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Structure of the giant multipole resonances in "Ne and "Si
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Nuclear structure wave functions for the ground and excited states of light deformed nuclei are obtained by
diagonalizing a "realistic" many nucleon Hamiltonian (kinetic energy plus a Brueckner G matrix based on the
Hamada-Johnston potential) in a suitably truncated nonorthogonal space of angular momentum projected deformed

Slater determinants beirig constructed out of self-consistent Hartree-Fock single nucleon orbits. Possible spurious

admixtures due to the center of mass motion are eliminated at least approximately by a separate diagonalization of
the center of mass Hamiltonian. Taking into account a rather large single particle basis, calculations using this

method are performed for the two sd-shell nuclei "Ne and "Si. Besides energies and wave functions, using

alternatively an oscillator and a Woods-Saxon representation, the electromagnetic ground state transitions of both

parities and of various multipolarities are also calculated as well as the corresponding spectroscopic amplitudes, The
'

results are compared, where possible, with the experimental data and the results of other calculations. Special
attention is paid to the strength distributions obtained for the various multipolarities. Though completely

microscopic, the model yields fair qualitative agreement with the available experimental information. Furthermore,

possible improvements of the method are discussed.

NUCLEAR STRUCTURE Ne, Si; calculated level schemes and electromag-
netic transitions. Angular momentum projected Hartree-Fock and particle-

hole method. Structure of the giant multipole resonances.

I. INTRODUCTION

Within the last few years the experimental in-
formation about the giant multipole resonances
(GMR) in many nuclei has been rapidly accumula-
ting. ' 4 While the electric giant dipole resonances
(E1V) had already been studied extensively a long
time ago, for example, by very accurate proton
radiative capture experiments, '~ and while infor-
mation about magnetic isovector dipole states
(M1V) has also been available for more than a
decade due to measurements of inelastic e scat-
tering under backward angles, ' "it was mainly
the access to high energy 4He beams which opened
a new fieM of investigation of the GMR's. Inelas-
tic +-scattering experiments performed by vari-
ous groups'" ' did establish in the meantime the
existence of an electric isoscalar giant quadrupole
resonance (E2$) in many nuclei spread over the
whole mass table. Furthermore, since in some
nuclei even the decay of these E2S states into
various channels has been measured by coinci-
dence experiments, '"'" the isoscalar electric
quadrupole mode of excitation today seems, even
better known than the famous E1V resonances.
Experiments searching for giant transition
strengths of other multipolarities are going on.
'Though not yet completely conclusive, there is,
for example, at least some experimental evidence
for an electric isoscalar giant monopole state
(EGS) in 20'Pb. '~ On the other hand, in nuclei be-
low "Ca, up to now no energetically concentrated
SOS strength exhausting more than only a few

percent of the corresponding classical energy
weighted sumrule has been found. "

However, not only n -scattering experiments
but also other ways to excite the various GMR's,
for example inelastic proton scattering, ' have
increased our knowledge considerably. Refined
inelastic electron scattering measurements have
updated our information about the M1V states. "
Furthermore, the use of polarized proton beams
opened new possibilities for the proton radiative
capture measurements, '" and last but not least
even reactions with pions" and heavy ions" can
be used as tools for the experimental study of the
GMR 's.

Naturally the enormous experimental progress
on the GMR field was rather stimulating for the
theoretical research on this problem. This holds
especially true for the microscopic approaches
to the structure of the GMR's. For doubly closed
shell nuclei, within the last few years random-
phase approximation (RPA) calculations in rather
large model spaces have been performed, "'"and
in some cases even the influence of two particle-
two hole (2p2h) admixtures to the RPA wave func-
tions have been taken into account, at least ap-
proximately, via the coupling of the RPA phonons
to the low excited collective states of the nuclei
considered. "'" It was shown that the higher or-
der correlations explicitly included in this so
called core-coupling RPA approach cause a large
spreading of the GMR-transition strengths for
most multipolarities and improve the agreement
with the experimental findings considerably.
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Furthermore, these calculations added much to
our knowledge about effective particle-hole inter-
actions, and last but not least, the transition den-
sities calculated in this way which are being used
as nuclear structure input for the analysis of in-
elastic electron, n, and proton scattering suc-
essfully reproduced many of the experimental
data. "

In open shell nuclei, i.e. , nuclei with a couple
of nucleons outside the closed shells, the situa-
tion is more complex. While in doubly closed
shell nuclei all the 1p1h —and even the 2p2h —ex-
citations with respect to the spherical ground
state can be easily coupled to definite total angu-
lar momentum, in open shell nuclei usually the
Hartree-Fock (HF) vacuum, as well as the excita-
tions with respect to it, break the required rota-
tional symmetry. 'Therefore, in order to obtain
physical states here, angular momentum projec-
tion techniques, which complicate the numerical
calculations considerably, have to be applied.
Further complications result from the fact that
the angular momentum projected deformed 1p1h
states do mix into the angular momentum projec-
ted HF vacuum, so that an RPA description of the
excited states becomes invalid. Even restoring
the required rotational symmetry before the vari-
ation of the HF degrees of freedom, which makes
the resulting angular momentum projected HF
vacuum stable against arbitrarily projected 1p1h
admixtures, does not help, since then, as has
been shown in Ref. 30, the particle orbits can no
longer be defined in a physical way, and a descrip-
tion of the excited states then requires methods
which are more complicated than a particle-hole
expansion.

Knupfer et al."circumvented these problems
by a sort of weak coupling approach. They tried
to describe the GMR's in light deformed nuclei
by coupling the RPA wave functions obtained for
the GMR's in the spherical core "0 to the valence
wave functions obtained by the diagonalization of
some effective Hamiltonian in an sd-shell model
basis. The configuration mixing of these coupled
states was then obtained by the diagonalization of
a phenomenologically chosen, separable effective
residual interaction. Obviously this approach has
a couple of drawbacks. First, the wave functions
are not antisymmetrized and hence violate the
Pauli principle. Second, the polarization of the
"0 core by the sd-shell nucleons is only partly
taken into account. Last but not least, the method
requires the introduction of three different effec-
tive Hamiltonians, which have, in general, noth-
ing to do with each other and therefore make the
results somewhat ambiguous. Though being
somewhat successful, Knupfer's calculations can

therefore only be considered as some semimicro-
scopic approach to the GMR's in the light de-
formed nuclei; this approach definitely has its
merits but should obviously be improved on a
more microscopic basis.

Such a microscopic theory is the angular mo-
mentum projected deformed particle hole model
which has been developed in Refs. 32 and 33. In
this approach the wave functions for the ground
and excited states are approximated by linear com-
binations of the angular momentum projected de-
formed Hartree-Fock vacuum and the angular mo-
mentum projected 1p1h excitations with respect
to it, and the configuration mixing coefficients of
this expansion are obtained from the same total
Hamiltonian also used for the calculation of the
average HF field. In Ref. 33 these wave functions
were then used as nuclear structure input for an
also completely microscopic calculation of the
proton radiation capture reaction. It "was shown
that in this way the structure of the GMR's in
"Ne as seen via the (p, y) reaction on "Fcould
be reasonably well. reproduced.

However, the (p, y) reaction is a very selective
process and tests only very specific parts of the
total wave functions. Therefore, in the calcula-
tions presented in Ref. 33, only relatively small
model spaces were needed and effective single
particle energies and two body forces were used.
For the analysis of more complex reactions like
inelastic electron or hadron scattering the wave
functions so obtained are obviously much too re-
stricted.

In the present investigation the model will
therefore be extended to rather large single par-
ticle spaces. This enables us to use a micro-
scopic Brueckner G matrix and kinetic energy
matrix elements such as the Hamiltonian to avoid
the ambiguities connected with the introduction of
effective single particle energies and interactions.

Section II will summarize the essential ingredi-
ents of this nuclear structure model. A detailed
discussion of its application to the two nuclei
"Ne and "Siwill then be presented in Sec. III.
The main results of the various calculations for
these two nuclei with special emphasis on the
GMR's are then discussed in Sec. IV, and Sec. V
will finally summarize the essential points of the
present investigation.

II. THEORY

Since the angular momentum projected deformed
particle hole model (PHM) has already been des-
cribed in detail elsewhere, "we shall give only a
sort of summary of the main ideas this approach
is based on and concentrate our discussion mainly
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on the implications of the various approximations
being introduced in its derivation.

We start as usual in conventional microscopic
nuclear structure theory, defining a finite model
space by an M dimensional, orthonormal set of
single nucleon wave functions being discrete eigen-
states of some spherical basis creating potential
(for example, the harmonic oscillator or, if the
continuum is discretized in a suitable way, "the
Woods-Saxon one). The creation operators for
these basis states are denoted by (C;,C;. . .j„.
We shall furthermore assume that the total effec-
tive many nucleon Hamiltonian appropriate for
this model space is known and can be written in
the chosen representation as a sum of only one
and two body terms

H=g t(ab)C;C, +-; g v(acbd)C;C;C~C, . (1)

Here t(ab):= (a jt
~

b) are the matrix elements of
the kinetic energy operator (or, if an inert core is
assumed, some spherical single particle ener-
gies), and v(acbd):= (ac

j V~ bd -db) denote the an-
tisymmetrized two body matrix elements of the
effective nucleon-nucleon interaction (for example,
a Brueckner G matrix such as that of Ref. 35 or
some more phenomenological potential such as the
Skyrme force" or others}.

'The straightforward way to obtain the A-nucleon
eigenstates of (1) would then be to diagonalize
this Hamiltonian in the space of all the A-nucleon
Slater determinants, which can be constructed in
the chosen model space, and each of which des-
cribes the independent motion of the particles in
the field of the basis creating potential. Unfor-
tunately, this "shell model configuration mixing"
(SCM) approach"'" is limited to rather small
model spaces for numerical reasons and hence
cannot be applied to the highly excited states in the
region of the GMR's. Being interested in these
states one has therefore to develop a truncation
scheme which reduces the dixnension of the con-
figuration space to manageable size without elim-
inating those degrees of freedom which are es-
sential for the particular nuclear excitations un-
der investigation.

For this purpose first an HF calculation"'" for
the considered nucleus is usually performed.
'This procedure extracts the average field each of
the nucleons feels due to its interactions with all
the others directly from the total Hamiltonian (1).
'The resulting HF vacuum, i.e., that Slater deter-
minant in which the A energetically lowest orbits
of this average potential are occupied ("hole"
states) and all the other (M -A} ones are empty
("particle" states), represents the optimal inde-
pendent particle approach to the ground state of

the considered system within the chosen model
space.

Mathematically, the HF field is given by a uni-
tary transforxnation of the single nucleon basis
wave functions

kl

a',. =+A„C; (i =1, . . . , M} (2)

with

'The HF Slater determinant can then be written as

(4)

where
~

0) denotes the particle vacuum and the
product runs over the & energetically lowest or-
bits (2) of the self-consistent HF potential up to
some Fermi level F. The transformation matrix
in Eg. (2) is then determined by a variational
principle requiring a minimum for the expectation
value of the total Hamiltonian (1) in the test wave
function (4) with respect to variations of the ex-
pansion coefficients A„. in Eq. (2) and being sub-
ject to the unitarity constraint (3).

Any virtual or real excitation of the system can
then be represented in terms of particle-hole (ph)
excitations with respect to the reference deter-
minant (4). Besides the configuration (4), the to-
tal configuration space in the HF representation
consists of the 1plh excitations with respect to it

the 2p2h configurations, and so on, up to the
ApAh terms.

Obviously, if all these configurations really
had to be taken into account we would have gained
nothing with respect to the SCM approach. How-
ever, while the SCM configurations are defined
with respect to an arbitrary, ad hoc chosen po-
tential, the HF method obtains the best possible
reference field and minimizes the residual inter-
actions, at least for the ground state of the nucle-
us. One can therefore hope that an expansion of
the nuclear wave functions in terms of ph config-
urations with respect to the HF vacuum (4), even
if already truncated after the 2p2h or even after
the j.plh terms, may still be a, reasonable approx-
imation to the exact SCM solutions for many
states of the considered system.

In the convential Tamm-Dancoff approximation
(TDA) or the more sophisticated RPA, which has
been applied with great success to the GMR pro-
blem in doubly closed shell nuclei, "'"use is
made of the fact that the Hamiltonian (1) does not
connect the 1plh excitations (5) with the refer-



1286 K. %. SCHMID

ence state (4) because of Thouless's theorem. "
In first approximation the ground state of the
nucleus may therefore be represented by the lat-
ter and the excited states be obtained by diagonal-
izing the Hamiltonian (1) only. in the lplh space
(5). Since the electromagnetic transition operator
has only one body terms, the resulting states, at
least in the RPA approach which takes into ac-
count at least implicitly some of the ground state
correlations neglected in (4}, do exhaust the full
energy weighted sumrule strengths for the vari-
ous multipole transitions, and only if the inter-
mediate and fine structure of the spectra is con-
sidered, also the coupling of the RPA states to
higher order correlations; for example, the 2p2h
configurations, have to be taken into account. If
this is done, the spreading of the GMR strengths
over many states, which is experimentally ob-
served even in spherical nuclei like "0 and '"Pb,
can also be reasonably well described. ""

However, while in spherical nuclei all the con-
figurations (5) and even the higher order ones can
be easily coupled to definite angular momentum,
in open shell nuclei (i.e. , nuclei with a couple of
nucleons outside the closed shells) the situation is
more complex. Here, in general, the HF refer-
ence determinant (4) as well as the ph excitations
with respect to it, are deformed. Being neither
eigenstates of the square of the total angular mo-
mentum operator I' nor of its projection I, on the
z axis of the laboratory frame, these states can-
not be considered physical states but only some
intrinsic structure from which the physical com-
ponents with the required rotational symmetry
still have to be obtained, for example, by angular
momentum projection methods.

The technique of projecting the components with
good total spin I and spin projection M on the lab
z axis from an arbitrary antisymmetrized A-
nucleon wave function has been well known for a
long time"'" and has only recently been the sub-
ject of some review papers. 4' We shall therefore
give here only a short summary of this method.

Let (Q, ; c = 1, . . . ,N) be a set of (not necessarily
orthogonal) deformed Slater determinants, for
example of the types (4) and (5). Each of these
determinants can obviously be expanded in terms
of a complete, orthonormal set of A-nucleon
states being eigenfunctions to I' and its projection
I, on the intrinsic 3 axis with eigenvalues I(I+ 1)h'
and KS, respectively. Denoting by v the additional
quantum numbers required to distinguish between
the different states with the same I and K we may
write

l
Q,)=g lIKv)(IKvl Q,).

IKv

,J

Villars's angular momentum projection operator4'

P(IM' K} g lIMv)(IKv (7)

applied on (6}then creates a set of nonorthogonal
and unnormalized configurations

lrM; d&=g
l
y.K;IM)f t'&.„

cK
(9)

where d enumerates the different possible states
with the same angular momentum quantum num-
bers and the expansion coefficients f,'zi'.

