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Three-body correlations in nuclear matter
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A momentum-space method is developed for the calculation of three-body terms in the
Brueckner-Bethe method for nuclear matter. The method is similar to one used earlier for
central S-wave potentials. Here we extend it to the full nuclear force, including tensor

forces, spin-orbit forces, etc. Furthermore, we show how the method can be used to inves-

tigate the possibility of long-range correlations in nuclear matter by summing the general-

ized ring series. The numerical accuracy obtainable with various mesh parameters and cut-

offs in momentum space, and with various truncations of partial-wave expansions, is

thoroughly explored. Several angle-average approximations are used, and the estimated nu-

merical accuracy in the three-body cluster energy is 10—15 /o. The method is applied to a
central potential v2, a semirealistic potential v 6 (Reid), which has a tensor force, and to the

Reid potential, augmented by an interaction that is consistent with empirical scattering

phase shifts in two-body partial waves with j ) 3. In all cases the three-body contribution

to the energy is correctly given in order of magnitude by ~2D2, where D2 is the two-body

contribution and a2 is the usual convergence parameter of the Brueckner-Bethe method.

The generalized ring series is found to converge rapidly, indicating that long-range correla-

tions are not very important for the binding energy of nuclear matter. The Reid potential

is found to saturate at the right energy but at too high a density.

NUCLEAR STRUCTURE Method for solving Brueckner-Bethe
three-body equations in nuclear matter developed and applied to the

Reid potential.

I. INTRODUCTION

Brueckner-Bethe calculations of nuclear matter
are currently formulated using either the hole-line
expansion' or the Bochum truncation of the
coupled-cluster equations. ' In either case the
lowest-order approximation involves a two-body

equation, which can be accurately solved. To go
beyond lowest order, one has to solve a three-body

equation. In the hole-line expansion this gives the
three-body cluster term D3, which is the dominant
three-hole-line term. The other three-hole-line
term, the hole-hole term, is small compared to D3.
It involves only two-body quantities and is neglected
in this paper. In the Bochum coupled-cluster
scheme, one includes at the three-body level the en-

tire generalized ring series. ' " The first term in

this series is D3, and succeeding terms are particular
diagrams with four, five, ... hole lines.

Near the empirical saturation density, we have

D3 ——'5 MeV for the Reid potential. ' Hence this

term must be taken into account in any adequate
approximation scheme. The first calculations of D3
were made by l3ahlblom' and have been improved

by Grangh. ' ' The calculations are done in coordi-
nate space and involve several approximations
whose accuracy has never been quantitatively as-

sessed. Furthermore, this method does not fully

treat the tensor force. Depp' made an ambitious
and useful attempt to do a more accurate calcula-
.tion of D3 in momentum space, but his work was
never carried far enough to give useful numerical
results. Day, Coester, and Goodman, ' also work-

ing in momentum space and using some of Depp's
ideas, showed that accurate calculations could be
made for a pure S-wave two-body potential. In this

paper we extend this method in two ways: (l) The
full nuclear force is treated, and (2) we calculate not
only D3 but also the sum of the complete general-
ized ring series. .

The generalized ring series arises as follows. '

The dominant three-hole-line term is D3 and, from
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the point of view of the hale-line expansion, there is
no point in going beyond D3 unless al/ four-hole-
line terms are calculated. However, the Bochum
truncation of the coupled-cluster equations implies
that the diagrams should not be grouped strictly ac-
cording to the number of hole lines. Instead, a par-
tial summation of particular diagrams with three,
four, five, ... hole lines should be carried out. We
call these the generalized ring diagrams because they
include all the forward-going ring diagrams, which
are known to build up important long-range correla-
tions in the electron- gas' and in low-density Bose
systems. ' The coupled-cluster equations imply ad-
ditional partial summations ' that are believed to be
less important than the generalized rings and are not
considered here. If the generalized ring series con-
verges slowly, this suggests that (I) tlie hole-line ex-

pansion must be modified by summing the general-
ized ring series, and (2) nuclear matter contains sig-

nificant long-range correlations. Hence it is impor-
tant to study the generalized ring series, and we do
this in addition to calculating D 3.

