in our correction. For the
Schmelzbach' phase shifts, this eEect seemed to be
minimal for energies in the neighborhood of Ez ——5

MeV, and this was chosen as the central energy for
our calculations.

The difFerential cross sections (Fig. 2) reveal the
same trend as already shown in Ref. 12, but then
in a less realistic calculation. The difference

0.02-
p-d

n-d method l

n-d method 2 -0.01-

. 02
O

~ ~.04--.... . N
lN .0.03-

-0.04-

%.08-

. 10 '

0
I

20 40 60 80 100 120 140 %0 180
~c.m,

FIG. 8. Deuteron tensor analyzing powers T20 at 10
Me& deuteron Iab energy when the collision matrix is
truncated to two coupled states in each J .

-0.05-
I

I
I

. 06 . -. ~ - . - - ~ . - . -- - ~

0 2O 40 60 8O 100 120 140 160 180
'c.m.

FIG. 10. Deuteron tensor analyzing powers T22 at 10
MeV deuteron lab energy.
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between the curve "p-d" and "p-d no pure Coul. " is
due to neglecting the asymptotic Coulomb phase
shifts (and therefore also the Rutherford ampli-
tude), whereas "n d"-in addition includes the ap-
proximate short-ranged Coulomb corrections as
given in Eq. (16). The short ranged corrections are
quite significant at.forward angles and are less im-

portant at backward angles. There, the asymptotic
Coulomb phases have a rather big influence mak-

ing p-d about 10 jo smaller than n d -T.he CI effect
only slightly enhances this difference. The same
observation has been made in Ref. 12 at 10 MeV,
where experiments ' indicate only very small differ-
ences between p-d and n-d at backward angles. To
reconcile that with our present picture would re-

quire that the missing three-body features of the CI
cancel the differences, thus contributing a some-
what surprisingly large effect at backward angles.
Since n-d and even p-d experiments at backward
angles are rather sparse and since discrepancies
have been noted recently in precise measurements
of back-angle p-d cross sections, it is not certain
that our theoretical predictions conflict with the
experimental results.

The nucleon vector analyzing power A~ is the
only polarization observable where measurements
are available for both protons and neutrons in-
cident at the same energy. At present, the lowest
energy for neutrons is 7.8 MeV (Ref. 23) but exper-
iments down to about 5 MeV seem to be feasible in
the near. future. An accurate measurement might
test our prediction (Fig. 3) that the peak analyzing
power for n-d exceeds that for p-d by about 0.014.
Assuming that charge symmetry holds, such a
comparison could reveal to what extent the differ-
ences between p-d and n-d are due to the two-body
features of the CI effect. At 8 MeV no significant
difference. has been observed and it remains to be
seen how much the situation changes as one
proceeds to lower energies. Experiments at 8 and
12 MeV (Ref. 25) seem to disagree with an experi-
rnent at 14.1 MeV, where a measurable difference
between p-d and n-d was reported. In our prelimi-
nary calculation' using the truncated collision ma-
trix we found good agreement with this experiment
but, as pointed out then, the agreement was not to
be taken quantitatively. The more complete calcu-
lation employing Eq. (16) yields a reduced CI, yet
the effect maintains the same direction (Fig. 4).
Method 1 is based on Eq. (16) and method 2 on
Eqs. (13) and (14). To make a consistent compar-
ison we have, of course, truncated the collision ma-
trix in the same way for both the n-d and the p-d

curves and also have neglected the imaginary part
of the phase parameters. The coupled states we,
have retained are P3/2 P3/2 Pi/2 —Pi/2,
Di/2 —Si/2, and D5/2 —D5/q. The calculation

with method 2 yields a difference already close to
the fully coupled result because the analyzing
power is dominated by they-wave spin transition
amplitudes in the —, and —, states, which are
both included in by the truncated version of the
collision matrix. Figure 4 also displays the influ-

ence of higher orders in e and Q' which is, by far,
more important here than it was in the two-
nucleon case.

We should also note that the direction of our CI
correction does not help to explain why the 5.5
MeV n-d Faddeev calculation of Stolk and Tjon
predicts an A~ which is too low at the peak value
when'compared to a p-d experiment at 5 MeV
(which is already lower than at 5.5 MeV, where the
comparison should be made). On the other hand,
Doleschall's n-d Faddeev calculation with a separ-
able potential yielded a neutron analyzing power at
3.5 and 6.5 MeV which was slightly bigger than
the latest p-d data points by the Zurich group, thus
leaving room for our CI to explain the discrepancy.

CI effects are present in the deuteron vector
analyzing power iT&~ at almost all angles (Fig. 5),
although the effect itself is smaller than in A„. It
seems to be questionable whether this difference is
measurable, but apparently the direction of the ef-

fect is the same as observed in Az. From Figs. 5
and 6 we conclude that iT&& is sensitive to the
3)& 3 couplings. Higher orders, furthermore, seem
to be quite important and explain why the CI ef-
fect on the peak value, as reported in the prelimi-
nary calculation, had a different sign.