~ can be
easily obtained by requiring a minimum of the
energy expectation value within the test wave func-
tion (9). This yields a matrix equation

,K;IM H .K', IM

-E~(I)(@,K; IM
l
Q, ,K', IM)f,',~i.~= 0, (10)

where the orthogonality of the resulting wave func-
tions (9) is ensured by the additional constraint

' f+r.iq(Q K'IMl (jb K 'IM)f ~~~i.
q =5(d d ).

cKc 'K'

(ll)
The system of equations (10) and (11) solves our
problem of restoring the required rotational sym-
metry. Since here the angular momentum projec-
tion is performed before the variation of the con-
figuration mixing degrees of freedom f,'~z',.~, the
equations determine separately for each spin the
optimal linear combination of the wave functions
(6), and hence the dynamic spin dependence of the
various degrees of freedom is automatically taken

l
y.K; IM)=P(IM; K)

l y, )=g lIMv)(IKv
l y,),

(8)
Ps

which are now eigenfunctions of I' and its projec-
tion I, on the lab z axis with eigenvalues I(I+ 1}h'
and MK, respectively. Note that the operator (7)
is a projector in its strict mathematical sense
only for M =E. Its nondiagonality in these indices
takes into account that states with the same M
may be obtained from all the different components
with intrinsic spin projections lK

l

(I contained in
the deformed wave function (6). Therefore the
configurations (8) still depend on the orientation
of the intrinsic system [rotating (6) changes the
K distribution] and hence cannot yet be considered
a physical basis. Orientation independent wave
functions can, however, easily be obtained by tak-
ing general linear combinations of the nonortho-
gonal configurations (8).

The most general symmetry conserving test
wave function constructable from the deformed
set (8) then has the form
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into account. Furthermore, the overlap matrix in
Eqs. (10) and (11) takes care of the possible linear
dependencies in the nonorthogonal set of configu-
rations (8).

In general, since the expansion (6) is usually
not known, the energy and overlap matrices in the
above equations cannot be calculated from the gen-
eral expression (8). However, it can be easily
shown that the projection operator (7) can be rep-
resented as an integral operator

(12)

where 0 denotes the three Euler angles, R(Q) is
the usual rotation operator, "and D„»(Q) its rep-
resentation in angular momentum eigenfunctions.
Using (12) instead of (7) the overlap and energy
matrices in Eqs. (10) and (11) can be written as

operator (12). In order to simplify our problem
we 'shall therefore restrict ourselves in the fol-
lowing to doubly even nuclei with an equal number
of protons and neutrons, neglect the Coulomb re-
pulsion between the protons, and forbid parity
mixing in the HF transformation (2}. Further-
more, we shall impose axial symmetry on the HF
orbits and truncate the configuration space after
the 1p1h terms (5).

Because of these approximations, parity, iso-
spin projection, and spin projection on the inter-
nal 3 axis can be considered "good" quantum num-
bers in the expansion (2). Furthermore, proton
and neutron states with the same quantum num-
bers are degenerate, as is each of the self-con-
sistent orbits

~

i& from Eq. (2) with its time re-
versed partner

(15)

2I+ 1

(13)

(14)

Consequently, the HF determinant (4) has total
isospin and isospin projection T = T, = 0, intrinsic
spin projection K= 0, positive parity w=+, and is
even under time reversal. Applying the projection
operator (12) on this state we therefore obtain the
configuration

i
0; I'MT(T, = 0)&= 5(w, +)5(T, O)5((-)~,+)P(IM; 0)

i
&.

and hence can be evaluated without knowing the ex-
pansion (6) explicitly.

Obviously, if no symmetry restrictions are im-
posed on the HF expansion (2) the calculation of
the overlap and energy matrices (13) and (14) be-
comes rather involved numerically because of the
threefold integrations induced by the projection

(16)

Furthermore, the lplh configurations (5}also have
definite parity (v =» ~ w~) and intrinsic spin pro-
jections (K=m~ -m ) and can be easily coupled to
total isospin T and isospin projection T, = 0. Also
using the time reversal properties of (5) here we
obtain, by applying the projection operator (12),

~u 'L;I'MT(T =0)&=6(», ~ »~, »)6(~m» -m
~

I)6(m & 0)

x ,'(P(IM; m~ -m-, )[a~ a + (-)ra~ a ]~ &

+~(-)' ' & N'P(IM -m +m )[a~ a- +(-)ra~ a- ]~&], (17)

where T may adopt the value 0 or 1, the subindi-
ces p and n indicate whether a proton or a neutron
orbit is meant, and the bars denote the time re-
versed orbits according to our definition (15).

Since all the Slater determinants involved here
have definite K values, the calculation of the over-
lap and energy matrices (13) and (14) within the
nonorthogonal configuration space (16) and (17}is
very much simplified. 'The integrations over two
of the three Euler angles can be performed ana-
lytically and one is left with only one numerical
integration. Solving the matrix equation (10) we

obtain then the PHM wave functions

I

iI'MT(T, = 0) d&=
i
0; I'MT(T, = 0)&f,,~(I'T)

+ Q
~

u ~L; I'MT(T, =O)&f ~,~(I'T),
N~F
L &F

(18)

which will be used in the following for the descrip-
tion of the ground as well as of the excited states
in light deformed doubly even N = Z nuclei.

It is easily seen from the structure of the energy
matrix H(I' T) in Eq. (14) that, since the Hamilton-
ian (1) contains only one and two body terms, the
wave functions (18) take into account at most
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3p3h correlations with respect to the intrinsic
HF reference state (4). Up to this limit, however,
the system can choose rather complicated linear
combinations of Slater determinants, if these are
energetically favored, since the angular momen-
tum projection is performed before the diagonali-
zation of the Hamiltonian. Obviously this freedom
is somewhat restricted by the properties of the
projection operator (12). Therefore only a frac-
tion of the total 2p2h and 3p3h degrees of freedom
is really accessible. 'The magnitude of this frac-
tion depends on the size of the model space and
decreases with the increasing dimension of the
latter. However, at least part of the 2p2h and

3p3h correlations with respect to the HF vacuum

(4} is implicitly taken into account here.
This is also the reason that in the PHM wave

functions (18) the projected lplh configurations
(17) do mix with the projected reference state
(16), while such a mixing does not occur in the
intrinsic configuration spaces (4) and (5) due to
'Thouless's theorem. " If the angular momentum
projection had been performed not only before
the variation of the configuration mixing but also
of the HF degrees of freedom (2), this mixing
would obviously vanish, and the projected refer-
ence determinant (16}would then be stable against
arbitrary projected 1plh admixtures of the type
(17). However, it has been shown in Ref. 80 that
in this case the particle states cannot be defined
in a physical way and the excited states therefore
have to be described in a rather different approach
than by the expansions (4) and (5), which are
meaningless in the case of ambiguous particle or-
bits. For the highly excited states in. the GMR
region, however, the approach presented here
seems far more suitable; even more suitable if one
considers that at least part of the spin dependent
renormalization effects induced on the HF field
by a spin projection before the variation of the
single particle degrees of freedom is explicitly
taken into account also by the wave functions (18)
in terms of the mixing between the configurations
(16) and (17). Note furthermore, that, though the
intrinsic configurations (4) and (5) have all definite
spin projections K, the total wave functions (18)
do mix all the configurations with ~Et ~ I, so that
the intrinsic structure behind (18) can have rather
general deformations.

Obviously, as soon as more than one major os-
cillator shell is taken into account in the model
space, one. is faced with the possible occurrence
of spurious admixtures in the wave functions (18)
due to the center of mass motion. 'This problem
has been known for a long time"'" and will be
treated in our approach in the following way. In--
stead of solving the matrix equation (10) directly

for the total Hamiltonian (1), we first obtain its
solutions for the center of mass Hamiltonian

H, , which also contains only one and two body
terms and can hence be handled. in the same way
as the original Hamiltonian (1). In the case that
our configuration space were then complete with
respect to the center of mass motions, we would
then get a large number of eigenfunctions of the
type (18) having all the same energy eigenvalue
corresponding to the zero point energy of the
center of mass motion, and (depending on parity,
spin, and isospin) a few additional states, which
are located at center of mass excitation energies
of 18(d, 2S&, . . . and have hence to be considered
as spurious. The latter could then easily be pro-
jected out from the spectrum of the original
Hamiltonian. Even if the configuration space is
not complete, and this is usually the case, the
above method4' can still be used. Instead of having
degenerate eigenvalues the center of mass eigen-
states obtained from Eq. (10) are then clustered
around the values given above, and, with a suita-
bly chosen energy window, spurious and nonspuri-
ous states can still be separated and the latter can
be removed from the spectrum of our many nucle-
on Hamiltonian (1). Such an at least approximate
elimination of the spurious center of mass effects
can be achieved.

Finally, I would like to draw your attention to a
systematic drawback of the above described PHM
configuration mixing approach. The intrinisc HF
procedure used here to derive the reference field
is specifically designed for the ground state of the
nucleus. There is no a priori reason why the
1plh configurations with respect to the same field
should give equally good results for the highly ex-
cited states in the GMR region. In fact, the larger
the model space and therefore the better the HF
approach for the ground state, the larger the so
called HF gap separating the particle from the
hole orbits becomes. Hence one expects that the
1p1h configurations will-be located at increasing
excitation energy with respect to the ground state
if the model space is increased. On the other
hand, the strong contributions of, for example,
the collective 2N'& excitations on the ground state
band, which have been studied explicitly in Ref.
48, and are here to a large extent already taken
into account by the average field via the inclusion
of major shell mixing in the expansion (2), are
also expected to have considerable effects on the
excited states of the system. Microscopically,
these renormalization effects could only be taken
into account by including at least part of the 2p2h
(or even higher order) correlations explicitly in
the intrinsic configuration space. However, at
least at present, such an extension of the config-
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[cc ]"
= 5( . , ) g (-)" '( . ,L

~
.—,)c„"c,,

mama

(20)
is used. Denoting by

Q~ (abr) = ,'([1+v(-) —~](a,[@(EL)i)b,)

+ [1-v(-) ](a,ig)(ML)i[b, )j (21)

the reduced matrix elements of the L' part of the
usual long wavelength limit multipole expansion of
the electromagnetic transition operator within our
spherical single particle basis, we can then intro-
duce a transition amplitude

(f&)=Z T'~.(f&)= Z g~Q (ab )5g'; (&)„, 2L+1&'
(22)

in terms of which the B(EL) or B(ML)—va—lues
for the transitions between the states ~i) and ~f)
can be expressed as

a(L'; f-f)= ir' (ff)i'. (23)

uration spaces (4) and (5) can hardly be done be-
cause of numerical limitations. In our calcula-
tions we have therefore used a constant- spin and
isospin independent "correlation energy" in order
to shift the excited states down in energy with re-
spect to the ground state bands of the nuclei con-
sidered. Obviously this is a rather- crude approxi-
mation to the renormalization effects discussed
above. However, it is the best we can do with
the present computer facilities.

Note that this problem also appears in the RPA
approach usually applied to describe the structure
of the GMR's in spherical nuclei. There it is usu-
ally circumvented by renormalizing the ph force;
i.e. , one uses different forces to obtain the HF
single particle energies and the ph spectrum.
Such a prescription cannot be applied here, since
in the open shell nuclei the spin projection opera-
tor mixes particle and hole states and therefore
makes a clearcut separation of average field and
residual interaction impossible.

With the energies and wave functions being so
obtained, now the electromagnetic transitions be-
tween the various states can be calculated. For
this purpose we shall first introduce the "spectro-
scopic amplitudes"

s,","(r)=. (fll[c„c, ]"llf)

for an arbitrary initial state ~i) and final state

~f) out of the set of wave functions (18). Here the
reduced matrix element is defined according to
Edmonds, "and the coupling convention

The spectroscopic amplitudes could then directly
be used to calculate the so called transition densi-
ties needed, for example, for a distorted-wave
Born approximation (DWBA) analysis of inelastic
electron or hadron scattering experiments. How-
ever, this has not been done in the present inves-
tigation.

III. THE CALCULATIONS

In the present work the model described above
has been applied to Ne and Si. For both these
nuclei all the Os, Op, 1sOd, 1POf, and Og9&q orbits
have been included in the model space basis, which
therefore consisted of 100 spherical single nucleon
states. As an effective nucleon-nucleon interac-
tion the Brueckner G matrix of Barett, Hewitt,
and McCarthy, "being based on the Hamada-
Johnston potential, has been used. Since the ma-
trix elements of this interaction were available to
the author only in an oscillator representation
(ha& = 14 MeV}, the one body terms of the total
Hamiltonian (1), for which the matrix elements of
the kinetic energy operator were taken, have also
been calculated using oscillator wave functions of
the same oscillator parameter.

It is well known that the matrix elements of a
Brueckner G matrix depend on the so called
"starting energy" co, which appears in the energy
denominator of the basic integral equation of
Brueckner theory. Since this ~ contains the
Hartree-Fock single particle energies, in princi-
ple it should be determined self-consistently by a
sort of Brueckner-Hartree-Fock procedur e."
This has not been done in the present investiga-
tion. Instead, the starting energy w has been
fixed by the following, less sophisticated, pre-
scription.

First, using the above Hamiltonian and single
particle basis, Hartree-Fock calculations for the
two spherical nuclei ' 0 and Ca have been per-.
formed. In these calculations for all those matrix
elements involving more than one particle state
(i.e. , a state above the Hartree-Fock Fermi ener-
gy} the G matrix elements corresponding to a con-
stant starting energy of ~=40 MeV have been
taken. Otherwise ~ has been interpolated. In the
case of only hole states, i.e. , for matrix elements
of the type v(h, hqh, h4), ~ = 2c + (c„+e» + e„,+ eh )/
2 was used, while for matrix elements with but
one particle state, i.e. , of the types v(h, h~h3p|} or
v(hsp~h~hq), &o =2c+ e„+c„was always assumed.
The parameter c is a constant shift of the interme-
diate particle spectrum which has been introduced
by Barett et pl. in Ref. 35 and has been chosen
here as 25 MeV for both spherical nuclei con-
sidered. The hole energies i„now have been
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chosen such that the resulting Hartree-Fock single
particle energy spectra roughly reproduce the ex-
perimental single neutron levels in "0 and 'Ca,
respectively. Where these are not available, as,
for example, in the case of the 1p0f orbits in "0,
the theoretical values of Ref. 26 have been taken as
the "experimental" standard. Values of «p = —40
MeV, «p~

———20 MeV in "0 and «p,
———60 MeV,

«p&= —42 MeV, «&,p,
———20 MeV in Ca turned out

to be suitable choices for this purpose. However,
additionally the diagonal elements of the kinetic
energy operator had to be modified for those or-
bits with a high orbital angular momentum 1. So
the Od orbits had to be shifted down by 1.8 MeV,
the Of levels by 5 MeV, and the Og9&2 state by 4
MeV in ' 0 in order to obtain reasonable agree-
ment with the above defined standard. In Ca the
corresponding shifts were 2. 5 MeV, 2. 5 MeV, and
7 MeV, respectively. Though not proportional to
l(l+ 1), these shifts could be interpreted as a sort
of l' term which somehow corrects for the unreal-
istic shape of the basis creating oscillator poten-
tial. Note that our above choice of the hole ener-
gies does not include such l' effects. Neither
does it take into account the one body spin orbit
force. Probably, at least part of the additional
shifts introduced here could be avoided by allowing
for a more complicated hole energy spectrum than
the one which has been chosen here for the sake of
simplicity.

