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Confrontations between the interacting boson approximation and the Bohr-Mottelson model
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In the past year several papers were published discussing, from very different points of view,

the relation between the interacting boson approximation and the Bohr-Mottelson model. We

show that, under certain assumptions about the measure in the Hilbert space, these approaches

are equivalent.
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The objective of the present Communication is to
confront several papers' that, appeared in the past
year discussing —from very different points of
view —the relation between the interacting boson ap-
proximation' (IBA) and the Bohr-Mottelson (BM)
model and its extensions.

We start by discussing the paper by Moshinsky'
whose title "Confrontation of nuclear collective
models" led to the title of the present Communica-
tion. In this paper the objective was to show that, for
a fixed number N of d-s bosons, to each Hamiltonian
in the IBA we could find an equivalent one in the ex-
tension of the BM model developed by Greiner and
collaborators. 7 This was achieved with the help of
the procedure of Dzholos et al. ' in which the s boson
was not considered but one had instead appropriate
operators in d bosons alone. Klein and Vallieres4
pointed out that this procedure is in fact related to an
old idea of Holstein and Primakoff for the realiza-
tion of an SU(2) algebra in terms of a creation, an-
nihilation, and certain functions of the number
operators.

We proceed now to write down the generators of
U(6) in the s-d boson model in terms of the purely d

type creation and annihilation operators used in the
construction of the full set of states of the BM oscil-
lator model. ' Our notation will be the following:
We denote by s,s the creation and annihilation
operators corresponding to s bosons and by d ~,d,
m = 2, 1,0, —1, —2 the corresponding ones for d bo-

I r

sons having the commutation relation [d,d i =S
The creation and annihilation operators for the BM
model'0 will be denoted by q, g with [g, rt ]

l= 5 and ft = Xq g being the number operator as-

sociated with the BM oscillator Hamiltonian.
For a fixed number N of s-d bosons the correspon-

dence to the 36 generators of the U(6) Lie algebra is

given by'4
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as the right hand side (rhs) of (2) satisfies the same
commutation relations as the rhs of (1). Further-

where left and right hand side operators satisfy the
same commutation relations.

Clearly (1) would allow us to write all one and two

body scalar operators in the s-d boson picture in
I

terms of corresponding functions of g~, g . As
shown in Ref. 1, these functions would be linear
combinations of 1, p', p4, p3cos3y with coefficients
that depend on n and the square of the angular
momentum L', and thus their matrix elements in a
basis in which n, L' are diagonal can be computed
straightforwardly. '

The main purpose of the present paper is to con-
front the approach followed above by Moshinsky'
and, with another emphasis, by Klein and Vallieres,
with that by Ginocchio and Kirson' and, from anoth-
er standpoint, by Dieperink et al.

To achieve our objective we note that another
correspondence of operators that allows a realization
of a U(6) Lie algebra is given by
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=(N —v+1) ''(v'2'l(N —n)g lvr) (3b)

with v'= v —1. Thus the matrix M~ of any polyno-
mial function of the rhs of (2) is related with the ma-
trix M~ of the same polynomial function of the rhs of
(1) through the equation

Mg=D 'M)D

where D is the diagonal matrix

(4)

v, v'=0, 1 N

Therefore the translation of the generators of U(6) in

the s-d boson model into those on the rhs of (1) or
(2) will give, for a definite IBA Hamiltonian, dif-

I s

ferent functions H&(2t~, g ) or H2(2i~, g ) that
have the same eigenvalues.

We now turn our attention to the procedure fol-
lowed in Refs. 2 and 3 for finding the operators cor-
responding to the generators of U(6) given on the
left hand side (Ihs) of (1) or (2). The starting point
is the introduction of a normalized intrinsic state
for N bosons outside the doubly closed shell; the
latter is denoted by lo). We prefer to work in the
framewf reference fixed in space rather than the one
fixed in the body, and thus the intrinsic state be-
comes~'

N

lX~ ) =l&t(I+lpl2)n]-'" s'+X~ d' lO) .

We then obtain the correspondence

(6)

s's (1+lPl') ""[Ã P'd/'dP](1+ lPl'—)"" (7a)

d."-(1+lPl')-"/'[e/a~. ](I+lPl')"
"d--(I+

l
pl2)-»2[~-(A —pa/op) ](I + l

pl')»2

(7b)

(7c)

dtdm (I + lpl2)-N/2[ m o/o~nt] ( I + lpl2) N/2 (7d)

where

2 ~ltf ~m (Sa)

p8/Bp= Xn 8/Ba (Sb)

more with respect to eigenstates lvr) of n, where v is
the eigenvalue of this operator and v represents the
other quantum numbers, we have

(v'~'lq (W n—)'/2lv~) = (v'~'lZ lv&)(W —v)'/',

(3a)
with v = v+1,

(v'2'l(N —n)'/2) lvs)

d p, (z ) = 2r ' exp (—zz') dx dy (lob)

The proof is immediate as when we apply the 1hs and
rhs of (7) to (6) we get the same results, taking
into account that from the commutation relation we
can interpret s =8/Bs, d =8/Bd .

We can easily check that the commutators of the
expressions on the rhs of (7) give the same result as
those on the lhs except for an overall minus sign.
This is to be expected as when we operate on (6)
with products of operators on the lhs of (7), we get
the same result if we apply the corresponding ones
on the rhs in the opposite order.

If we have now a definite IBA Hamiltonian we can
write a corresponding expression for it in terms of
the operators appearing in the square brackets of (7)
with factors (I+ l pl') " ' and (I+ lpl') "/' on the
left and right of the final expression. These factors
can be eliminated if we assume that the resulting ex-
pression instead of acting on a function P of the a,
does it on Q'related to it through

~=[I+lpl']- "e .

