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Coulomb effects on the singularities of charged particle exchange scattering amplitudes
are discussed. It is shown that the nature of the exchange singularity depends on the value

of g and that the amplitude is finite for g & 1. Coulomb correction factors which include
the effects of Coulomb distortion are given for a suitably defined exchange pole residue in

the cross section. The implications of these results on determinations of the asymptotic D-
to S-state ratio in the deuteron, H, and He are discussed.

NUCLEAR REACTIONS Coulomb corrections in charged particle
exchange amplitudes.

I. INTRODUCTION

Several authors' have recently reported deter-
minations of the asymptotic D to S state, pD, of the
deuteron using analytic continuations in cos0 to the
neutron exchange pole of tensor analyzing power
measurements in d-p elastic scattering. The same
method can also be used to determine an analogous
ratio of asymptotic normalization constants for D
and S states in other systems, as, for.instance, in H
and He. In order to improve the accuracy of these
determinations of pD it is necessary to give careful
consideration to the Coulomb effects outside the
physical region. In the case of neutron exchange it
has been shown that Coulomb distortion modifies
the exchange pole residue by an energy dependent

factor that is independent of the orbital angular
momentum of the bound states involved in the ex-

change process. Here we consider the Coulomb ef-

fects on single particle exchange singularities in the
case where the exchanged particle is charged. The
present discussion is also applicable to direct s-

channel processes in the scattering of two charged
particles.

II. THE EXCHANGE SINGULARITY

The Born exchange amplitude involves the prod-
uct of the nuclear bound state wave functions |fit in

n

momentum space at each vertex n = 1,2 of the ex-
change process

+t (q )=(q. Igt )=4rrt "f ji (q r)»„(r)r «~t "(q„), n=1,2.

In Eq. (1)ji is a spherical Bessel function and ut is

the normalized radial part of Pt in configuration

space. Since we are interested in the behavior of the

scattering amplitude at the exchange singularity we
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can neglect the short range part of uI and write

ul =[El /(a. r)]W v„l„+, ly2(2a„r),

n =1,2.
Here the quantities of interest in nuclear structure
studies are the asymptotic normalization constants

NI„. 8 —g„,l„+1/2 is a Whittaker function, g„are
the Coulomb parameters for the repulsive Coulomb
interaction at each vertex, and a„
= [(2p„8„)/iri ]' are the asymptotic wave

numbers. 8„ is the binding energy of pi and p„
are reduced masses. In the special case of neutron

exchange 2)„=0and ul in Eq. (2) is proportional

to a spherical Hankel function. The position of the

exchange singularity in the cos8 ((l is the scattering

angle) plane is determined by the condition that the

energy denominator

(3)F.„+B„= (q„+a„), n =1,2
2pn

in the propagator is equal to zero. Hence at the ex-
change singularity cos0 =zz

P„=q„+a„=O, n =1,2.

W „l+ i&2(2ar }= (2ar } "e

Hence the substitution of Eqs. (5) and (2) in Eq. (1)
leads us to consider the function

Xi&(q) = f jl(qr)(2ar) "e "r dr .

The result of the radial integration is

i/iraq' I (I +2 —2))
2I+2av+I+1 I (I

i
)

1+3 ~ 1+2 ~ I + 2 t

(6a)

Because of energy conservation in the exchange pro-
cess pi@2 ——p2dMi. By substituting Eq. (2) into Eq.
(1) the result of the radial integration can be ex-

pressed as a sum of hypergeometric functions in
two variables. Using this analytical form it becomes
possible to study the behavior of Fl(q ) at cos8 =zz.
We can follow an equivalent but simpler approach
by noting that because Fl( q) is a Fourier transform
its behavior as P ~0 is determined by the asymptot-
ic form at large r of the radial wave function. In
the asymptotic region

where

x = —q /a =1—P/a (6b)

The hypergeometric function in Eq. (6a) has a
branch point at P=O. However, as the argument x
approaches the value 1 the function F[(I + 3
—2))/2, (I +2 —2))/2, I + 2;x] goes to a finite

value for 2) & 1. Therefore for 2) & 1, Fl(q) does
not become infinite when P ~0. This result has

been noted by Andrews et al. in the particular case
of (d, n) reactions. The modified nature of the ex-

change singularity is a consequence of the fact that
Coulomb repulsion makes the bound state wave

function (2) decrease faster than r 'e "at large r.
The bound particle tends to avoid the region of
space where the long range part of the Coulomb po-
tential is acting and there is no nuclear force. For g
& 1, ul(r) decreases faster than r e ~' and there-
fore the integral Xl„(q), as p ~0, converges to the
value

i/vari' I (1 +2—2))I'(i) —1)
2l+2 g+ 1

1 +2) 1+ I+2)r r
2 2

For 2) ( 1 the exchange singularity is a branch point,
since in the neighborhood of P=0