Using the two so defined Hamiltonians for 0
and Ca, the Hartree-Fock single particle energy
spectra at the extreme left and extreme right, re-
spectively, of Fig. 1 are obtained. Except for the
Os~/2 orbits, which come out too tightly bound in
both cases, a reasonable agreement with the above
standard is reached. Note, that the "0"here al-
ways indicates the lowest orbit for a given total
and orbital angular momentum. Actually, since
we allow major shell mixing, for example, the
Osf/2 states in Fig. 1 are mixtures of the Osf/2 and
1s f/2 oscillator orbits.

For the two open shell nuclei Ne and Si. the
corresponding Hamiltonians have now been ob-
tained by a linear interpolation of all the two body
matrix elements as well as of the shifts for the
high l diagonal one body terms between the values
derived for ' 0 and Ca in the above described
way. With these Hamiltonians intrinsic Hartree-
Fock calculations for both nuclei have then been
performed. As already mentioned in the last sec-
tion, in these calculations axial symmetry was
imposed on the Hartree-Fock orbits and the Cou-
lomb force was neglected. Both these approxima-
tions can be easily justified for Ne as well as for

Si. It is known from earlier calculations that
the lowest intrinsic Hartree-Fock solutions in both

HF- SINGLE PARTICLE ENERGY SPECTRA
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FIG. 1. The Hartree-Fock single particle energies
6HF (MeV) for 0, Ne, Si, and Ca as obtained with
the BHM G matrix (Ref. 35) in the version discussed
in Sec. III. The orbits of the two spherical nuclei are
labeled with the oscillator quantum numbers Nlj (be-
cause of the neglect of the Coulomb force proton and
neutron orbits are degenerate). The fourfold degenerate
orbits (spin up and down for both proton and neutron) of
the two axially deformed Hartree-Fock solutions fop

Ne (prolate) and Si (oblate) are characterized by,
their spin projection and parity m~. The connections
(dashed lines) between the spherical and deformed levels
indicate the maximum component of the latter. The
wiggly lines give the Fermi surfaces in the nuclei
considered.

these nuclei are axially deformed, yielding a pro-
late shape for Ne and an oblate configuration for

Si. In both cases the Hartree-Fock solutions
with other deformations turn out to be considerably
higher in en'ergy, at least if a reasonable effective
interaction is used within the chosen model space.
So, for example, taking the Kuo force ' and an
1sOd-shell basis, the prolate solution for Si is
about 4 MeV less bound than the oblate one.
Furthermore, in these light doubly even N= Z nu-
clei the Coulomb force essentially only shifts the
proton single particle energies relative to those of
the neutrons but leaves the corresponding single
particle wave functions almost unchanged. Its
neglect here can therefore also be considered a
reasonable approximation.

As in the older calculations, we also obtain a
prolate solution for 'Ne and an oblate shape for
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Si. The corresponding self-consistent single
particle spectra are again displayed in Fig. 1
(mid-left and mid-right sides for Ne and ' Si, re-
spectively). Each orbit is labeled by its total an-
gular momentum projection m on the intrinsic
symmetry axis and its parity m. Because of the
above mentioned approximations each level is
fourfold degenerate and can be occupied by a pro-
ton, a neutron, and their time reversed partners.
The dashed lines to the Hartree-Fock spectra of
0 and Ca indicate the main spherical component

of the various deformed states.
As can be easily seen, the Hartree-Fock proce-

dure produces large energy gaps between the oc-
cupied and unoccupied orbits in both nuclei. This
is an indication of the relative stability of the cor-
responding intrinsic ground states even against
2p2h and higher order correlations and agrees
also with the results of older calculations. In-
deed, neither the inclusion of T =0 pairing via the
Hartree-Fock Bogoliubov theory" nor of even
more complicated correlations as done, for ex-
ample, in the Multi-Configuration-Hartree-Fock
approach' yields considerable contributions to the
intrinsic Hartree-Fock ground states of Ne and

Si. At least for the ground state band of these
nuclei, the PHM method, which in addition even
includes some spin dependent renormalization ef-
fects on the Hartree-Fock field via the admixture
of angular momentum projected 1plh configura-
tions, should therefore be considered a rather
good approximation.

The so obtained self-consistent deformed orbits
have now been used to construct the overlap, en-
ergy, and center of mass energy matrices within
the nonorthogonal angular momentum projected
configurations (16) and (17). For each considered
parity, spin, and isospin value all the configura-
tions of these two types which could be constructed
in the chosen model space, were always taken into
account. . The dimensions of the resulting config-
uration spaces are listed in Table I. Almost all
the configurations counted there are of the four-
determinantal 1plh structure (17). Only for the
isoscalar positive parity states with even spins
does the angular momentum projected reference
determinant (16) contribute to the total wave func-
tions.

As already discussed in Sec. II, the spurious ad-
mixtures due to the center of mass motion had to
be removed before proceeding. For this purpose
the center of mass Hamiltonian was diagonalized
in all the different configuration spaces corre;
sponding to the various spin, isospin, and parity
quantum numbers which have been considered in
the present study. As expected, in all cases those.
states corresponding to a center of mass excita-

TABLE I. The dimensions of the configuration spaces
used for the different spin, parity, and isospin values
in ONe and Si are displayed. Most of the configura-
tions are of the particle-hole structure (17). Only for
the isoscalar positive parity states with even spins does
the angular momentum projected reference determi-
nant (16) contribute to the total wave functions.

Nucleus
Isospin T=O

20Ne

T=O
28si

0+

0
1'
1
2'
2
3'
3
4+

4
5+

5
6+

6

18
17
49
48
75
72
89
88
98
96

' 100
99

101
100

17
17
49
48
74
72
89
88
97
96

100
99

100
100

21
21
57
59
87
88

105
108
117
120
121
126
124
128

20
21
57
59
86
88

105
108
116
120
121
126
123
128

tion turned out to be energetically well sepal ated
from those states at energies near the zero point
energy of the center of mass motion and could
hence easily be removed from the matrix equation
(10) for the many nucleon Hamiltonian (1). Ob-
viously, as already mentioned, this elimination is
not exact: Our configuration spaces are far from
being complete with respect to the center of mass
Hamiltonian and furthermore, due to the inclusion
of major shell mixing, the reference determinant
(4) already contains some spurious center of mass
admixtures. However, after removing, for exam-
ple, the spurious isoscalar 1 states in the approx-
imate way described above, the total energy
weighted isoscalar electric dipole strength, which
is some measure for the remaining spuriousity,
turned out to be less than about 5% of the corre-
sponding isovector transition strengths in both nu-
clei. We think that this is an amount of residual
spurious admixtures, which should not influence
the results too drastically.

Kith the spurious center of mass admixtures
being eliminated at least approximately, the en-
ergies and wave functions for the two nuclei con-
sidered were calculated via solving the matrix
equation (10) in the various configuration spaces.

As already discussed in Sec. II, there is some
inconsistency inherent in the PHM description of
the excited states with respect to that of the
ground state band due to the truncation of the con-
figuration spaces after the angular momentum
projected 1p1h configurations. It has been argued
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that in order to take into account the strong re-
normalization effects due to collective 2hco ex-
citations, which have been discussed in detail in
Ref. 48, in principle at least part of the spin pro-
jected 2p2h configurations should be included in
the configuration spaces, not only for the ground
state bands but also for the excited states. How-
ever, since this extension would complicate the
numerical calculations enormously, we decided
to simulate the influence of these collective ex-
citations on the excited states by a spin and iso-
spin independent constant correlation energy
b,Z, (m), which shifts the excited states of parity
n down in energy with respect to the ground state
band. Obviously this is a rather rough approxima-
te.on; however, since it is the best we can do with
the present computer facilities, we have no other
choice. The correlation energies bE, (+) were
then fixed by renormalizing the lowest isoscalar
3' states in both nuclei to the experimental ex-
citation energies. For this purpose, in "Ne a
value of gZ, (+) = 2.7 MeV was needed, and in "Si
a value of b,Z, (+) = 2.2 MeV was needed. In "Si
the same shift of 2.2 MeV was also applied to the
negative parity spectrum. In "Ne, however, a
value of aZ, (-)= 4.25 MeV had to be used in order
to get the negative parity states sufficiently down
in energy. Here the lowest isoscalar 3 state
was used for the additional renormalization. Note
that —with the Hamiltonian (1) assumed as given—
these three correlation energies are the only free
parameters in the present calculations.

Then the spectroscopic amplitudes (19) in both
nuclei were calculated. Though being ab1.e to cal-
culate these amplitudes between two arbitrary
states of the type (18), in the present investiga-
tions our computer code was only used to evaluate
those transitions involving the ground state as the
initial state. These spectroscopic amplitudes rep-
resent a decomposition of the various excitations
of the system into spherical particle-hole corn-
ponents and therefore yield some valuable infor-
mation about the structure of the wave functions.

The electromagnetic transitions from the ground
to the various excited states were then calculated
according to Egs. (22) and (23). For this purpose
the reduced single particle matrix elements of
the various multipole components of the electro-
magnetic transition operator are needed, which,
to be consistent, in principle should be calculated
within the same single particle basis functions as
were used for the many body Hamiltonian. How-
ever, one may also adopt the point of view that
the Hamiltonian (1) is an effective matrix depend-
ing only on the quantum numbers of the various
states involved. This is, for example, done in
some large shell model calculations treating all

the one and two body terms of (1) as free param-
eters to be determined by a least square fit of
the theoretical results to the experimental data. '4

At least to some extent it is therefore justified
to investigate the influence of different single
particle basis functions for the electromagnetic
transition operator and to leave the HamQtonian
(1), and hence the energies and spectroscopic
amplitudes of the system, unchanged. Therefore
in the present paper besides the harmonic oscil-
lator representation for the transition operator a
more realistic Woods-Saxon basis has also been
studied.

For the construction of this basis the usual
Woods-Saxon Hamiltonian

(24)

was taken, where p, =m(A —1)lA (m being the
average nucleon mass) is the reduced mass of
the system and the potential V»(r) is given by

( g2
V"(r)= U. f(r)+ U„~, „

x [j (j + 1) —I(I + 1) —-', ]-a 1 &f(r)'y dy

with m, being the pion mass. The radial depen-
dence f(r) has the form

&r R~ --'
f(r)= 1+expl )a )

(26)

where R = r,Q —1)'~' is the nuclear radius and a the
usual diffuseness parameter. The Coulomb force
has here been neglected, since we consider only
doubly even N=Z nuclei and assume degenerate
orbits for protons and neutrons. The parameters
for this potential (U, = —53.14 MeV, U„= —5.186
MeV, r, = 1.25 fm, and a = 0.53 fm) have been taken
without any change from Ref. 26 and have been
used for "Ne as well as for "Si.

For each considered orbital and total angular
momentum (I and j, respectively), the Hamiltonian
(24) was diagonalized in an oscillator basis in-
cluding all oscillator wave functions R„,(r) with
node numbers n= o to n= 9. This procedure yields
very accurate results for the bound solutions of
(24), but, however, fails for the continuum states
of this Hamiltonian. In order to discretize the lat-
ter we therefore adopted a procedure which was
first proposed by Speth and collaborators" and
has also been used in Refs. 26 and 28. In this
method, the continuum solutions of (24) are first
expanded in the same oscillator basis as used for
the bound states with the same spin quantum num-
bers. The expansion coefficients a„»(E), which
now depend on energy, are then averaged over
some energy interval 4 around the energy Z~
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TABLE II. The Woods-Saxon single nucleon wave functions used for the electromagnetic transition operators in 2~Ne

are given in terms of their expansion coefficients in an harmonic oscillator basis. For the unbound orbits the energy
intervals 4, over which the wave functions have been averaged, are given in addition. States marked by an asterisk do
not show a single particle resonance. They have been energy averaged around the first maximum of sin 6, where 6 is
the scattering phase.

Lj
(MeV)

Os-1
2

Op-3
2

Op-
2

1s-i
2

Od-3
2

Of-7
2

1.36

1p3
2

7.12

1p-
2

5.16

Of—

7.66

Og-9
2

10.8

0.999
-0.037
-0.016
-0.020
-0.002

0.001
0.002
0.001
0.001
0.000

0.999
-0.017

0.013
-0.032
—, 0.003
-0.004

0.002
0.001
0.001
0.000

0.999
-0.003

0.031
—0.031
-0.002
-0.007

0.002
—0.000

0.001
0.000

0.994
-0.052

0.078
-0.058

0.014
-0.019

0.009
-0.005

0.004
-0.001

0.035
0.956

-0.189
0.165

-0.122
0.061

=0.050
0.030

-0.017
0.010

0.978
-0.104

0.145
-0.088

0.047
-0.042

0.024
-0.017

0.011
-0.004

0.921
-0.214

0.232
-0.157

0.081
-0.043
-0.009

0.047
-0.079

0.106

0.026
0.829

-0.341
0.237

—0.100
-0.036

0.111
—0.173

0.203
-0.212

0.028
0.718

-0.437
0.390

—0.285
0.166

—0.074
-0.015

0.083
-0.137

0.863
-0.092
-0.016

0.197
' —0.267

0.260
-0.217

0.138
-0.054
-0.025

0.848
0.056

-0.161
0.294

-0.280
0.169

-0.051
-0.066

0.142
-0.174

E~+b, /2
a„„(E)dE, (27)

where Z~ is either the resonance energy in the
considered single particle channel or, if no single
particle resonance is obtained, given by the first
maximum of sin'5»(E); where 5»(E) is the scat-
tering phase. & is usually chosen such that sin'
5»(E) adopts about half its maximum value at
E„-b. /2. The resulting energy averaged wave
function (27) is then finally orthonormalized with
respect to all the already obtained solutions (bound
and unbound) with the same spin quantum numbers
l and j.

The Woods-Saxon wave functions so obtained
for "Ne and "Si are given in terms of their oscil-
lator expansion coefficients in Tables II and III,
respectively. It is easily seen that the bound or-
bits in both nuclei are almost pure oscillator
states (maximum deviation 8.6%%uo for the ls,i, or-
bit in "Ne). To some extent this is even true for

the Of, i, resonance in "Ne, which because of the
large centrifugal barrier is relatively narrow
and still has an overlap of about 85% with the cor-
responding oscillator wave function. For the high-
er states, however, oscillator and Woods-Saxon
wave functions are rather different. So, for ex-
ample, the 1p, i, state in "Ne has only a 51% over-
lap with the 1p, i, oscillator orbit and shows large
admixtures from the higher oscillator shells.