Thus two separate types of calculation are possi-
ble. If one wants only D3, one calculates diagonal
matrix elements of the operator d' defined by Eq.
(2.44). This is called an d'-type calculation. If one
wants the generalized ring series (whose first term
is D&), one must calculate the matrix M defined by
Eq. (2.62). This is called an M-type calculation
and requires more computer time than an d'-type
calculation. Similar approximations are made in
the two types of calculation.

Our main approximation is the use of several

angle-average approximations, in particular an
angle-average Pauli operator. We make it plausible
that the combined effect of all our approximations is
to produce an error of 15/o or less in D3.

The two-body reaction matrix is calculated in
momentum space in each two-body channel. Pure-

ly as a numerical technique, this matrix is represent-
ed as a sum of separable terms. Truncation of this
sum gives an error of order 0.5 MeV in D3 at twice
the empirical saturation density, and this error de-
creases rapidly as the density is lowered. Thus the
full complexity of the nuclear force can be treated
to good accuracy. One exception to this may be
two-body potentials with hard cores. The hard core
produces a long-range tail in the two-body reaction
matrix in momentum space. We use a cutoff at 8
fm ' in momentum space, and whether this pro-
cedure is adequate for a potential with a hard core
has not been investigated.

The calculations are fairly complicated. There-

II. GENERAL FORMALISM

We consider a system of A identical nucleons in

volume A. The nucleons are assumed to obey the
nonrelativistic Schrodinger equation with Hamiltoni-
an

A

H=QT;++ , uJ (2.l)

fore, the formulas and numerical procedures are
given in enough detail that the reader could repeat
the calculations and get the same numerical results.
This should be useful in detecting possible conceptu-
al or numerical errors, and in resolving passible
discrepancies with similar calculations done by oth-
ers in the future. Appreciable computer resources
are required for the calculations, e.g., a complete
M-type calculation for the Reid potential at one
density takes 2 —3 h on the IBM 370-195. By us-

ing different mesh parameters, more severe trunca-
tion of partial-wave expansions, etc., one can reduce
the computing time at the expense of some loss of
accuracy. Detailed tests are made of the accuracy
obtainable with various mesh parameters and trun-
cations. This material serves two purposes. First, it
allows the reader to judge the accuracy of the
present results. Second, for someone contemplating
similar calculations, it permits an estimate of the
amount of computer resources necessary to achieve
a given numerical accuracy.

The general formalism for d'-type and &-type
calculations is given in Sec. II. In Sec. III we intro-
duce the basis states used in numerical calculations,
and in Sec. IV certain important matrix elements
are calculated using these basis states. Equations for
computation are obtained in Sec. V, and the numer-

ical methods for treating them are given in Sec. VI.
Test calculations are described in Sec. VII, and
results for the two-body potentials uz, us (Reid), and

full Reid are given in Sec. VIII (these two-body po-
tentials are defined in the Appendix). Section IX
contains a summary and a discussion.

For readers who are not interested in following
all the details of the calculations, I suggest the fol-
lowing. First read Secs. II A —II C in order to
learn precisely which terms are included in D3 and
in the generalized ring series. Then skip to Sec.
VII 8, where qualitative arguments are given about
the number of partial waves needed in the calcula-
tions. Finally, go to Secs. VIII and IX for the nu-

merical results and discussion.
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where T; is the kinetic energy and U,J is the two-

body potential. The ground-state energy per parti-
cle depends on the density

p =A/0 (2.2)

p = 2kF /3' (2.3)

The three-body cluster energy (per particle) D 3

involves diagonal matrix elements in states with all

three particles in the Fermi sea. We reserve the

symbols p &, p2, ... for momenta in the Fermi sea,
so that

which is held fixed as A and 0 become large. The
noninteracting ground state describes a Fermi gas
with all single-particle momentum states filled up to
the Fermi momentum kF. Each momentum state
can accommodate four nucleons, and the density is

related to kF by

A. Basis states and operators

The wave function of a normalized single-particle
momentum state is

(ri Iq) = 0 '~ exp(iq ri), (2.5)

where the allowed momenta q are determined by
periodic boundary conditions. We regard q as an
index that labels the momentum q as well as spin
and isospin projections. We define

I qs)„, by

{rir2
I
qs } = (ri

I
q}(r2

I
s (2.6)

where na stands for "not antisymmetrized. " The
antisymmetric two-body state

I
qs) is defined by

I
qs ) = 2 '~ ( I qs)„, —

I sq)„,) . (2.7}

We then find the orthogonality and completeness re-
lations

Integrals over p; are understood .to run only over
the Fermi sea. If summation indices are not expli-

citly specified for a symbol X, then the expression
to its right is to be summed over all indices. The
notation

5(ab . . .
I

a'b'. . . ) = 5(a,a') 5( b,b'). . . (2.4)

is used, where the right-hand side is a product of
Kronecker deltas.