Xl„(q)= —(2a) '~I'( I 2))&—a

Only in the case of neutron transfer the exchange
singularity is a simple pole

l

Xio(q) = pa

In the particular case where g = 1 the Born ampli-
tude has a logarithmic singularity as P —+0. As an
example of how restrictive is the condition q ( 1 we
note that a proton state in a Z = 18 nucleus with a
binding energy of 8 MeV has g & 1.

The preceding discussion can also be applied to
the singularities in the scattering amplitude of elastic
scattering of two charged particles through the
direct (or s-channel) bound state gl . The contribu-

n

tion from this process to the elastic scattering ampli-
tude involves the limit of (X' '(q„)

~
l(l ) as q„

~ia„, where g' ' is a Coulomb scattering wave
function. The effect of the Coulomb interaction on

in the asymptotic region of large r modifies the

behavior of (X' '( q„)
~

1(l ) as q„~ia„. It can be
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shown that this behavior depends on the particular
value of q and is described by equaaons essentially
analogous to Eqs. (7)—(9).

III. COULOMB DISTORTION

Photon exchange in the entrance and exit chan-
nels of the scattering process give rise to Coulomb
distortion effects in the exchange amplitude. To cal-
culate these effects we use the Coulomb wave Born
approximation. In this model the T matrix in the
"post" representation for a general binary reaction a
+A ~b +B, where a =b +x and x is the ex-
changed particle, involves the amplitudes

~i,i,i,i., = f d'~ d'&&b ' (rib»b rb)

X [&I (+)Il2 (1I )] I b~&l)(r)~1) (r)

(+)XX, (2)„&„r,) .

The indexes 1 and 2 correspond to the vertices a
—+b +x and x +3 —+B, respectively. p, , pb
are Coulomb wave functions, g„qb are Coulomb
parameters, and k„kb are the asymptotic momen-
ta. In Eq. (10) r is the argument of the bound state
wave function in the a ~b +x vertex and R is the
argument of the bound state wave function in the x
+A —+B vertex. Hence the relation between r, R,
r„and rb is

—+ mb mg ~r, =R+ — r, rb —— R+ r,
ma m

where m; is the mass of particle i. It is important
to realize that the amplitude (10) has a simple pole
at cos8 =zz only when (a) the exchanged particle
has no charge; and (b) the scattering wave functions
are approximated by plane waves. In this case I is
the well known exchange pole Born amplitude [Eq.
(A13) of Ref. 5],

and p2 is as previously defined in Eq. (4).
ture of the exchange singularity in the amplitude
(10) is modified by Coulomb distortion effects and
also, in the case of charged particle exchange, by
Coulomb e6'ects in the bound state wave functions.
Hence it is convenient to choose as the definition of
the exchange pole residue in the cross section (for a
polarized or unpolarized incident beam)

(2 ) vl(2 ) i21 P ii 92

p, o

X&l x2l x I (13)

The Coulomb factor 2, in this equation is given. by
—(~/2)(g +g$)A, = r(1 ) )2rl(1 r)2—-+ iri. +ir—ib)e

l'g~ l'gb

X (1

The factors (2a) " are introduced to ensure that L,
has the same dimensions for charged and uncharged
exchange. The definition (13) is chosen because the
behavior of the scattering observables in the neigh-
borhood of the exchange singularity depends only
on these limits. It should be noticed that Eq. (13)
applies only to cases where g~ +g2 & 1. When g&

+g2 & l the cross section is not infinite at coso
=zp and the method of analytical continuation in
the cos8 plane cannot be used. In the particular
case of (d, n) reactions rii ——0. Hence the cross sec-
tion is finite at cos8 =zp for g2 ) 1 as shown in
Ref. 8.