It should be pointed out here that the- inclusion
of even higher shells (n) 9) in the oscillator ex-
pansion still has considerable effects on the tails
of the radial wave functions of the unbound states.
Therefore if quantities which are sensitive to
these tails have to be calculated, for example,
the transition densities to be used for inelastic
z scattering, these higher shells have to be taken
into account. For the electromagnetic transitions
with multipolarities I, ( 4, however (only these
will be studied in the present investigation), an
increase of the oscillator ba,sis from g( 9 to

TABLE III. Same as in Table II, but for the nucleus Si.

(MeV)

Os-i
2 Op 3

2
Op-'

2
od-'

2
1+-i

2 Of& 1p-3
2

0.03 2.58

of-'
2

0.70

Og-8
2

2.38

0.998
-0.056
—0.031
-0.018

0.000
0.003
0.003
0.001
0.000

—0.000

0.999
-0.009
-0.014
-0.030
-0.005
-0.001

0.003-
0.002
0.001
0.000

0.999
0.017

-0.001
-0.029
-0.006
-0.003

0.002
0.001
0.001
0.000

0.999
0.009
0.027

-0.042
-0.003
-0.008

0.004
0.001
0.002
0.000

0.054
0.991

-0.068
0.073

-0.069
0.013

-0.018
0.011

—0.003
0.005

0.997
0.015
0.006

-0.043
0.003

-0.014
0.004

-0.002
0.003
0.000

' 0.987
—0.050

0.117
-0.086

0.033
-0.038

0.021
-0.014

0.010
—0.003

0.011
0.754

-0.291
0.292

-0.271
0.291

-0.211
0.191

-0.177
0.167

-0.007.
0.852

—0.324
0.302

-0.223
0.125

—0.075
0.014
0.032

—0.070

0.913
-0.189

0.259
-0.183

0.127
-0.098

0.051
—0.018
—0.014

0.044

0.888
-0.173

0.185
-0.057
-0.056

0.114
-0.170

0.189
-0.186

0.166
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n~ 14 had only minor effects on the Woods-Saxon
transition matrix elements and could hence safely
be neglected.

Though being obviously more "realistic" than
the oscillator basis, the use of the Woods-Saxon
wave functions introduces some ambiguity. If,
for example, the depth of the potential is in-
creased, the wave functions of the bound orbits
remain almost unchanged; the unbound solutions,
however, become more similar to the correspond-
ing oscillator orbits. A decrease of the depth has
the opposite. effect. One therefore should not over-
stress the results obtained with the Woods-Saxon
basis but rather consider them mainly as some
tool to study the qualitative changes induced by
an improvement of the single particle wave func-
tions.

With the single particle wave functions being so
obtained, the electromagnetic transitions from
the ground to the various excited states were cal-
culated. Neither effective charges nor effective
g factors were introduced. For electric transi-
tions a proton charge of 1

~
e

~

and a neutron charge

Zr~, (1,") = Q EZ~B(L', g.s.-f)
JF(L )

(28)

were then obtained. Here g.s. denotes the ground
state, T may adopt the value 0 (isoscalar) or 1
(isovector transitions), and the sum runs over
all final states f with spin and parity L' and ex-
citation energy gpss.

These theoretical sumrules can then be com-
pared to the well known classical predictions for
the energy weighted transition strengths, which
for &=g nuclei and x, =1.2 fm can be written as"

Z ='(EO)=Z„='(EO) =56.91Z' ' (e'fm'MeV) (29)

for electric monopole transitions,

of 0 were always used, and for magnetic transi-
tions the free g factors (g, (p) = 1, g, (n) = 0, g, (p)
= 5.5857, g, (n) = —3.8263, all in nuclear magnetons

[pr]) were always assumed. From the B(EL) or
B(ML) values for the various transitions the theo-
retical energy weighted sumrules

l

Z r='(EL) = Zr&='(EL) = 2.48 ~ (2)&~ »~'. (1.2)~ '.L(2L+ 1) .g &~"»' (e' fm MeV) (30)

for electric transitions with g ~ 2, and finally as

Zr='(El)=7. 43 ~ g (1+X) (e'fm'MeV) (31)

for the famous electric dipole transitions.
The dimensionless parameter y in (31) describes

the influence of velocity dependent terms in the
residual interaction and has been chosen here as
0.5." Obviously, similar correction terms are
also expected for the other classical sumrules.
However, since nothing is known about their mag-
nitude (except that they should be larger for the
isovector transitions, where protons and neutrons
move in opposite directions and hence with a large
relative velocity. than for the isoscalar transi-
tions, where protons and neutrons move in
phase"), in the present study no such corrections
have been implied.

IV. RESULTS AND DISCUSSION

The low energy spectra of "Ne and "Si are pre-
sented in Fig. 2. The results of our angular mo-
mentum projected deformed particle-hole ap-
proach (PHM) are compared with the experimental
data" (EXP) and, as far as the ground state bands
are considered, also with the levels obtained by
projecting angular momentum only from the in-
trinsic reference determinant (16) (HF). Each
state is labeled by its total angular momentum I.
Uncertain experimental spin assignments are in-
dicated by parentheses. The theoretical states

with different isospins are distinguished by giv-
ing the corresponding spin labels in different col-
umns, and experimental isospin assignments dif-
ferent from zero are indicated by a second label
in parentheses. As discussed in the last section,
in both nuclei the lowest 3' states have been used
to determine the "correlation energy" introduced
in Sec. II. In "Ne the lowest isoscalar 3 state
has additionally been used for this purpose.

Comparing the HF spectra with the PHM ground
state bands it is seen that the inclusion of the
angular momentum projected 1plh configuration
(17) here yields far less pronounced energy gains
than reported in Ref. 48. This is due to the fact
that most of the strongly collective 28co excita, -
tions, which had been studied explicitly in Ref.
48, here were already taken into account in the
mean field via the inclusion of major shell mixing
in the self-consistent HF orbits (2). Nevertheless,
the energy gains due to the projected 1p1h admix-
tures are still considerable and increase with in-
creasing spin, indicating a non-negligible angular
momentum dependence of the correlations in the
ground state bands. As already discussed in Sec.
II, such spin dependent renormalization effects
are also obtained if the projection is performed
before the variation of the HF field. In fact, test
calculations" with the modified surface delta in-
teraction" in an 1s0d shell basis showed that, for
the 0+ ground states of "Ne and "Si, the PHM
approach and the HF model with spin projection
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FIG. 2. The low energy spectra of Ne and Si as obtained by angular momentum projection from the intrinsic
Hartree-Fock solutions (HF) are compared with the results of our multideterminant approach (PHM) as well as with
the experimental data (EXP) (Ref. 57). All the states are labeled by their total angular momenta. In a case where two
indices are given for an experimental level the second one (in parentheses) indicates the total isospin. In both nuclei
the lowest isoscalar 3' state has been used in order to determine the correlation energy discussed in Sec. II. In Ne
in addition the lowest 3 state has been used for this purpose.

before the variation of an axially deformed field
yield almost identical results. For the 2'-mem-
bers of the ground state bands, however, the PHM
solutions are already energetically favored since
they include nonaxial contributions (essentially
from the K = 2 1plh configurations) which are not
taken into account by the axially symmetric HF
wave functions.

For the ground state band of "Ne the agreement
of the theoretical and the experimental excitation
energies is rather good. This result is quite sat-
isfying, since it was obtained using a microscopic
G matrix in a large model space and not by a
SCM diagona1ization with a fitted effective inter-
action inside only one major shell. It may hence
be considered some indication that the essential
physical structures of the ground state band in
"Ne are already contained in the relatively simple
wave functions (18) used in the present investiga-
tion. For "Si this statement holds only to some
extent. Here the theoretical spectrum is too com-
pressed. Nevertheless, for a completely micro-
scopic calculation like the present one, the agree-
ment with the experimental data may even here
be considered encouraging.

Good agreement with the experimental data is

also obtained for the excitation energies of the
low excited negative parity states in both nuclei.
Level ordering as well as relative spacing are
well reproduced by the calculations. This result
supports a particle-hole structure of the type
(18) for these states also and shows furthermore
that our crude assumption of a spin and isospin
independent correlation energy seems to be a
reasonable approximation, at least for the nega-
tive parity states.

For the low excited positive parity levels in
both nuclei the agreement is much worse. So,
for example, in "Ne none of the experimental
positive parity states between 6 and 8 MeV ex-
citation energy are reproduced, and also in "Si
many states in this energy region are missing.
However, thi. s defect of the PHM approach can be
easily understood; It is well known from older
calculations" that most of the low excited 0' states
in "Ne (and the rotational bands being based on
them) very likely have to be interpreted as 4p4h
"quartet" structures relative to the intrinsic HF
ground state. Since now, as has already been
discussed in Sec. II, the PHM wave functions (18)
take into account at most 3p3h excitations with
respect to the latter, these states are not included
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in our configuration space and hence cannot be
reproduced. Similar arguments hold for "Si,
where in addition to the quartet excitations, the
lowest 0' state (and the rotational states being
based on it) can be easily identified as a prolate
configuration which cannot be described by only
few particle-few hole excitations with respect to
the oblate ground state. Note that the (RPA) (Refs.
25 and 26) and even the core-coupling-random
phase (CRPA) (Refs. 27 and 18) approaches, which
have been successfully used recently for the des-
cription of the structure of the GMR's in closed
shell nuclei, suffer from the same defect. They
also fail to reproduce the low excited many parti-
cle-many hole states; for example, the first ex-
cited 0' in "O, which is most probably of 4p4h
structure.

Obviously, a comparison of only the excitation
energies with the experimental data is not suf-
ficient to judge the quality of the PHM approach
for the ground state bands and the low excited
states of the two nuclei considered. Other pro-
perties of the wave functions, for example, oc-
cupation numbers and electromagnetic transition
probabilities, should be investigated. This is
done in Tables IV-VII.

Table IV shows the occupation numbers for the
spherical single particle states in the PHM ground
states of "Ne and "Si and, more for complete-
ness than for comparison, also shows the pre-
dictions of the naive independent particle model
(IPM) for these quantities. As far as the 1sOd
levels are considered, these occupation numbers
can. be compared with the experimental data de-
duced from the analysis of direct transfer reac-
tions and with the results of other calculations
reported in Ref. 60. For 20Ne, experiment6x ob
tains 1.8 nucleons in the Od-,

' orbit, 1.85 in the
1s—,

' level, and 0.35 in the Od —,
' state, while the

PHM approach predicts 2.09, 1.39, and 0.62 nu-
cleons in these three orbits, respectively. Castel
et al."using the Kuo force" and an 1s0d basis in
Hartree-Fock calculations with (approximate)
angular momentum projection before the varia-
tion, obtained occupation numbers of 2.0 (Od —,'),
1.68 (Is-,'), and 0.82 (Od~) nucleons. In "Si, ex-
periment" suggests 8.52, 1.59, and 1.89 nucleons
in the three 1sOd orbits, while our calculations
yield 6.88, 2.57, and 2.54 particles. Castel et
gl. ' report values of 8.78, 1.40, and 1.82 nucle-
ons, respectively. Other recent calculations" "
here predict a Od-,' occupation between 6.84 and
9.1 nucleons, depending on the choice of the ef-
fective interaction. Taking into account the un-
certainties in the deduction of the experimental
occupation numbers as well as the strong depen-
dence of the results obtained using only the 1s0d

20Ne 28Si

del IPM PHM IPM PHM

Os-1
2

Op 3
2

Op-'
2

Od-'
2

ls-d
2

Od-
2

Of7-
2

lp~
2

lp 1

2

Of-'
2

Og-8
2

Os shell

Op shell

1s0d shell

1p0f shell

Oge shell
2

Total

0

12

20

3.86

7.64

3.82

2.09

1.39

0.62

0.14

0.19

0.05

0.16

0.04

3.86

11.46

4.10

0.54

0.04

20.00

12'

12

28

3.90

7.73

3.86

6.88

2.57

2.54

0.16

0.06

0.02

0.17

0.11

3.90

11.59

11.99

0.41

0.11

28.00

shell basis on the choice of the residual interac-
tion, one has to conclude that the PHM approach
reproduces the experimental data as well as the
results of the other calculations. Note that all oc-
cupation numbers used here for comparison with
our results have been deduced by assuming an
inert "0core and a total 1s0d occupation of 4 or
12 nucleons for "Ne or "Si, respectively. As can
be seen from our results, the second assumption
seems to be rather well fulfilled, even if core ex-
citations are taken into account. However, the
PHM occupation numbers also show that there is
a non-negligible probability to find a hole in the"0 core and a particle outside the 1s0d shell in
the Ne as well as in the Sj. ground state.

Table V displays the proton spectroscopic amp-
litudes (19) for I.'=2 transitions between the
grou'nd and the first excited I'=2' states in the two
considered nuclei and compares them with the re-
sults of complete 1sOd shell SCM calculations
using a fitted effective Hamiltonian, which have
been recently reported by Chung and Wildenthal. '
Obviously, due to the inclusion of a much larger
model space, the PHM model here yields much

TABLE IV. The ground state occupation numbers for the
the various spherical orbits in Ne and Si as obtained
from our particle-bole model (PHM) are compared with
the predictions of the simple independent particle
model /PM)
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TABLE V. The spectroscopic amplitudes (19) for proton isoscalar electric quadrupole
transitions from the ground to the lowest I~=2+ states in both nuclei are displayed and com-
pared with the values obtained by an sd-shell shell model configuration mixing (SCM) calcu-
lation by Chung and Wildenthal (Ref. 63).