We use units in which fi/M = 1, where M is the
nucleon mass. Then energy has units fm, where
1 fm = 41.47 MeV.

In the succeeding subsections we derive the equa-
tions needed to calculate D3 (d'-type calculation)
and the generalized ring series (M-type calculation).
As mentioned in the Introduction, the equations can
be derived either by partial summation of the
Brueckner-Goldstone perturbation expansion, ' ' or
by truncation of the coupled-cluster equations. ' "
The derivation given here uses the perturbation ex-

pansion. However, we emphasize that all the results

can be obtained by appropriate truncation of the

coupled cluster equations, ' "which are a system of
equations that is equivalent to the many-body
Schrodinger equation. In particular, the equations
for d'-type calculations can be obtained from Eqs.
(4.41) and (4.49) of Ref. 11, and those for Mi'-type

calculations come from Eqs. (5.23)—(5.25) of Ref.
11. Here, however, we use the perturbation expan-

sion, assuming that the reader has some familiarity

with the partial summations of the perturbation ex-

pansion that lead to the hole-line expansion. ' '

(qs
I
q's') = 5(q,q'}5(s,s') —5(q,s')5(s,q'),

(2.8)

(2.9)

where Wi2 projects onto antisymmetric two-body
states. It is given in terms of the permutation
operator P&2 by

The three-body state
I q,st) is defined by

(r3ri&2 I q,st) = (r3
I
q)(ritz

I
st) .

(2.10)

(2.11)

It is antisymmetric in particles 1 and 2 but has no
simple symmetry under other permutations. The
orthogonality and completeness relations are

(q,st
I
q',s't') = 5(q,q')[5(s,s')5(t, t'}

—5(s,t')5(t,s')],
(2.12)

—,g I q,st)(q, st
I

= Mi2 . (2.13)

If P ~23 and P ~32 are the two cyclic permutation
operators for three particles, we define

X = P)23+ P)32 (2.14)

One then easily finds

X I q,st)(s, tq I

= X I q,st)(t, qs
I

= ~iix~iz
(2.15)

When we take matrix elements of this between
states that are antisymmetric in 1,2, as always hap-
pens in practice, the factors &~2 can be replaced by
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unity.
The two-body reaction matrix 6 is defined by

G = v —v(Q/e)G, (2.16)

where U is the two-body potential. The Pauli opera-
tor Q is defined by

Q I
st) =

I
st), if s & k~ and t & kF

=0, otherwise, (2.17)

and e is defined below.
In the three-body- problem we define 6 and Q to

act on particles 1 and 2. Two cases then arise: ei-

ther there is a spectator particle 3 above the Fermi
sea, or there is not. %'e use subscripts a and b,
respectively, for these two cases. If particle 3 is not
excited above the Fermi sea, we have

eb
I
st) = [E(s) + E(t) —~2] I

st), (2.18)

where E (s) is the single-particle energy and coq is

the energy of the initial two-body state in the Fermi
sea,

~2 E (p I }+ E(p 2 ) ' (2.19)

When a spectator particle 3 is above the Fermi sea
with momentum q, e, depends on q and is given by

e, (q}
I
st} = [E(q) + E(s) + E(t) —~,] I

st),

(2.20)

(0) ' (b) (c)
FIG. 1. Direct diagrams for the three-body cluster en-

ergy D3. Diagram (a) is called the third-order bubble di-

agram.

Since the spectator momentum q is one of the labels
of a three-body state, it is not necessary to insert
subscripts a, b on the left of Eqs. (2.23) and (2.24).
However, it is often convenient to do so because we
use quite different numerical procedures for cases a
and b.

Note that the operators Q, e, 6, and X are all
Hermitian and symmetric in particles 1 and 2. The
symmetry in 1,2 allows us to use a basis of three-
body states that are antisymmetric in 1,2 because
applying Q, e, G, or X to any such state preserves
this antisymmetry. Within such a basis the antisym-
metrizer Wiq in Eqs. (2.13) and (2.15) is unity.