We get then for each IBA Hamiltonian a correspond-
I

ing operator H(a, 8/Ba ) constructed from sums
of products of operators appearing in the square
brackets of (7). In the particular case of two body in-
teractions associated with the O(6) and SU(3) sub-
groups of U(6) we get Hamiltonians with many
resemblances to those of the BM model and its ex-
tensions. '

While the procedure outlined in the previous para-
graph ' is very elegant, we must remember that in

quantum mechanics we not only wish to have opera-

tors such as H(a, 8/80, ) and their eigenfunctions,
but we must have also a way for defining a scalar
product, i.e., a measure in the Hilbert space charac-
terized by the coordinates a . Comparing the ex-
pressions on the rhs of (2), where because of the
commutation relations we can replace g™by a/a&,
with those in the square brackets in the rhs of (7),
we immediately have the impression that the role
played by 7l, g™in the former is played by o. , 8/Ba
in the latter. This suggests that the 0. must be com-
plex variables"' and that the scalar product should
be defined in what is known as Bargmann Hilbert
space (BHS) "'

We briefly discuss the essential features of BHS in
one dimension as the generalization to the five
dimensional case of. the n™,m =2, 1,0, —1, —2 will

be trivial. Associated with the creation and annihila-
tion operators 21, ( in ordinary Hilbert space we have
in BHS z, d/dz where z =x+/y is a complex variable.
The scalar product of two states g (z),f (z) which are
analytic functions of z, is defined by integration over
the full complex plane with a measure d p, (z), i.e.,

'2

(gf) = J g'(z)f(z) d/2(z); (IOa)
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Because of the property that the derivative of any
function of z' =x —iy with respect to z is zero, we
can easily prove"' that

(zg,f) = (g, df /dz)

(dg/dz. f) = (g,zf)

(11a)

(11b)

Finally oscillator functions of v quanta in ordinary
Hilbert space transform into the monomials
z"(v!) 'l' which, from the definition (10) of the
scalar product, are orthonormal. "

We now return to our problem. Instead of the five
variables o. we prefer to use o.

'
with a lower index

defined by n = (n )' as this will establish a com-
plete parallelism between the procedure followed on
the rhs of (2) in ordinary Hilbert space and that on
the rhs of (7) in BHS. We then define a measure as-
sociated with n by

2

dp, (n ) =sr exp( —~P~2) Q d Ren dImn . (12)
m~ 2

If we have a wave function P(n ) in our BHS
we can define a corresponding state in the IBA,
which we designate by the capital +, through the
relation

qr=„ iNn')y(n )(1+iP[')"dp(n ) . (13)

The appearance of the extra factor (1+)p~2)~ is due
to the fact that both the intrinsic state (6) and the
wave function of (9) have factors (.1+~p~') ~ ' that
are canceled by it. We are then left with
(st+ Xn "dt)~~0) and @(n ) which are analytic

functions, respectively, of n' and a and thus with

respect to the measure d p, (n ) we have a bonafide
scalar product.

We wish now to apply the generators of U(6) on
the lhs of (7) to the IBA states qr of (13), to see how
they are reflected in their operation on $(n ). Tak-

I

ing, for example, dtd of (7d), we obtain
I

d.'d 'q =„&( ."8/8 .')(I+IPI')""IN ')&@( ) dl ( )=„' &(I+IPI')'"IN ')j&

(14)

where we made use of the rhs of (7d) and of (11).
r

Thus to d d in IBA corresponds n 8/8n in the

BHS. In a similar fashion we obtain the set of
correspondences

s's - (N —P8/8P),

d s n

std (N —P8/8P) 8/8n

dr d 8/8

(15a)

(15b)

(15c)

(15d)

(where now P8/8P = Xn 8/8n ) which are clearly

the equivalent of (2) in a BHS whose measure is (12).
We have established, by going to BHS, that the

confrontation between the IBA and BM model
developed by Ginocchio and Kirson, ' is equivalent to
the one obtained by Moshinsky' and, from another
angle, by Klein and Vallieres. We hasten to add
though that Ginocchio and Kirson2 do not work in
BHS. In fact for them the n 's are not general corn-

plex variables like we assumed here, but have the re-
lations n" = (—1) n . Thus when defining [in Eq.
(4) of the first paper in Ref. 2] a state equivalent to
(13), they do not integrate over the Bargmann mea-
sure (12) but rather over the standard volume ele-

l

ment of the BM model. This, however, causes them
problems for the eigenstates associated with the
U(5) DO(5) DO(3) chain of groups, which are homo-
geneous polynomials of degree v in the a and
would certainly not be orthonormal over the standard
volume element of the BM model, while they will

have this property with the Bargmann measure (12),
as we indicated above for the one dimensional case.

The use of complex n 's, which has also been pro-
posed by Gilmore et at. , "allows the introduction of a
well defined scalar product. However, a very serious
drawback is the lack of a straightforward relation to
the real p, 7, and Euler angles required in the BM
model. It is thus of great interest to be able to define
a scalar product satisfying the restriction
n' = (—1)™n in the "intrinsic state" approach2 3

relating the IBA with the BM model. This is still an
open problem which requires the full attention of
those interested in establishing such a connection.

We wish to thank A. E, L. Dieperink, J. N. Ginoc-
chio, A. Klein, and I. Talmi for many discussions
that drew our attention to this problem, while we par-
ticipated together with them at conferences in Oax-
tepec, Mexico. This work was supported in part by
the Deutsche Forschungsgemeinschaft.
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