Nucleus
Method

State no.
PHM

1

2oNe

SCM
1

PHM
1

Si
SCM

1

MeV) 1.38 1.75 1.01 2.19

Os-i
2

op-'
2

Op-
2

ls-i
2

Od-
2

Od-6
2

1p
i.
2

1p3
2

of-'
2

Od-
2

Od~5

Op
3
2

1p-'
2

Of-
2

op-'
2

Op-
2

1p-

1p2

of-'
2

Of7
2

Od3
2

Od-'
2

Os-i
2

1~
gd-

2

Od-'
2

Os-1
2

1s-
2

Od-
2

oÃ
2

Og-'
2

Op-2.
1p-'

2

Of5
2

Op-
2

Op2

1@i2
1p3

2

of5
2

Of7

op-'
2

Op 3
2

1p1

1p3
2

0.1025

0.1083

-0.0155

-0.0778

0.2323

0.0147

-0.0014

0,0797

0.0781

0.1216

0.2454

-0.2628

-0.5636

-0.1025

0.4104

—0.1746

0.1753

0.1043

—0.7484

-0.1485

—0.5309

0.0593

-0.0885

-0.0168

0.0176

0.0763

0.0801

0.0162

0.0203

0.0149

0.0282

0.2528

-0.1281

0.0181

-0.0143

-0.2593

—0.5629

0.3447

—0.1803

0.1692

—0.6467

-0.1518

-0.6435

-0.1168

-0.1354

-0.0081

0.0543

—0.2418

0.0086

0.0089

-0,0671

-0.0629

-0.1383

-0.2810

0.2070

0.6366

0.1223

-0.3697

0.5669

-0.6433

—0.1346

0.7341

0.6120

0.7788

-0.1395

0.0739

0.0107

-0.0143

-0.0538

-0.0651

-0.0104

-0.0114

-0.0107

-0.0217

-0.2573

0.1439

-0.0144

0.0104

0.1439

0.9250

—0.2482

0.3099

—0.5913

0.6388

0.4870

0.4949
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&ABLE V. (Continu ed)

Nucleus
Method

State no.
PHM

Ne
SCM

1

28Si

SCM
1

MeV) 1.38 1.75 1.01 2.19

Of)

Of5
2

Of 7
2

Op3
2

1P-3
2

Of-
2

Of 7

2

OA
2

Og-8
2

0.2642

0.0310

-0.0125

-0.0249

0.1034

-0.0088

-0.0325

0.0126

-0.2978

-0.0238

-0.0113

-0.0274

-0.1908

-0.0124

-0.0301

0.0108

more information than the latter approach, which
is restricted to only the 1s0d shell. However,
comparing just the 1s0d shell spectroscopic amp-
litudes, one observes that in "Ne the values pre-
dicted by the two different approaches agree sur-
prisingly well, and even in "Si, where, as already
mentioned, the PHM description of the ground
state band is not as satisfying as in "Ne, the
SCM amplitudes are still qualitatively well repro-
duced. 'The quantitative discrepancies are very
likely due to the different Od —,

' occupation obtained
by the two approaches (6.88 nucleons in the PHM,
9.10 particles ' in the SCM calculations), which is
not necessarily attributable to the PHM truncation
of the configuration space but could also be caused
by the differences of the two Hamiltonians.

Calculating the 0'-2 B(E2) values for the two
nuclei with the spectrocopic amplitudes from Table
V, it turns out that the SCM approach, being re-
stricted to excitations only inside the 1s0d shell,
has to introduce an effective extra charge of about
0.5e for both protons and neutrons in order to re-
produce the experimental &(E2) values of 287+40
eafm~ in 2'Ne (Ref. 64) and 326 +10 e'fm~ in 2'Si."
Owing to the inclusion of core excitations, the
PHM calculations here already obtain 195 e'fm4

and 315 e'fm' using the bare E2 transition opera-
tor (in the Woods-Saxon representation; for har-
monic oscillator wave function values of 165 e'fm
and 347 e'fm' are obtained), and hence only a very
small extra charge in "Ne (-O.le) and no effective
charge at all in "Si is needed.

Similar remarks apply to the I-'=4 proton spec-
troscopic amplitudes (19) connecting the ground
with the first and first two excited 4 states in "Ne

l

and "Si, respectively, which are presented in
Table VI. For the 4 state in "Ne rather good
agreement with the SCM data of Chung and Wilden-
thal" is obtained. The large quantitative discre-
pancies, especially in the (Od-', —Od-', ) amplitudes
for the first two 4 states in "Si, once more indi-
cate that here the SCM and the PHM approaches
yield, as far as the 1s0d shell part is considered,
somewhat different wave functions.

'The large similarity between the PHM and SCM
descriptions, at least for "Ne, is not only re-
stricted to the ground state band but also persists
for other excited states. This can be seen from
Table VII, where the proton spectroscopic ampli-
tudes (19) for the f'=1 state, which carries most
of the magnetic dipole transition strength in "Ne
and "Si, are presented. In both models this state
turns out to be the first excited 1'(T =1) state in
"Ne and the third 1'(T =1) level in "Si. As far as
the excitation energies of these two states are
considered, one has to admit that the SCM re-
sults" agree much better with experiment than
the PHM values, which are about 1.5 and 2 MeV
too low. However, since the PHM approach is
based on a completely microscopic Hamiltonian
with the kinetic energy operator as a one body
term and only a crude assumption of a constant
correlation energy for all the excited states,
while the SCM approach uses effective single par-
ticle energies and two body terms both fitted to
various experimental data, an ambiguity of about
1.5 MeV in this excitation energy region should
not be taken too seriously. The PHM spectro-
scopic amplitudes for the 1s0d part of the first
isovector 1' excitation in "Ne are again nearly
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TABLE VI. The spectroscopic amplitudes (19) for proton isoscalar electric hexadecapole
transitions from the ground to the lowest and the two lowest1~=4+ states in Ne and Si, re-
spectively, are compared with the SCM predictions by Chung and Wildenthal (Ref. 63).

Nucleus
Method

State no.

(MeV)

PHM
1

4.23

2 Ne
SCM

1

4.13

SCM
1.

5.29

28s

7.70

SCM
2

7.90

Og- Og-1 9
2 2

OP-' Of7

Op Of,-'

Of7
2 .

1s- Og-1 9
2 2

Od- Od-
2 2

Og-9
2

Od5 Od3
2 2

Od-5
2

Og-9
2

Of-7
2 2

1P-' Of-'
2 2

Of7
2

Of5 Pp3
2 2

1p-
2

pf-5
2

Of7
2

pf 7
OP

1
2 2

OP-
2

1p-1
2

1p-3
2

of-'
2

Of7
2

Og- Og-9 .1
2 2

1s-1
2

Od-3
2

Od-5
2

Og-9
2

0,0136

0.0660

-0.0740

-0.0274

-0.0784

0.0148

0.0288

-0.0383

-0.0178

-0.1035

+ 0.0036

+ 0.0001

-0,0002

-0.0002

-0.0097

0.0256

0.5224

0.6732

-0.0686

-0.0085

0.0063

9.0085

0.0974

-0.0059

0.0238

-0.0205

-0.0860

-0.0299

0.0053

0.0086

0.0211

0.0180

0.0139

-0.1421

-0.0347

-0.0998

0.0104

0.5749

0.8549

0.0895

0.5601

0.1909

-0.0944

-0.0115

0.0086

0.0080

0.0452

—0.0088

0.0121

-0.0117

-0.0340

-0.0207

0.0098

0.0075

0;0119

0.0144

0.0171

-0.1487

-0.1049

-0.1077

-0.0010

-0.0030

0.5261 -0.3625 —0.3330

0.0021 -0.0925 -0.4327

-0.0650

-0.0001

+ 0.0015

-0.0009

-0.0879

-0.0069

+ 0.0004

+ 0.0030

+ 0.0916

+ 0.0481

+ 0.0052

+ 0.0027

-0.0024

-0.0023

-0.0130

+ 0.0413

+ 0.0442

+ 0.0827

+ 0.0024

-0.5908 -0.6491 -0.6884 -1.0310 + 0.6181 1.0373

identical to the SCM values of Ref. 66. Once
more, for Si the agreement is worse. However,
since the largest discrepancies occur here in
those amplitudes which do not carry any magnetic
strength, even in 'SSi a reasonable description of
the magnetic dipole transitions within the PHM
approach may still be expected.

With all these more or less encouraging results
for the low excited states in mind we shall now

turn our attention to the higher excited states in
the region of the giant multipole resonances,
which will be discussed one by one in the remain-
ing part of this section.

A. The isoscalar electric monopole transitions (EOS)

The classical energy weighted sumrule (CEWSH)
of Eq. (29) predicts total EOS strengths of 2642
e'fm'MeV for "Ne and 4628 e'fm'MeV for "Si.
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Nucleus
Method

State no.
PHM

1
SCM

1
PHM

3
SCM

3

TABLE VII. The spectroscopic amplitudes (19) for the proton isovector magnetic dipole
transitions from the ground to the strongest I~=1+ states in Ne and Si are given and com-
pared with the results of the SCM calculations by Chung and Wildenthal (Ref. 66).

Ne 28Si

9.72 11.29 11.21 13.28

Os-i
2

Op-1
2

Op-
2

1s-i
2

Od-3
2

Od-5
2

1pf
2

1p8
2

of-'
2

Of~
2

Og-9
2

Os-1
2

1s-1
2

Od-
2

Op-1
2

Op 8
2

1p
2

lp-3
2

Op-|
2

Op 8
2

1p-
2

1p-8
2

Of5
2

Os-1
2

1s-1
2

Od8
2

Os-i
2

1s-1
2

Od8
2

Od5
2

Od-
2

Od-'
2

OP-'
2

Op 8
2

1p 1
2

1p8
2

op-'
2

Op-
2

1p-i
2

1p»
2

Of5
2

Op-8
2

1p8
2

Of5
2

Of7
2

Of-5
2

Of-
2

Og-9
2

0.0020

-0.0143

—0.0134

0.0013

-0.0012

0.0003

-0.0002

-0.0057

0.0003

-0.0005

0.0002

-0.0007

-0.0085

0.0554

0.0655

-0.0000

0.0913

-0.0780

—0.0955

-0.2348

-0.3653

-0.0029

-0.0145

-0.0005

-0.0029

0.0250

0.0045

0.0029

0.0026

0.0037

—0.0094

—0.0014

0.0033

0.0002

0.0031

0.0039

-0.0042

0.0723

0.0306

0.0747

-0.0698

-0.1421

-0.2486

-0.3686

-0.0011

-0.0046

0.0183

-0.0017

-0.0030

-0.0030

-0.0001

0.0047

0.0022

0.0004

0.0003

0.0007

0.0051

0.0712

-0.1434

0.0152

0.0271

-0.0729

0.3727

0.2784

0.1500

0.0200

-0.0003

0.0020

0.0006

0.0011

-0.0092

0.0002

-0.0009

-0.0040

0.0303

0.0026

0.0002

0.0006

-0.0033

-0.0017

0.0016

0.0245

-0.0698

0.2817

-0.0980

0.4948

0.2070

0.1543
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As can be seen from 'Table VIE, the calculations
with the harmonic oscillator representation for
the monopole transition operator (HO) give only
31% and 30% of these classical predictions, re-
spectively. The use of the more realistic Woods-
Saxon basis (WS), yielding 39% of the CEWSR for
"Ne and 32% for "Si, does not increase these va1-
ues considerably.

As already discussed above, a couple of the low
excited isoscalar 0+ states in both nuclei con-
sidered are of many particle many hole structure
with respect to the dominant component of the
corresponding ground state and cannot be repro-
duced within our truncated configuration space.
However, since these states are at low excitation
energies and do not connect strongly to the ground
state via a one body operator because of their
complicated structure, they would yield only minor
contributions to the SOS sumrule. 'The missing
strength therefore has to be attributed almost en-

tirely to the truncation of the single particle
basis. In fact, with the lsOd shell being partly
occupied in both nuclei considered, large contri-
butions to the transition strength are expected
from the 2Sco lplh excitations into the 2s and ld
orbits of the 2sldOg shell, which have not been
included in our single particle basis. Because of
the larger t matrix element and the higher single
particle angular momentum involved, for example,

the Od—', to ld —', monopole excitations should carry
considerably more transition strength than the OP

to lp particle-hole configurations, which are ex-
plicitly taken into account here. It is therefore
easily understood why we obtain only about 30%%uq of
the CEWSR in our calculations. Nevertheless, we
think that the neglect of the 2s and ld orbits in the
present calculations is justified for the following
reason. If calculated with a reasonable Woods-
Saxon potential (i.e., one with not too unrealistic
parameters), all the neglected orbits turn out to
be high up in the continuum, none of them showing
any single particle resonance behavior. Conse-
quently, these orbits have to be attributed with
very large widths and hence any transition
strength resulting from particle-hole excitations
into them will be spread over a large energy in-
terval. At least with the present experimental
techniques such widely spread strength can hardly
be disentangled from the usual background seen,
for example, in inelastic n-scattering measure-
ments. Therefore, we would conclude, if any
concentrated EOS strength exhausting a consider-
able portion of the CEWSR can be localized at all
experimentally in the two nuclei considered here,
it most probably should be attributed to those con-
figurations which are taken into account explicitly
in the present calculations. This argument gets
some additional support from the fact that the

TABLE VIII. Total calculated energy weighted strengths for the electromagnetic transitions
of various multipolarities in the two nuclei considered as obtained using either the harmonic
oscillator (HO) or the Woods-Saxon (WS) representation of the transition operators. For the
electric transitions, the strengths are given in percent of the corresponding classical energy
weighted sum rules; for the magnetic ones, the absolute calculated values are displayed. In
the case of the nearly pure isovector magnetic operators, the isoscalar strengths are given in
percent of the corresponding calculated isovector strengths.

Nucleus
Radial wave functions HO

20Ne

WS HO

28S1

WS

EO

M1
(px MeV

M2

(pE fm MeV)

M3
(p& fm MeV)

T=O
T=l

T=O
T=l
T=O
T=l
T=O
T=l
T =. 0
T=l
T=O
T=l
T=O
T —1

31%
60%

84%

55%%d

84%

27%
57%

50%

o 2% (T=l)
38.0

5% (T=l)
2.g x105

5% (T=1)
1.3 x 106

3g%
58%

86%

45%
66%

38%
74%

g3%%d

103%

o 2% (T=l)
40.0

5% (T=l)
3.0 x105

5% (T=l)
g.4 x105

30%
54%

106%

61%
96%

33%
65%%d

o 3% (T=l)
68.0

6% (T=1)
5.3 x10

5% (T=l)
2.8 xlQ

32%
44%

100%

54%
83%

43%
85%

' 68%
84%

0.3% (T= 1)
68.0

6% (T=1)
5.0 x 105

6% (T=1)
2.5 x 106
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monopole strength associated with the included
configurations will already be spread over a con-
siderable energy interval due to the relatively
large widths of the 1P orbits.

Though yielding rather similar fractions of the
CEWSR in both nuclei considered, the HO and the
WS bases produce drastically different strength
distributions. In "Ne, for example, the HO rep-
resentation of the transition operator concen-
trates almost all the calculated EO& strength into
just two states; one at 17.83 MeV excitation en-
ergy, carrying 18.8%, and the second at 22.11
MeV, exhausting 6.4% of the CEWSR (upper left of
Fig. 3}. A similar result is observed for "Si;
here 17.5% and 6.9% of the CEWSR are represented
by the two states at 19.78 and 22.06 MeV, respec-
tively (upper left of Fig. 4). If now, instead of the
HO, the more realistic WS wave functions are
used, these distributions are drastically changed.
In both nuclei ("Ne; upper right of Fig. 3; "Si;
upper right of Fig. 4) the EOS strength is distri-
buted over a much larger energy interval and its

center of gravity is shifted to higher excitation
energies. In "Ne, for example, the 17.83 MeV
state now exhausts only 6.4%, the 22.11 MeV state
only 1.5% of the CEWSR. Instead, the two states
at 24.23 and 29.19 MeV carrying only 1.5% and
1.2% of the CEWSR in the HO representation, are
now participating with 8.4% and 5.5% of the classi-
cal strength, respectively. Similarly, the
strength of the 19.78 MeV state in "Si is reduced
from 17.5% (HO) to only 4% (WS), and that of the
29.63 MeV state in the same nucleus is increased
from 1.3% (HO) to 8.5% (WS) of the CEWSR.