More sensitivity to the CI effect emerges from
the tensor analyzing powers, in particular from

T2p. Figure 7 demonstrates a strong CI around
110, where n-d turns out to be twice as negative as
p-d. The forward direction is, as usual, strongly
governed by the influence of the asymptotic
Coulomb phases. T2p and T2& have been measured
lately by the Zurich group at almost all angles for
deuteron lab energies between 7 and 13 MeV.
These p-d data have been analyzed with
Doleschall's n-d Faddeev calculation where the

asymptotic Coulomb phases were included. Not
unexpectedly, good agreement was found, particu-
larly in the forward direction, whereas between 90'
and 120' a discrepancy persisted. If we add our CI
correction to their n-d Faddeev calculation we
would obtain a very close agreement between data
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and theory. Figure 8 demonstrates the significant
influence of the neglected couplings, as well as that
of higher orders. It is probably fortuitous that
method 2 is more in qualitative agreement with the
full calculation at backward angles.

The results for T2i (Fig. 9) are similar in trend
to those for T2o with the magnitude of the CI,
however, being smaller. The strongest CI takes
place around 90'. Again, if we would add our
correction to the Faddeev calculation of Ref. 6, we

would get good agreement with the data.
Finally, for T22 (Fig. 10) we find a rather small

CI working in a direction such that p-d almost
coincides with n-d except at forward angles, where

we see again the influence of the asymptotic
Coulomb phases. As mentioned before, the phase
parameters obtained from a data analysis are not
always as smooth as those provided by a
potential-model calculation. Employing the p-d
parameters of Schmelzbach et al. , therefore, does
not enable us to make a reliable prediction of the

energy dependence of the CI. For that purpose we

would be better off to sacrifice the benefits of hav-

ing an input derived so closely from experiment,
and use an n-d Faddeev calculation such as the one
of Stolk and Tjon. Such a calculation will be re-

ported in a separate publication.

V. SUMMARY AND CONCLUSIONS

We have adapted a simple method, which origi-
nally was devised from three-body theory' for cal-
culating the Coulomb interference effect on three-

body scattering phase shifts, to apply directly to
the three-nucleon Q matrix. This has enabled us to
describe the "internal" Coulomb corrections to the
scattering amplitude in a quasi-two-body manner,
but with the charge distribution of the deuteron ac-
counted for. Before employing it for three-nucleon
observables, we tested the two-body version in N-N
scattering. Comparing with an exact calculation,
as is available with the Paris potential, we found
that our approximate CI effect on nucleon polari-
zation almost coincides with the exact result. This
gave us some confidence that at least the two-body
features of the CI correction to three-nucleon ob-
servables would be described in a sufficiently reli-
able manner to allow qualitative predictions of the
differences between N-d observables.

Employing the p-d collision matrix elements as
given by the phase shift analysis of Schmelzbach
et al. , we have calculated the CI corrections to the
differential cross section and the vector and tensor
analyzing powers at 5 MeV nucleon lab energy.

Assuming that charge symmetry is preserved, the
Coulomb-corrected p-d observables represent pre-
dictions for n-d observables. The strongest sensi-

tivity was found in do. /dQ and T20 where it
might be big enough to be measurable. Also Ay

and T2& display some sensitivity, whereas iT» and

Tz2 are only slightly affected. The direction of the
effect in Ay agrees with the experimental results at
14.1 MeV, but quantitatively we obtain a smaller
effect, although it is expected to become larger
with decreasing energy. We therefore feel that our
result supports the 12 MeV result showing only
minimal differences between n-d and p-d. It is also
interesting to note that our approximate CI would

help reconcile Doleschall's n-d calculation of'Ay,

T2o, and T2i (between 3.5 and 6.5 MeV nucleon
lab energy) with p-d measurements. On the other
hand, it would not explain why n-d Faddeev calcu-
lations with local potentials yield too low Ay when

compared to p-d data.
The sensitivity of do/dQ and Tio to other than

asymptotic Coulomb effects clearly demonstrates
that analyzing p-d data with current n-d Faddeev
calculations, including those which take into ac-
count the asymptotic Coulomb phase shifts, is not
really adequate. We suggest, in the absence of an
exact calculation, to include the CI corrections as
represented by our approximation. Of course, mea-
surements of n-d analyzing powers for polarized
deuterons would provide the most convincing ex-
perimental check of the Coulomb-induced differ-
ences between p-d and n-d scattering, as well as the
microscopic n-d calculations themselves, but these
difficult experiments probably will not be done in
the near future.

Our approach is not limited to p-d scattering,
having already roughly reproduced the differences
between p-a and n-a phase shifts' in all cases ex-

cept for the strong resonance (J = i ). If reso-

nances can be included in our approximation
scheme, it will be a versatile tool for making
Coulomb corrections to elastic scattering in light
nuclear systems.
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