B. Three-body cluster energy

where

co3 = E(pi) + E(pz) + E(p, ) . (2.21)

The reaction matrices calculated using e, (q), eb are
denoted G, (q), Gb, respectively. The Pauli operator

Q is the same in the two cases. However, we will

later use an angle-average approximation for Q that
is different in the two cases. Therefore, when con-
venient, we often write Q, or Qb for Q.

In the three-body basis, Q, e, and 6 are defined

by

Q Iq,st) = Iq,st), ifs & k~ and t & k~

Formulas for the three-body cluster energy D3
have been derived earlier using the coupled-cluster
equations. " Here, for reasons given earlier, we give
a more explicit derivation based directly on the
three-body cluster diagrams. The three-body cluster
diagrams have been discussed earlier in Refs. 2, 8,
13, and 21.

We use Hugenholtz diagrams as shown in Figs.
I and 2. Upgoing lines are called particle lines and

=0, otherwise, (2.22)

e Iq,st) = [E(q) + E(s) + E(t}—coi] Iq,st), if q&ky
= [E(s) + E(t) —cop]

I q st), if q & kF,

(2.23)

pV
I p,

(q,st IG Iq',s't') = 6(q q )(st
I
6.(q) Is't'), if q&kF

=@q q')(st
I Gb ls't'), if q & kF .

(2.24)

(a) {b) (c)
FIG. 2. Exchange diagrams for the three-body cluster

energy D3. Diagram (a) is called the third-order ring dia-

gram.
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represent occupied states above the Fermi sea.
Downgoing lines are called hole lines and represent
empty states in the Fermi sea. The dots are called
vertices and represent matrix elements of 6 between
the antisymmetric states of Eq. (2.7). Each pair of
equivalent lines (i.e., two lines in the same direction
that begin at the same vertex and proceed without
interaction to end at the same vertex) gives a factor
of —,. There is also an overall sign as discussed in

Ref. 22. In the diagrams we work from bottom to
top, so that the lowest interaction is called the first,
and the topmost interaction is called the last.

In this scheme there are exactly two three-body
cluster diagrams in each order. Those in Fig. 1 are
called direct diagrams and those in Fig. 2 are called
exchange diagrams. The arrangement of particle
lines is exactly the same in direct and exchange dia-

grams; only the hole lines differ.
Considering first the direct diagrams (Fig. 1) we

let T be an operator such that (a, bc
I
T

I p 3,p i p2)
gives the sum of all diagrams of second or higher

order that produce particle lines a,b,c, with b, c
emerging from the last interaction, and hole lines

p &,p2, p3, with p i,p2 entering the first interaction.
We first derive an expression for T and then show
how the direct contribution D3(dir) is related to T.

We write

T = gT'"',
n=2

(2.25)

where T'"' is the contribution of nth order in G.
The lowest-order contribution T' ' is seen from the
first two interactions of Fig. 1(b) to be

(a, bc
I
T

I p, ,p, p, )

= g (bc
I [Q/e, (a)]G, (a)

I
b'p3)

X (ab '
I

( gb«b )Gb
I p ip2)

Using the three-body matrix elements of 6 defined
in Eq. (2.24), we can rewrite this as

{a bc
I
T' 'Ip3, pipe) = g (a, bc

I
{Q/e, )G, la', b'c')(c', a'b'I {Q/eb)Gb lp3 pip2)

Ibt

= (a, bc I(Q, /e, )G,X(gbleb!Gb Ip3 plp2) (2.27)

The last equality is obtained using Eq. (2.15) and the
last paragraph of Sec. II A. Equation (2.27) gives an
operator expression for T' '.

To see how T' ' is obtained from T' ' we use the
first three interactions of Fig. 1(c) to get

(c,ab
I

T' 'Ip3, pip2)

= —(c,ab
I (Q /e, )G,XT' '

I p 3,p i p 2) . (2.29)

This shows how T' ' is related to T' ', and in gen-

eral we have

{c ab
I
T"'lp3 pip» T'"+"= —(g/e, )G,XT'"' n ) 2 . (2.30)

= —g (ab
I [Q/e, (c)]G,{c)

I
a 'b')

g Ibl

X (a b c
I
T Ip3 pip2), (228)

where the minus si~ comes from the energy
denominator e, (c). Following the derivation of Eq.
(2.27), we can rewrite Eq. (2.28) as