The reason for these drastic redistributions of
the SOS strengths due to the change of the single
particle wave functions in the two nuclei consid-
ered can be understood from Tables IX and X,
where the monopole transitions to some of the
above mentioned states are analyzed in more de-
tail. Let us first consider the 17.86 MeV state in
80Ne (Table IX). As can be seen from the proton
spectroscopic amplitudes S (19}presented in the
second column 'of the table, the dominant spheri-
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FIG. 3. The calculated isoscalar and isovector monopole transitions in Ne are given and the results obtained with
the oscillator and the Vfoods-Saxon single particle basis are compared. All the B(EO) values are given in (e fm ). In
addition the figure presents the theoretical strength distributions obtained in the various energy intervals as a per-
centage of the corresponding classical energy weighted sum rule. Arrows indicate that strength above (or below) the
energy limits shown in the plots has been included in the last (or first) energy interval.
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FIG. 4. Same as in Fig. 3 for the nucleus Si.

cal components of this state are the 1p-Op par-
ticle-hole excitations. Multiplying these spectro-
scopic amplitudes now with the reduced &O single
particle transition matrix elements, we obtain a
decomposition of the total transition amplitude
(22) into its individual components. As expected
because of the dissimilarity of the WS 1p orbits
with the corresponding HO levels, the 1p-Op com-
ponents of the transition amplitude are reduced if
the HO are replaced by the WS wave functions.
However, this reduction is only moderate. The
drastic change in the total transition amplitude is
essentially due to the large increase of the diag-
onal 1p&-1p& and 1p~-lp-,' terms, which because of
their opposite sign cancel part of the 1p-Op par-
ticle-hole contributions and hence lead to a large
reduction of the transition amplitude. For the-
24.23 MeV transition these large diagonal recou-
pling terms, which describe a redistribution of
the particles inside the 1p shell relative to the
ground state, are even responsible for a sign
change of the total amplitude, and again the same
effect leads to an increase of the monopole trans-
ition strength to the 29.19 MeV in "Ne. Similar
effects are observed in 'Si (Table X). Depending
on the relative signs of the spectroscopic ampli-

tudes 8, here also the strongly increasing diagonal
1p terms yield reduced (for the 19.18 MeV state),
increased (for the 29.63 MeV level), or some-
times almost unchanged (for the 25.06 MeV state)
total transition amplitudes if the HO wave functions
are replaced by the more realistic WS basis.

Thus it becomes evident that for a proper de-
scription of the isoscalar electric monopole states
the choice of suitable single particle wave func-
tions is rather essential. Considering the WS
basis as more realisti" than the HO one, one has
to conclude that the EOS strength in "Ne as well
as in "Si is very likely spread over many states
in a large energy interval with no single level ex-
hausting more than about 9/q of the CEWSR. Ad-
ditionally taking into account that even this small
amount of monopole transition strength in reality
will be considerably smeared out due to the large
widths of the 1p orbits, it becomes rather unlikely
that any remarkable amount of &OS strength can
be experimentally localized at all in the two nuclei
considered here. This conclusion, which would
not be affected even if ambiguities of 2 or 3 MeV
in the excitation energies of the individual states
due to our assumption of a constant correlation
energy are admitted, is in perfect agreement with
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TABLE IX. The spectroscopic amplitudes (1g) for the proton isoscalar electric monopole transitions from the ground
state to some selected I~= 0+ states in Ne are given as well as the corresponding transition amplitudes (22) obtained
with the harmonic oscillator (HO) as well as the Woods-Saxon (WS) representations of the transition operator.

SE (MeV)
B(EG) (e fm4)

% of Z~='(ZG)

p h

17.86
27.78
18.8

T {HO)

9.47
6 4

T {WS)

24.23
1.60
1.5

T (HO)

9.11
8.4

T (WS)

29.19
1.08 4.97
1.2 5.5

T (HO) T (WS)

Os-1
2.

Op-1
2

Op-
2

1S-i
2

04j-

Od-'
2

1p-i
2

1p-3
2

of-'
2

Of7
2

Og-'
2

Os-1
2

1s-i
2

Op-i
2

lp-
2

Op-
2

1p3
2

Os-1
2

1S-1
2

Od-
2

Od-'
2

Op-|
2

1p-i
2

Op-3
2

1p3
2

Of-
2

Of7

2

Og-9
2

-0.010

-0.000

-0.010

-0.003

-0.020

-0.005

0.047

0.012

0.031

-0.024

0.25$

0.026

0.436

0.069

-0.021

—0.024

-0.001

-0.061

0.001

-0.103

0.021

-0.279

0.049

-0.229

0.165

0.602

-0.579

-1.601

0.468

—3.873

1.745

—0.662

—0.863

-0.072

—0.064

0.001

-0.104

0.020

-0.286

0.046

-0.232

0.239

0.750

-0.633

-1.498

1.192

—3.661

4.190

—1.501

—1.3g5

—0.140

0.019

-0.010

0.088

0.009

0.081

0.013

—0.077

0.046

-0.024

-0.014

-0.125

-0.019

—0.228

-0.047

—0.037

-0.027

-0.003

0.111-

0.048

0.872

-0.058

1.136

-0.111

0.375

0.643

-0.476

-0.348

0.787

-0 ~ 336

2.026

-1.176

-1.138

-0.966

-0.125

0.118

0.049

0.882

-0.055

1.166

-0.105

0.379

0.935

-0.593

-0.380

0.736

-0.857

1.915

-2.823

-2.580

-1.563

—0.244

-0.005

0.000

0.041

0.004

, 0.002

-0.000

0.022

0.008

0.017

-0.012

0.026

-0.008

0.042

-0.012

—0.016

0.004

-0.003

0.415 0.420

-0.024 -0.022

0.035

0.003

0.036

0.003

-0.106 -0.107

0.111 0.161

0.325 0.406.

-0.288 -0.315

-0.166 -0.155

-0.150 -0.382

—0.377 -0.357

—0.314 -0.754

—0.490 -1.111

0.144 0.234

-0.130 -0.253

—0.028 -0.030

-0.000 -0.000

ZT(e fm2) -5.271 -3.077 1.264 -3.018 -1.040 -2.229

the present experimental situation; in fact, up to
now in nuclei below "Ca no experimental evidence
for concentrated electric monopole strengths ex-
hausting more than a few percent of the CEWSR
has been found. '

B. The isovector electric monopole transitions (EOV)

The CEWSR of Eq. (29) predicts for the EOV
transitions the same total strength as for the iso-
scalar monopole states. On the other hand, as
can be seen from Table VIII, our calculations ob-
tain here a considerably larger portion of this
classical prediction than in the latter case. In
"Ne the PHM results exhaust 60% (HO) and 56%
(WS) of the classical EOV sumrule, and in "Si the
corresponding values are 54+ (HO) and 44%%uo (WS).
Since in the calculations for the EOV states the
same configuration spaces as for the EOS levels
have been used, this result suggests a strong ve-
locity dependence of our Hamiltonian, because,

as already mentioned in the last section, such ve-
locity dependent terms in the interaction are not
taken into account by the CEWSR. Whether this
strong velocity dependence of our microscopic
Hamiltonian is reasonable or not unfortunately
cannot be judged, since up to now, neither in
heavy nor in light nuclei, no isovector electric
monopole resonances have been found experimen-
tally and hence no data for comparison are avail-
able.

The EOV-strength distributions obtained for "Ne
and "Si are displayed in the lower parts of Figs.
3 and 4, respectively. As expected from the iso-
spin dependence of the nuclear interaction, the
EOV strength occurs at considerably larger exci-
tation energies than the SOS one. Again, as in the
case of the SOS transitions, the use of WS instead
of HO wave functions broadens the distributions
and shifts their- center of gravity to somewhat
higher excitation energies. Since the EOV strength
is in both nuclei distributed over many individual
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TABLE X. Same as in Table IX, but for some selected isoscalar electric moriopole states in Sl.

AE (MeV)
B(EO) (e fm )
% of Z~i'(Eo)

p h

19.78
40.99
17.5

T (HO)

9.36
4.0

T (ws)

25.06
12.67
6.9

T (HO)
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T (WS)

29.63
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-0.544
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0.005
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1.013
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ZT(e fm ) -6.403 -3.059 3.561 3.196 1.433 3.648

states, each of which (again the dominant spheri-
cal components are the 1p-Op excitations} has to
be attributed with a considerably large width, one
expects a rather flat EOV-strength distribution
between excitation energies of about 25 and 55
Mev in both "Ne and "Si. As for the EQS transi-
tions, here also there is not very much hope that
these extremely broad distributions could be de-
tected with the present experimental techniques.

C. The isoscalar magnetic dipole transitions (N1 V)

In contrast to the electric monopole transitions,
where drastic changes of the results were ob-
tained, if the HO was replaced by the WS basis,
for the M1V transitions both sets of single particle
wave functions yield nearly identical results. This
is easily understood from the fact that the M1
transition operator has no radial dependence and
hence the only difference in the WS single particle
M1 matrix elements with respect to the HO ones
is caused by the small differences in the radial
wave functions of spin-orbit partners induced by

the spin-orbit term of the WS potential.
In "Ne inelastic electron scattering measure-

ments under 180' scattering angle' detect only one
single state with a strong magnetic dipole transi-
tion: the isovector 1' level at 11.235 MeV with a
B(MI;0' - 1"}value of 2.06 + 0.36 p z'. As can be
seen from the upper half of Fig. 5, the PHM ap-
proach also concentrates nearly all the M1V
strength in "Ne into a single state, predicting an
excitation energy of 9.V2 MeV and a B(Ml}value
of 1.59 p~'. As already discussed above, the
L'= 1' proton spectroscopic amplitudes for this
transition agree surprisingly well with the pre-
dictions of Chung and Wildenthal's SCM calcula-
tion." Since, furthermore, the 1.5 MeV discre-
pancy in the excitation energy can be easily attri-
buted to the ambiguity introduced by our assump-
tion of a constant correlation energy, we consider
this result rather satisfying; even more so since
it was obtained in a completely microscopic cal-
culation with no fitted effective interaction and g
factor at all.

In 28Si (see the upper half of Fig. 6} the old elec-
tron scattering data of Fagg et al.' show one
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FIG. 5. The calculated isovector magnetic and electric dipole transitions in Ne are given. Again the results ob-
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strong M1 transition at 11.41 MeV and a few
smaller ones around this excitation energy, add-
ing up to a total nonenergy weighted M1V strength
of 6.79 (+1.9V, —1.61) p» . Recent high resolution
experiments performed at Darmstadt by Schneider
et al.' improved this value to. 5.82+0.24 p~ but
confirm the overall features of the older data.
Here also one strong Ml transition [now at 11.45
MeV with an about 1 larger B(M1) value than
the old data] and a few satellites [with about 20—
40$ smaller &(M1)'s than in Fagg's experiment]
are found. Though reproducing the qualitative
features of this experimental MlV-strength dis-
tribution reasonably well, the PHM approach here
fails to predict the full experimental sumrule and
obtains only 4.12 p~' below 20 MeV excitation en-
ergy. This failure most probably has to be attri-
buted to our microscopic Hamiltonian and not to
the configuration space, since also in 1sOd shell
SCM calculations, which for some effective inter-
actions obtain almost perfect agreement with the

experimental value [6.47 pea (Ref. 21); 5.92 A+2

(Ref. 54)], a similar lack of strength is observed,
if forces like the Kuo interaction" (which like our
Hamiltonian is based on the Hamada-Johnston po-
tential ') are used. "

Thus one has to admit that the PHM approach
does not reproduce the experimental data for the
~1V transitions as well as the SCM model. How-
ever, from a large basis calculation with a mic-
roscopic Hamiltonian this could not be expected.
Nevertheless, the qualitative features of the ex-
perimental M1V-strength distributions are rea-
sonably well reproduced.

Finally, we would like to mention that because of
the anomalous magnetic moment of the neutron,
the magnetic dipole operator is an almost pure
isovector operator. Therefore, as can be seen
from Table VIII, the isoscalar Ml transitions in
both nuclei considered here carry less than 0.3%
of the corresponding energy weighted M1V strength
and will not be discussed in the present paper.
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FIG. 6. Same as in Fig. 5 for the nucleus Si. The measured M1 transitions have been taken from Ref. 8.

D. The isovector electric dipole transitions (E1V)

The strength distributions obtained for the E1V
transitions in 'Ne and "Si are displayed in the
lower halves of Figs. 5 and 6, respectively. De-
pending only linearly on r, the electric dipole
operator is riot very sensitive to changes in the-
radial dependence of the single particle wave func-
tions. Therefore, for the magnetic dipole transi-
tions, here also the HO and the WS bases yield
very similar results and hence need not be dis-
cussed separately in the following.

Comparing the E1V-strength distributions for
the two nuclei, one essential difference becomes
immediately evident: While in ' Ne the electric
dipole strength is spread over many states be-
tween 16 and 32 MeV excitation energy, in "Si
nearly 707o of the total energy weighted E1V
strength is concentrated into two single levels;
one at 21.37 MeV, the other at 34.59 MeV excita-
tion energy. Analysis of the corresponding I-'=1
spectroscopic amplitudes shows that the strong
dipole excitation at 21.37 MeV (as well as its
nearest neighbor) is essentially a coherent super-
position of sd to Pf particle-hole excitations, while
the 34.59 MeV state (as well as the relatively

large transition at 28 MeV) is of almost pure P to
sd particle-hole structure.

In "Ne, on the other hand, nearly all the states
displayed in Fig. 5 are mixtures of these two dif-
ferent modes of N excitations. 'The reason for
this different structure of the electric dipole
states in the two nuclei can be understood from
the intrinsic HF single particle energy spectra
(I"ig. 1), which have already been discussed in the
last section. In "Ne, the average energy gaps
between the occupied Op and empty 1s0d levels and
between the occupied 1s0d and empty 1p0f orbits
is of about the same size. Consequently, the two
modes of excitation are strongly competing and
the resulting isovector 1 states are strongly
mixed. In "Si, the 1s0d to 1pOf excitations are
considerably favored in energy with respect to
the Op to lsOd particle-hole states. Therefore
here the two excitation modes are energetically
well separated and the resulting dipole states
represent almost entirely either one or the other
of them.

