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Derivation of breakup-fusion cross sections from the optical theorem
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It is shown that the formula for the breakup-fusion cross section, used successfully to explain observed massive

transfer cross sections, having been derived originally by Kerman and McVoy, can be rederived, based on the optical
theorem involving a complex potential.

NUCLEAR REACTIONS Breakup-fusion cross section.

In our recent publications, "' we showed that
massive transfer reactions' can be very well
explained in terms of the two-step, breakup-fu-
sion mechanism; i.e., the process in which break-
up of the projectile takes place first, and is fol-
lowed by an absorption of one member of the
broken-up pair by the target nucleus. Such a pro-
cess may symbolically be written as

a+A —b+x+A -b+B*-b+y+C.
The last step in the above equation indicates the
eventual decay of the compound system, B~,
formed by the fusion of x and A. A characteristic
feature of the process is that, after the first
breakup, b behaves as a spectator, and thus the
remaining process can be viewed essentially as a
compound process; x+A -B*-y+C. [We shall,
henceforth, call the channel x+A (y+ C) simply
the x(y) channel. ]

In calculating the massive transfer cross sec-
tions (i.e. , singles cross sections of the light
o. particles) in Refs. I and 2, use was made of a
cross section formula derived originally by Ker-
man and McVoy (KM).' KM obtained this formula
by manipulating the so-called channel correlation
matrix using certain statistical assumptions. In
the present article, we show that the same for-
mula can be derived in a straightforward manner,
based on the optical theorem (or equivalently a
unitarity condition). We introduce the optical model
Hamiltonian explicitly, which helps us to avoid
making any statistical argument explicitly. (Both
the formalism of KM and ours can be used to
calculate singles cross sections in any reaction
that creates a three-body system at the inter-
mediate step preceding the fusion or absorption.
For simplicity of presentation we keep using the
terminology of the breakup fusion. )

Our starting basis is the relation

(2)

where o," is the total reaction or (absorption)

cross section in the incident channel a, while

X,"and W, are, respectively, the optical model
wave function in the incident channel, and the
imaginary part of the optical potential used in
generating X,". Equation (2) is obtained directly
from the usual optical theorem that the total cross
section can be given in terms of the forward scat-
tering amplitude. Thus, we may still call Eq.
(2) the optical theorem.

In order to calculate the breakup and the break-
up fusion cross sections, we first single out
0," and W„ i.e. , the respective contributions
from the breakup channel d(=b+x+A). Using
the formalism of Feshbach, ' they can be given
explicitly as

W~ = Im(gg I VGg Vl gg)

and (3a,)

G()=Q~)I () () ()t G( SUING(')1Q()
x ~ x

g(-)G(+)~ U tG(+)g (-)~
x b b b

o", = (2m, /@'&, )(x,"l w, l x 4) .

Here Q„ is the target ground state wave function,
t/ is the coupling Hamiltonian that causes the
breakup reaction, and G,"is the Green's function
for the propagation in the d channel, for which
we may assume an optical model Green's function

G~"=I/(E H, —T„—T» ——U„-U„+i@). (3b)
I

In (3b) H, denotes the intrinsic Hamiltonian of
the three ions b, x, and A, while T, and U,
(i=x and 5) are the kinetic energy and optical
potential for the relative motion between x and A
(i =x) and 5+B (i =h), respectively. The absorp-
tion of x by A is thus described by the imaginary
part of U„ introduced in the above Green's function.

In order to separate out the absorption due to
this imaginary potential, let us use the following
identity for G~':
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where +, , 0, ', G,', and g
' are defined as

)TUf
g~

G,
"= 1/(E —Ho —T, —T —U) + ie),

Q(-)
g + G(+)1'Uf

d j ~

g '=1I(E-Ho —T, —T~+iE) .

(4b)

function, while G,
' is the optical model Green's

function for the motion in channel i. We now

simplify (4), based on our fundamental assumption
mentioned above that after the breakup b can be
treated as a spectator. This means that we ne-
glect the last term in (4a), and approximate 0, '

b

Note that ~b
' introduced above is nothing but the

wave operator that generates a distorted wave
from the free wave. Also g" is the free Green's

I

O' 'G" U G"0 '=0 and 0
x' b b b x b ~b

Using (4a) and (5) in (3a), it is straightforward
to obtain'.

(5)

X, , + (6a)

Here Q, (i = a, b, and x) denotes the intrinsic wave
function of the ion i, while Ix& is the wave function
in the channel x and is given by

lx&= 2, (x,' 'e, G,"I)'I)(."e,e„&,

and X„' being the distorted waves for the
relative motion in channels b and x.

The physica1 significance of the two terms in
(6a) is clear. The first term is the total one-
step DWBA cross section of the breakup process,
while the second term describes the contribution
from the breakup-fusion process. This second

I
term is given, in full, as

2

dE dO 2 )f' 'k

which is exactly identical to Eq. (33}of KM.
From (7), together with (6b), one can rederive

Eq. (1) of Bef. 1 that was used there for the
analysis of the massive transfer reaction. I et us
for this purpose introduce the on-the-energy-shell
approximation for the Green's function G, ' in

! x). Representing the resultant Green's function
by a biorthogonal set of the optical model wave
functions, it is easy to show that

(8)

This is the same as Eq. (1) of Bef. 1, except for
a factor of 4 in the denominator. As we discussed
in Bef. 1, the cross section of (8} is to be multi-
plied by a factor of 4. This factor originates
from the contribution from the off-energy shell,

l
as was explained in some detail in Ref. 2.
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