I

Using this with Eq. (2.27) gives

T'"' = ( —)"[(Qle )G,X]" '( Q leb )Gb, (2;31)

which is the desired expression for T'"'.
Again using Fig. 1(c), we can see how the fifth-

order energy contribution D3(dir, 5) is obtained from
T' '. We find

D3(dir 5) = —A '
—,g(pip3 I

Gb(gleb) lab")(b "p3
I
G, (a)

I
bc)(c, ab

I

T' '
Ip3 pip2)

'
—,g{p3 p i p2 I Gb(Q/eb»G. XT"'

I p3 pi p2) (2.32)

where the method used to derive Eq. (2.27) has been

applied. The factor A ' in Eq. (2.32) gives the en-
1

ergy per particle, and the factor —, comes from the

pair of equivalent lines p & p2.
The same calculation goes through for D3(dir, n)

in terms of T'" 3'. Using this fact along with Eq.
(2.31) gives

D 3 (dir n) = A '
—,g (p3p i p2 I

Gb(Q/eb )XG,X

X [—(Q/e, )G,X]"

+ (gleb )Gb
I p3 P 1 p2) .

{2.33)

We have derived this for n & 4, but explicit calcula-
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tion shows that it holds also for the lowest-order
term n = 3. So we define

8'd;„——g Gb(Q/eb)XG, X[ —(Q/e, )G,X]"(Q/eb)Gb
n =0-

(2.34)

and find

Note that (1 + X)
I p3, p i p2) is antisymmetric in all

three particles. Equation (2.40) is the desired ex-

pression for Ds. It is used in d'-type calculations,
where we need only D3 and not the generalized ring
series.

For the subsequent development it is useful to de-

fine several additional operators that are related to
We define

D3(dir) = ~ '
2 g(p»pip2 I ~dh Ip3p jp2) .

(2.35)

D = g ( —)"[X(Q/e, )G, ]",
n=0

(2.42)

We next consider the contribution to D3 from the
exchange diagrams of Fig. 2. In the direct diagrams
of Fig. 1, line p2 always proceeds from the last in-

teraction downwards to its final point at the first in-

teraction, while the final point of line p 3 is always
the second interaction. If, in any diagram of Fig. 1,
we simply interchange the final points of lines p2
and p3, we obtain the corresponding diagram of Fig.
2. Therefore, the contribution from the exchange
diagrams (Fig. 2) can be obtained from Eq. (2.35) by
omitting the factor —, (because there are no pairs of
equivalent lines in an exchange diagram) and replac-
ing the initial state lp3, pip2) by lp2, p3pi}. Also,
we could equally well interchange the final points of
lines p &

and p3 in the diagrams of Fig. 1, in which
case the exchange diagrams would be obtained by
replacing the initial state

I p s,p i p 2) in Eq. (2.35) by

lpi, p2p3) rather than by Ip2, pspi). It is con-
venient to use the average of these two possibilities
to get

D 3 (ex) = A 'g(p3, p ip2 I
d'd;„

& —,[ I pi p2p3) + lp2~p3p1)]

(2.36)

Noting that

X lp3~plp2) = I pl p2p|3) + I» 2ip3p I)

which is formally equivalent to

D = 1 —X(Q/e, )G,D .

Noting that

(2.43)

where

= GbQCeb 'Gb(1 + X), (2.45)

C = eb XG,DXQ . (2.46)

For convenience in numerical work, as explained
after Eq. (5.20), we also define

C = (1/eb)XG, DXQ,

so that

(2.47)

C = (eb/eb)C . (2.48)

Here, eb is a certain average of eb and is defined in

Sec. IVB, Eq. (4.21}.
The lowest-order contributions to C and 6' are

obtained by putting D equal to 1. We define

X[—(Q/e, )G,X]"= [—X(Q/e, )G, ]"X,
we find from Eqs. (2.34) and (2.41) that

& = Gb(Q«b)XG. DX(Q/eb)Gb(1+ X)
(2.44)

we find

D3 (ex) ~ Q(p3 pl p2 I &- lp3 p 1 p2)

(2.38)

Co ——(1/eb )XG,XQ,

+B Gb(Q/eb}XG X(Q/ b)Gb

Pg ——PgX .