Experimentally, the most valuable information
about the electric dipole resonances in the two
nuclei considered here are most probably those
obtained by proton radiative capture reactions on
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FIG. 7. The isoscalar and isovector electric giant quadrupole resonances as calculated for Ne. The results of
calculations using the oscillator basis and the Woods-Saxon Basis are compared. In addition the figure displays the
strength distributions as a percentage of the corresponding classical energy weighted sum rule. The classical pre-
dictions for the positions of the isoscalar and isovector E2 resonance are about 23 and 44 MeV, respectively. All
B(E2;0' 2') values are in units of (e2fm4).

the neighboring odd A nuclei 'oF(Ref. 7) and "Al,'
respectively. Unfortunately, as has been shown,
for example, in Refs. 33, the E1V-strength dis-
tributions presented here cannot be compared di-
rectly with the experimental (p, y) cross sections.
For example, unlike inelastic & scattering which
excites all the isoscalar natural parity states
that are connected to the target ground state with
large enough B(EL) values, the (p, y) process
selects only particular components of the GMR's
and therefore tests only specific parts of the total
strength distributions. Depending strongly on the
structure of the target ground state (only p—,

' and

p —,
' proton waves can form a 1™excitation together

with the 2' ground state of 'oF, while P2, f ', , and-
f~vwaves can couple to this total spin value with
the —,

"ground state of "Al), the (p, y) entrance
channel favors only some components of the 1
wave functions and supresses the others. ' Conse-

quently, the resulting cross section may look
rather different from the predictions for the E1V
distributions presented here. Furthermore, for
a large enough 1 level density, the individual
states will interact with each other via the propa-
gator of the (p, r) T matrix, an effect which may
again yield a redistribution of the transition
strength as well as considerable shifts in the ex-
citation energies. " In the present work we shall
therefore restrict ourselves to only some qualita-
tive comparisons.

In the experimental "F(P, y) "Ne cross section,
as in our calculations, the E1V strength is distri-
tributed over many levels between about 16 and
25 MeV excitation energy. The main theoretical
contribution is about 1 to 2 MeV higher excitation
energy than seen in experiment. Since part of
this discrepancy may be explained by the level
shifts to be expected from a proper treatment of
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are indicated by arrows.

the continuum-bound state coupling, and the rest
can be easily attributed to the ambiguity intro-
duced by the constant correlation energy, the qual-
itative agreement with the experimental data is,
for a completely microscopic calculation, still
rather satisfying. Similar conclusions may be
drawn for,"Si. Also here the theory predicts the
main E1V contributions in the right energy re-
gion. However, in contrast to "Ne, where the
spin projected lplh configurations (17}already
yield g sufficient spreading of the E1V strength in
the relevant energy region, in "Si the strong con-
centration of E1V strength in the 21.37 MeV level
seems to indicate that some additional spreading
due to the coupling to more complicated configura-
tions than included here may be required to give a
quantitative description of the experimental data.

Finally we would like to point out that with re-
spect to electric dipole excitations, our configura-
tion spaces are almost complete. Therefore, as
can be seen from Table VIII, the PHM approach

here obtains 85% and 100% of the CEWSR (31}for
"Ne and "Si, respectively. However, note that we
have introduced an enhancement factor of X,

= 0.5
CEWSR, which is perhaps somewhat too large for
nuclei in the sd-shell mass region. If that is true,
then in "Si the calculations would even overesti-
mate the CEWSR, indicating that either the PHM
approach does not yield enough ground state cor-
relations for this nucleus, or that our microscopic
Hamiltonian contains velocity dependent terms
which are to strong. However, since nobody real-
ly knows the right value of X for the nuclei con-
sidered here, we shall not speculate on this point
any further.

E. The isoscalar electric quadrupole transitions (E2S)

The CEWSR of Eq. (30}predicts total E2-"
strengths of 2628 e'fm~ MeV for ' Ne and
4604 e'fm' MeV for "Si. As can be seen from
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TABLE XI. The spectroscopic amplitudes (19) for the proton isoscalar electric quadrupole
transitions from the ground state to, some selected I~= 2' states in ONe are given as well as
the corresponding transition amplitudes (22) calculated with harmonic oscillator (HQ) as well
as with Woods-Saxon (WS) single nucleon wave functions.

AE (MeV)
S (E2) (8'fm')
% of Z~( (E2)

p h

22.34
8.45
7.2

7 (HO)

6.78
5.8

T (WS)

22.89
9.02
7.9

T (HO}

3.77
3.3

T (WS)

Os-i
2

Op 2

Op-
2

1s-1
2

Od-3
2

Od5

1p~
2

1p3
2

of-'
2

Od3
2

Od-'
2

Op-
2

1p3
2

Of5

Op-
2

Op-
2

1p-i
2

1p-
2

Of-'
2

Of-
2

Od3
2

Od-
2

Os-1
2

ls-i

Od-3
. 2

Od-
2

Os-i
2

ls-1
2

Od-3
2

Od-
2

Og-9
2

Op-
2

1p-
2

Of-

Op-'
2

Op-
2

1P-
- 2

1P-3
2

of-'
2

Of7

2

Op-i
2

Op-'
2

1p-i
2

1p-3

Oj-
2

Ofv
. 2

0.005

0.007,

0.028

0.005

0.005

-0.015

-0.042

-0.001

-0.007

0.006

0.007

—0.022

0.030

—0.126

0.107

0.046

-0.122

0.109

0.067

0.030

0.008

0.013

-0.085

-0.013

-0.009

0.101

-0.213

0.011

-0.046

-0.031

-0.001

0.489

-0.137

0.059

-0..020

0.007

0.005

0.017

-0.024

0.110

-0.013

0.028

0.060

0.166

-0.003

-0.017

0.018

0.051

0.111

-0.185

0.386

0.537

—0.254

-0.443

0.411

—0.411

0.109

-0.059

0.154

0.212

-0.095

0.064

0.254

-0.534

-0.079

0.329

0.119

0.005

2.805

0.419

-0.429

-0.079

-0.064

0.020

0.017

—0.026

0.112

-0.012

0.024

0.061

0.171

-0.002

=0.016

0.015

0.051

0.151

-0.223

0.400

0.731

—0.317

-0.509

0.431

—0.495

0.126

-0.065

0.118

0.191

—0.186

0.015

0.244

-0.505

-0.155

0.790

0.202

0.009

2.395

0.363

-0.103

-0.135

-0.145

0.014

-0.003

0.003

-0.035

-0.006

-0.006

0.086

0.029

0.010

0.004

-0.003

—0.003

0.014

-0.006

0.114

0.027

0.064

0.007

—0.148

-0.071

-0.016

-0.017

-0.007

0.258

0.055

-0.031

-0.174

-0.471

-0.030

-0.097

-0.016

-0.019

—0.231

0.202

-0.026

0.035

0.013

-0.002

-0.009

0.010

-0.139

0.014

-0.036

-0.341

-0.113

0.026

0.011

-0.009

-0.022

-0.071

0.034

-0.349

0.138

-0.353

0.024

-0.556

0.438

0.057

0.126

-0.079

-0.646

0.391

0.222

-0.436

-1.179

0.214

0.689

0.063

0.183

—1.327

—0.620

0.189

0.136

—0.122

-0.008

-0.009

0.010

-0.142

0.014

-0.030

-0.347

-0.116

0.023

0.010

-0.007

-0.022

-0.096

0.041

-0.362

0.187

-0.440

0.028

-0.583

0.527

0.066

0.138

-0.061

-0.582

0.764

0.053

-0.419

-1.114

0.419

1.653

0.106

0.332

-1.133

-0.538

0.046

0.231

-0.277

-0.006
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YA BLE XI. (Continued).

4E (MeV)
B(E2) (e2fm4)

% of Z~D(E2)

p h

22.34
8.45
7.2

T (HO)

6.78
5.8

T (ws)

22.89
9.02
7.9

T (H0)

3.77
3.3

T (ws)

Of-
2

Og-9
2

Of-'
2

Op-
2

1p-3
2

Of-'
2

Of7
2

Od-
2

Og-9
2

0.005

0.427

0.069

0.011

0.016

0.038

-0.001

0.020

3.210

-0.660

-0.0&2

-0.175

0.448

0.023

0.014

3.205

—1.199

-0.030

-0.284

0.345

0.044

-0.002

—0.457

-0.083

0.005

0.026

—0.027

—0.000

-0.008

—3.429

0.789

-0.019

-0.285

—0.324

0.003.

-0.006

—3.424

1.433

—0.013

—0.461

—0.249

0.006

ZT (efm ) 6.498 5.822 -6.715 -4.344

Ta,ble VIII, the PHM approach obtains only 55%%up

and 61% of these classical predictions for the two
nuclei if HO wave functions are used, and in the
more realistic WS basis, these values are even
reduced to 45%%ug and 54%%ug for "Ne and "Si, respec-
tively. As for the electric monopole transitions,
the lack of strength has to be attributed almost
entirely to the truncation of our single particle
basis. However, being high up in the continuum,
here also the missing orbits would only induce an
extremely broad and flat transition strength dis-
tribution, which experimentally could hardly be
disentangled from the usual background, and their
neglect is therefore here equally well justified as
for the monopole transitions discussed above.

The theoretical E2S-strength distributions ob-
tained for ' Ne and "Si are displayed in the upper
halves of Figs. 7 and 8, respectively. As can be
seen, in both nuclei the use of the WS instead of
the HO basis yields some modifications of the re-
sults. However, although the quadrupole operator
has the same radial dependence as the monopole
one, the changes are far less drastic here than in
case of the monopole transitions. This difference
can be easily understood from the fact that the
EO transitions are essentially of 1p-particle-Op-
hole structure, while in the quadrupole transition
amplitudes these terms are dominated by those
particle-hole components which involve particle
states with higher angular momenta (Of&, Of

Ogg) and the radial wave functions of which —be-
cause of the larger centrifugal barrier —are more
similar for the two different potentials than those
of the 1p levels.

In "Ne, the most remarkable effects due to the
change in the basis wave functions are seen for the

transitions to the two states at 22.43 and 22.89
MeV excitation energy, which are analyzed in
more detail in Table XI. Simila, rly as for the
monopole transitions, one observes that essential
contributions to the decrease of the total transi-
tion amplitudes a.re due to those components which
represent a redistribution of the particles inside
the pf shell relative to the ground state. So, for
example, in both transitions the Of&-Ip —', and Ip —,'-
1p—,

' components are drastically increasing if the
WS basis is used; and contribute considerably to
the reduction of the total amplitudes.

Similar observations can be made in the case of
"Si (see Table XII). Here the strongest effects
are seen for the two transitions to the 26.80 and
28.04 MeV states. Again for both states the
change in the pf-pf components yields large con-
tributions to the reduction of the transition ampli-
tudes. However, note that here for the 28.04 MeV
transition as well as for the 22.43 MeV transition
in "Ne, a considerable. reduction of the matrix
elements corresponding to some dominant spec-.
troscopic amplitudes (Oga2-0d-', in the former,
Of-,'-Op —,

' in the latter ease) is observed.
In both nuclei the agreement of the theoretical

results with the experimental data is rather satis-
fying. In "Si, experiment" detects 27(+6)%%uo of
the energy weighted isoscalar E2 sumrule between
15.5 and 23 MeV. Our calculation obtains in the
same energy interval about 26%%ug of the CEWSR for
the WS and 28%%ua for the HO basis. In "Ne the cal-
culations yield 24% (WS) or 34%%ua (HO) between 18
and 28 MeV excitation energy. Here the experi-
ment" suggests 35 (+25; -15)%%u~ of the CEWSR.
Obviously this good agreement should not be over-
stressed; the theoretical uncertainties (force,
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TABLE XII. Same as in Table XI, but for some selected isoscalar electric quadrupole
states in Si.

AE (MeV)
B(E2) (e fm )
% of Z~& (E2)

26.80
12.48
7.3

T (HO)

5.09
3.0
T (WS)

28.04
11.62
7.1

T (HO)

8.39
5.1

T (WS)

Os-i
2

. Opi
2

Op-
2

- 1S-i
2

Od-
2

Od-
2

1p i
2

1p-'
2

pf5
2

Od2

Od-
2

Op-
2

gp 3
2

pf5
2

Op-
2

Op-3
2

1pi
2

1p-3
2

pf-'
2

of-7
2

Od-3
2

Od-'
2

Os-i
2

1S-i
2

pd3
2

Od-
2

Os-i
2

1S-i
2

Od-
2

Od-'
2

Og-9
2

Op-
2

1p3
2

pf5
2

Op-'
2

pp-
2

1P-
2

1p-
2

0)"5
2

Of7

2

pp-i
2

Op-
2

1p-i
2

1p-
2

pfS
2

Of7
2

-0.014

0.010

-0.071

-0.008

-0.011

0.080

0.065

0.007

0.007

-0.007

-0.012

0.049

—0.034

0.137

—0.031

-0.013

0.044

-0.130

-0.050

-0.027

-0.066

-0.026

0.108

0.015

0.009

-0.324

-0.258

-0.034

-0.032

-0.007

-0.019

-0.465

0.174

-0.049

0.020

—0.035

0.017

-0.048

0.041

-0.313

0.023

-0 ~ 068

-0.350

-0.283

0.018

0.020

-0.023

—0.100

-0.271

0.228

—0.464

-0.170

0.079

0.178

-0.543

0.342

0.109

0.530

-0.337

-0.300

0.118

-0.076

-0.898

-0.714

0.269

0.255

0.030

0.200

-2.956

—0.591

0.391

0.084

0.361

0.071

-0.051

0.044

-0.312

0.018

-0.062

-0.348

-0.287

0.017

0.016

-0.022

-0.100

-0.272

0.228

-0.493

—0.171

0.079

0.178

-0.578

0.342

0.109

0.528

-0.309

-0.276

0.223

-0.148

-0.695

-0.573

0.509

0.747

0.062

0.276

-2.722

0.557

0.766

0.175

0.588

0.089

-0.013

-0.011

-0.010

-0.001

-0.004

0.010

0.017

-0.001

0.001

—0.002

-0.005

0.038

0.030

0.059

0.037

—0.052

0.042

-0.045

-0.015

0.024

0.015

-0.011

0.058

0.007

-0.003

0.116

-0.145

0.009

-0.021

-0.014

-0.007

0.088

0.243

0.029

0.021

—0.050

0.005

—0.043

-0.047

-0.042

0.002

-0.027

-0.044

-0.074

—0.001

0.002

-0.008

-0.038

-0.211

-0.207

-0.200

0.208

0.317

0.168

-0.187

0.102

0.097

0.124

-0.148

-0.160

0.058

0.024

0.322

-0.401

-0.071

0.165

0.061

0.070

0.556

-0.824

-0.231

0.091

0.520

0.022

-0.045

-0.050

-0.042

0.001

-0.025

-0.044

-0.075

—0.001

0.002

—0.007

—0.038

—0.212

—0.207

~0.213

0.209

0.316

0.167

-0.199

0.102

0.097

0.124

-0.136

-0.147

0.110

0.047

0.249

-0.322

-0.135

0.485

0.128

0.096

0.512

-0.776

-0.452

0.189

0.847

0.028
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TABLE XH. (Continued).