Using the methods developed in Ref. 4 it is
proved that the leading term of a power series ex-
pansion in p2 of the Coulomb amplitude (10) is

~1 ~2
'~pw

12X2I ii,| c l 222l |i.iwCX~ ~&2

(14)

PW
~I222 l |A,| (4m''}' li l2 le & iq2

Pl P2+I+2 +I &2

where, at cos8 =zp,

g, =a2 +(kb —k, ) —2ia2k, ,

gb a2 (kb' k, )
——2ia—,k,

' —. —
(16a)

(16b)

The momenta q i and q2 are given by

-+i ~ —+i mb —+
q) —kg —kb, k, = k, ,

mg

~g mg +
q, =k, -kb, kb- kb,

mg

(12a)

(12b)

IV. DISCUSSION OF COULOMB CORRECTIONS

The factors that multiply the plane wave ampli-
tude in Eq. (14) are independent of 1

&
and 12.

Hence the Coulomb correction to the exchange pole
residue p in the cross section is independent of
whether the incident beam is unpolarized or polar-



1382 F. D. SANTOS 24

ized. Using Eqs. (11},(13), and (14) we obtain

4& 4g2 . 2(1—'9& —"I2) xp np=(2ai} "'(2az) '»mP2
p2 0

=R, lim p2 0 (8} .
p2 0

(17)

1.0

0.8 d-H

Here a'" (8) is the cross section for a polarized or
unpolarized beam, as determined by experiment,
and cr (8) is the corresponding cross section calcu-
lated with the amplitude (11). In particular, o(8) in

Eq. (17) can be taken as the product era(8)Tk (8),
(g)where 00 is the unpolarized cross section and Tk &

is an analyzing power. In Eq. (17)

R

0.6

0.4

0.2
R, = IA,

I

(18)

It is noted that the relation between p of Eq. ( 17)
and L of Eq. (13) is determined by the particular
polarized cross section present in Eq. (17). The po-
larized cross section cr (8) is a bilinear form in

the amplitudes Ii i„ i i defined by Eq. (11).
Using the "prior" representation of the Coulomb

Born amplitude Eq. (14) remains valid except for
the replacement of A, by

f Va f ib

Pi Pi
(19)

where, at cos8 =zz,

f, =ai —(k, kb ) 2—iaik, —, (20a)

fb ——a, +(k,' kb ) 2i—aikb .— (20b)

The difference between A, and A,
""results from

the post-prior ambiguity in the distorted wave
Born amplitude and is a manifestation of neglected
Coulomb stretching or polarizability effects. How-
ever, this ambiguity does not manifest itself at the
exchange singularity in elastic scattering since in
this case A, =A, ""and

R, = Il (1—ri')l ll ri'+2iri) I'—
2ak'

X exp 2r) arctan
a —(k

2ak
a +(k' —k )

Here g'=g& ——g2, g=g, =gb, 0 &arctanx &0 and
the channel identifying subscripts were dropped

—(w/2)(q, +qb)
g ~"'"= I (1—ri2)I (1 r)i+i'—, +iamb)eC

0
0 10 20 SO 40

Energy (MeV)

I

50 60

FIG. 1. Coulomb correction factor R, to the nucleon

exchange pole residue in d-p, d-'H, and d- He elastic
scattering as a function of deuteron energy. The dash-

point curve (a) represents R, in d- He scattering calculat-

ed assuming that the exchanged particle has no charge.
The broken line is the asymptote of R, curves with only
Coulomb distortion effects.

since they are unnecessary in elastic scattering. R,
is a positive quantity that increases monotonically

with energy. In the limit k ~oo, R, = I'(1 —ri'

As we approach zero energy the Coulomb repulsion

becomes dominant and in the limit k ~0, R, ==0.
In the case of d-p elastic scattering the inclusion

f Coulomb effects increases the value of pD ob-
2tained by Gruebler et al. by about 7% to pa

=0.0277. This value is in good agreement with a
recent theoretical estimate' of p~ based on one-

pion exchange dominance at large distances. As
shown in Fig. 1 larger Coulomb effects are present
in d- H and d- He elastic scattering. The higher
value of g makes R, increase slower with energy in

th ase of d- He scattering. However, Fig. 1

shows that for Ed g 10 MeV there is some cance-
lation between the Coulomb effects in the bound

state and scattering wave functions. The value ob-

tained for pD in H using the H(d, p) H reaction

at 13 MeV is increased in absolute value by about

10% to pD
———0.053, by the inclusion of the

Coulomb correction factor R, . The difference

between R, calculated in the past and prior
representations is, in this case, smaller than 1%.
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