EE (MeV)
E2) (g 2fm4)

k of Z~cl (E2)

12.48
7.3

T (HO)

5.09
3.0

T (WS)

28.04
11.62
7.1

T (HO)

8.39
5.1

T (WS)

Of7
2

Og-9
2

Of-
2

Op-
2

1p-3
2

Of-
2

Of7
2

Od-
2

Og-9
2

ZT (g fm2)

0.017

—0.444

-0.058

-0.016

—0.031

-0.034

-0.021

0.071

-3.697

0.606

0.066

0.382

—0.450

0.350

-7.899

0.089

-3.703

0.836

0.082

0.428

-0.412

0.709

-5.045

0.005

—0.102

0.008

—0.013

—0.038

—0.535

0.006

0.022

-0.850

-0.087

0.055

0.460

—7.042

—0.103

-7.622

0.028-

—0.852

-0.121

0.069

0.515

—6.459.

—0.210

-6.475
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FIG. 10. Salne Rs jn Fig. 9 for the nucleus Si.

correlation energy, configuration space, etc. ) as
well as the experimental error bars are still too
large to allow definite conclusions. Nevertheless,
the agreement gives at least some confidence in
the approximations of the PHM approach; even
more so since the spreading of the E2S strength
in the relevant energy intervals over many states
found in the calculations is also compatible with
the experimental data.

F. The isovector electric quadrupole transitions (E2V)

As already observed in case of,the electric
monopole mode, for the quadrupole transitions
the PHM approach also detects a considerably
larger portion of the isovector than of the isoscal-
ar CEWSR of Eq. (30). In "Ne we obtain 84%

(Ho) or 86% (WS), in "Si even 98%%u0 (HO) or 83%%u0

(WS). Since for isoscalar as well as isovector ex-
citations the same configuration spaces were used
and since therefore, as discussed above, a con-
siderable amount of the total strength should be
missing also for the isovector quadrupole mode,
this result points again to a strong velocity de-
pendence of our Hamiltonian. Unfortunately, as

in the monopole case, here also no experimental
data for comparison are available, so that the
validity of this result cannot be checked. Ef con-
firmed, it would indicate the need of a considera-
bly large enhancement factor y(2') also for the
isovector quadrupole CEWSR of Eq. (30).

Not much has to be said about the calculated
$2V-strength distributions for the two nuclei
(lower halves of Figs. 7 and 8 for '0Ne and "Si,
respectively). As expected, in both nuclei the
E2V strength is distributed over many levels in a
wide energy interval with its center of mass at
much higher excitation energy than the main con-
tributions to the E2S strength, and the effects ob-
tained by replacing the HO by the WS basis are of
comparable magnitude as those for the isoscalar
E2 tra, nsitions discussed above.

G. The isovector magnetic quadrupole and octupole
transitions (N2V and N3 V)

Owing to the anomalous neutron g factor, not only
the magnetic dipole but also the magneticquadru-
pole and octupole transitions are essentially of
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isovector character. As can be seen from Table
VIII, the corresponding isoscalar transitions
carry in both nuclei less than tPo of the isovector
strengths and hence will not be discussed in the
present paper.

The M2V and M3V strength distributions for
Ne and Si are presented in Figs. 9 and 10, re-

spectively. As expected from the radial depen-
dence of the corresponding transition operators,
the M2 values change only slightly if the HO basis
is replaced by WS wave functions, while for the
M3V mode the changes are of comparable magni-
tude as those for the electric quadrupole transi-
tions.

In "Ne, both the M2V as well as the M3V
strength is spread over large energy intervals
with the main contributions to the latter occuring
at higher excitation energies. Here, to our know-
ledge, no experimental data are available as of
yet.

In "Si the situation looks similar, though here
the two modes are both energetically somewhat
more concentrated. Here also some experimental

data are available. " Compared to these data as
well as to the results of recent RPA calculations, "
the PHM approach predicts the main M2V contri-
butions at a few MeV higher excitation energy.
However, the ambiguity introduced by the constant
energy shift for all the excited states in our calcu-
lations and the fact that the measurements were
performed only up to 15.5 MeV excitation energy
do not allow definite conclusions about this dis-
crepancy.

H. The higher electric multipoles (E3S,E4S, and E4 V)

With increasing multipolarity the model space
used in the present calculations becomes more
and more incomplete: While for the EO and E2
transitions essentially only the 2s, 1d, and Og&

orbits are missing in the single particle basis,
the description of the total electric octupole (ES}
strength would require the inclusion of also the
2p, lf, and Oh levels, and for the electric hexa-
decapole (E4} transitions in addition even the Ss,
2d, 1g, and states should be taken into account.



1316 K. %. SCHMID

ISOSCALAR E3 STRENGTH =33% of K,=c (E3)=128378e fm MeV ISOSCALAR E3 STRENGTH=43% of E& g (E3)=128378e frrPMeV

~ 8.3 I15 I5.4 l14 I 0.5 I05 l02 I24 l1.4 153100141 l1.6 ~10.7I1-9 182 I19 I1.3 I12 l0.3 I 4.1 I2.9I5.2 lo.o I4,.2 l1.6

„9I Si(J =3;T=O)

I Ho I

Si(J =3;T=Q)

I wsl

E

o 11 KIJ rrr ~r. r t
6) .fr

8 h2 l16 I2o I24 12e l32 I36 I40 l44 l48 l52 156

ISOVECTCR E3 STRENGTH=65% of ~~c (E3)=128378e fm6MeV

+ I ~ 00 I 13 I 9r I»3 I r& I 30 12 4 I 49 126 I or I && I 33 Ir4r
C)
P)
UJ

Sj (J =3 .T-1)

CQ I HOI

x go
Si(J =3; T=1)

I ws I

tl 'k ll rrr I'1[4+ er r r r 0
8 I12 I16 I20 24 I28 l32 I36 I4o I« I4e ls2 ls6

ISGVECTOR E3 STRENGtH =85%of Z~c(E3)=128378 e fm MeV

~ 0.0 I1.7 I13.3 I 14.5 I 9.4 I 5.2 I2.6 I 7.1 I 4.6 /0. 1 I7.3 I 3.6 I15.7

I

l. iI|IL] I, i..I~II
8 I12 l16 20 l24 l28 32 /36, 40 I44 l4e ls2 Is6

DE [MeV]

), , I I, slI,
e h2 h6 2o I24 I2e 32 I36 I40 I44 l48 Is2 Is6

E [MeV]

FIG. 12. Same as in Fig. 11, but for Si.

However, being even higher up in the continuum
than the missing sdg orbits, these levels are ex-
pected to induce only a broad and rather flat
strength continuum at even higher energies than
the above discussed neglected Eo and E2 strength
continua. We may therefore hope that at least a
large portion of the relevant (because experi-
mentally detectable) E3 and E4 strengths is still
included in our truncated model space, which es-
sentially only contains the 2h& E3 and the (R& and
2h~ E4 excitations. Nevertheless one should keep
in mind that the missing excitations, especially
the collective part of them, may still influence
the low excited transition in both energy as well
as strength. Therefore the calculated E3 (Figs.
11 and 12 for "Ne and "Si, respectively) and E4
strength distributions (Figs. 13 and 14) should be
interpreted with some caution. This holds es-
pecially for the E4 transitions; here, as can be
easily seen, due to the x4 dependence of the cor-
responding operator, the WS and the HO basis
yield drastically different -results, and, because
of the ambiguity in the WS parameters, it is not
obvious whether the real strength distribution
should be nearer to the oscillator or the WS pre-

diction. Because of these problems we shall re-
strict ourselves in the present investigation to
only some qualitative conclusions, which may be
drawn from the calculated strength distributions.

As far as the isoscalar octupole (E3$) transi-
tions are concerned, we obtain in both nuclei, as
expected, a few low lying octupole states (some
below the energy region displayed in the figures).
The rest of the E3S strength in "Ne as well as in
"Si is spread over many-levels and exhausts in
none of the indicated 4 MeV intervals more than
about 8%%ug of the corresponding CEWSR of Erl. (30),
irrespective of whether the HO or the WS repre-
sentation of the transition operator is used. The
experimental detection of E3S resonances by
(n, &') measurements, for example, is expected
to be rather difficult, since the main E3S contri-
butions are predicted in the region of the E2S
resonances and at very high excitation energies.
Nevertheless, at least in some energy regions
contributions of isoscalar E3 strength to the
(or, a') angular distributions are expected.

The same holds for the isoscalar hexadecapole
(E4S) transitions. Also here in both nuclei a
large spreading of the total transition strength
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over many levels in and above the energy region
of the giant quadrupole resonances is obtained and
some contributions to the (Crr, err') angular distribu-
tions are to be expected.

About the isovector octupole (E3V) and hexa-
decapole (E4V) transitions not much needs to be
said. Again, in both nuclei we obtain considerably
more isovector than isoscalar strength, a result,
which, if confirmed, would point out considerably
large enhancement factors y. (3 ) and X(4') also
for the isovector E3 and E4 CEWSR's of ECl. (30).
The isovector strengths, like the isoscalar ones,
are spread over very large energy intervals.

V. SUMMARY

In the present investigation we have tried to
describe the structure of the GMR's in the two
sd-shell nuclei Ne and ' Si on a completely
microscopic basis. For this purpose the wave
functions for the ground and the excited states in
these nuclei were approximated by linear combin-
ations of the angular momentum projected de-

formed HF vacuum and the angular momentum
projected 1plh excitations with respect to it. 'The
configuration mixing coefficients of this expansion
were determined by the diagonalization of the mi-
croscopic many nucleon Hamiltonian after restor-
ing the required rotational symmetry from the
intrinsic configurations. Such the spin dependence
of the configuration mixing was taken into account
as well as renormalization effects on the average
field, the mixing of components with different total
spin projection K on the intrinsic quantization axis
was included, and problems with possible linear
dependencies in the intrinsic configuration space
were avoided. Furthermore, the spurious admix-
tures due to center of mass excitations were
eliminated at least approximately by a separate
diagonalization of the center of mass Hamiltonian.

In contrast to Hefs. 33, where this angular mo-
mentum projected deformed particle hole model
(PHM) had been applied to describe the structure
of the GMH's in "Ne as seen via the proton radia-
tive capture reaction on "Fand where, because
of the strong selectivity of this reaction, only a
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FIG. 14. Same as in Fig. 13 for the nucleus Si.

relatively small model space was needed, for tQe
calculations discussed here a rather large single
particle basis was used. This enabled us to use a
microscopic Brueckner G matrix plus kinetic en-
ergy matrix elements as Hamiltonian and such to
get rid of the ambiguities induced by the effective
forces and single particle energies, which have to
be used in small model spaces. Furthermore,
because of this large basis no effective charges or
g factors had to be introduced.

The only free parameter we used in the present
calculation was a constant spin and isospin inde-
pendent correlation energy, which shifts all the
excited states down in energy with respect to the
ground state band and is supposed to simulate the
net effect of the neglected 2p2h configurations.
This is obviously a rather crude approximation
and the essential drawback of the PHM approach.
In the future a better solution should be found. At
the moment, however, nothing better can be done
with the present computer facilities.

While energies and wave functions were calcu-
lated using an oscillator' single particle basis for
the calculation of the electromagnetic ground state

transitions to the various excited states, Woods-
Saxon single particle matrix elements were also
used in order to study the influence of more real-
istic radial wave functions on the transition amp-
litudes.

The results of the various calculations discussed
here may be summarized as follows.

(i). In 'ONe not only the experimental excitation
energies of the ground state band are well repro-
duced, but the sd-shell components of the PHM
spectroscopic amplitudes for the 2' and 4+ yrast
levels also agree very well with the values ob-
tained by a complete sd-shell SCM calculation" "
using an entirely fitted effective Hamiltonian.
The same holds also for the structure of the strong
isovector magnetic dipole state in this nucleus.
In "Si, the agreement for the ground state band
as well as for the magnetic dipole states is less
quantitative, but for a microscopic calculation is
still rather satisfying.

(ii). In both nuclei the experimental level order-
ing and relative spacings of the low excited nega-
tive parity states are very well described by the
PHM approach. On the other hand, a couple of the
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experimentally observed low excited positive par-
ity levels are missing in the PHM spectra of the
two nuclei. This was to be expected, since most
of these states are of many particle-many hole
structure with respect to the HF vacuum and
hence not included in our configuration spaces.

(iii). Though rather large, for most of the mul-

tipolarities the single basis used here is not suf-
ficient to obtain the full classical energy weighted
sumrule (EWSR) strength. However, since all the
missing particle orbits are high up in the continu-
um, the corresponding strengths are expected to
be extremely spread in energy. Since such a
broad strength continuum could experimentally
hardly be disentangled from the usual background
seen, for example, in (n, n') measurements, for
comparison with experiment the configurations
taken into account here should be sufficient.

(iv). For all multipolarities we obtain consid-
erably more isovector than isoscalar transition
strength. This indicates strong velocity dependent
terms in our microscopic Hamiltonian and would

indicate, if confirmed, the need of some enhance-
ment factors not only for the electric dipole but
also for the other multipole isovector EWSR's.

(v). While for the electric dipole and quadrupole
and the magnetic dipole and quadrupole transitions
the harmonic oscillator and the Woods-Saxon
radial wave functions yield similar results, for
the electric monopole, octupole, and hexadecapole
and the magnetic octupole transitions drastic re-
distribution of the transitions strengths are ob-
served if the harmonic oscillator is replaced by
the more realistic Woods-Saxon basis. In general
the use of Woods-Saxon wave functions increases
the spreading of the transition strength distribu-
tions and shifts their centers of gravity to higher

excitation energies.
(vi). In both nuclei the experimentally observed

energy weighted isoscalar electric quadrupole
strength is well reproduced by the calculations,
and the theoretically obtained spreading of this
strength over many levels in the relevant energy

. intervals is also compatable with the experimental
data. On the other hand neither experiment nor
the PHM approach obtains, in the two nuclei con-
sidered, any energetically concentrated isoscalar
electric monopole strength exhausting more than a
few percent of the corresponding EWSR.

Taking into account that from a completely mic-
roscopic theory like the PHM approach a one to
one agreement with the experimental data could
not be expected, these results have to be consid-
ered rather satisfying. The essential physical
structures behind the GMR's in the two nuclei con-
sidered seem to be contained in the PHM wave
functions. One has therefore good reason to hope
that using the PHM results as nuclear structure
input in, for example, microscopic (P,y) calcula-
tions like those in Ref. 33 or for a distorted wave
Born analysis of inelastic electron or hadron scat-
tering, should also yield satisfying results.
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