(2.49)

(2.50)

(2.51)

where

(2.39)

The bubble diagram of Fig. 1(a) is obtained from
6's, and d'~ gives the ring diagram of Fig. 2(a).
The higher-order contributions CH and d'z are de-
fined by

Thus D3 ——D s(dir) + D3(ex) is given by

D3 ~ i Q(p3~plp2, 1
& lp3~p lp2» (2 40}

C =CO+ C~,

W=Wg+Wg+W~

(2.52)

(2.53)
where

6' = Pd;, + d',„=Pd;, ( I + X) . (2.41)
The procedure for 6'-type calculations can now

be summarized. Equation (2.43) is solved for D,
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which is used in Eq. (2.44) to obtain 8'. Having 8,
we obtain the three-body cluster energy D3 from
Eq. (2.40). In an M-type calculation, on the other
hand, we calculate not only D3 but also the entire
generalized ring series, to which we now turn our
attention.

C. Generalized ring series

The results so far are sufficient for an d'-type cal-
culation, in which we only calculate the three-body
cluster term D 3, which has three hole lines. As
discussed in the Introduction, the Bochum trunca-
tion "of the coupled-cluster equations implies
that a set of terms with four, five, ... hole lines should
be included with D3, giving the generalized ring
series. " In this subsection we define these terms
and derive formulas for them.

We start with the pair excitation amplitude
(ab

I
Sz

I p i pz), which is given by the sum of all
linked diagrams with external particle lines a,b and
external hole lines p i,pz. The lowest-order (two-
hole-line) contribution is

(rzb Isz ' IPiPz) = (ub
I
Qe—b 'Gb IPipz) .

(2.54)

Every contribution to S2 involves an operator with

Q at the far left. We define Sz to be the result ob-
tained by omitting this factor Q, so that

(ub Isz lpipz) = (orb leb 'Gb—lpipz) .

(2.55)

Sz, as indicated in Fig. 3(a). We now derive for-(2)

mulas for J ' and Mf. Then the generalized ring
series will be generated by repeated application of

We begin by noting that

D3 ~
2 Q(p lpz I

GbQJ" lpip2)

X(p 1 p2 I GbQ
I
ub)(ub

I
J ".

I p ip2)

(2;57)

(2.58)

where we have used the completeness relation (2.9).
However, D 3 can also be obtained by putting Eq.
(2.45) for' 8 into Eq. (2.40). After this, we insert
the three-body completeness rel'ation (2.13) between

Q and Cto get

D3 A' , g—(pip—,
I GbQ I

ah)

X(P3 ab I'«b 'Gb(1+ X)lp3 PiP2)

(2.59)

Comparing Eqs. (2.58) and (2.59) gives

(ab
I
J "

Ipipz) = g (p3, ab 1«b
P3

X Gb(1+ +) IP3 PiP2»

(2.60)

which is the desired equation for J '. Inserting Eq.
(2.13) just to the right of C and just to the right of
Gb in Eq. (2.60) gives

«b
I
J "I» ip2} g (ubpip2 I~

I

&'b'pip2

We will derive equations for S2 rather than S2 be-

cause it is S2 that is most conveniently evaluated by
our numerical methods. This is explained after Eq.
(3.27}.

Removing the last interaction from .any three-

body cluster diagram gives a three-hole-line contri-
bution to Sz. An example is shown in Fig. 3(a),
which is obtained by removing the last interaction
from Fig. 1(b). The sum over all three-body cluster
diagrams of such contributions to S2 is denoted J
An additional three-hole-line contribution to S2 is
obtained from J '

by inserting a particle-particle G
matrix as shown in Fig. 3(b). The sum of these
three-hole-line contributions can be written formally
as

I I
a'b'p

& p2

X (a'b'ISz '
lpip2

(2.61}

—(2)
2

Sz —(1 —eb 'GbQ) J (2.56)

Any contribution to J ' begins with S2 and can(2)

therefore be written as an operator M applied to

(a)

FIG. 3. Diagrams contributing to the pair excitation
amplitude S2 and illustrating the definition of the matrix
AE, as discussed in the text.
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where

(~bPiP2I~I~'b'PiP2 }

= —g (P3, ab
I
C

I P3, a 'b')

X (P 3 tP IP2 I
1 + X I» 3.P 1P2} .

(2.62)

In a more compact notation, we can write Eq.
(2.61) as

J"=mS 2 (2.63)

where multiplication by the matrix M involves a
-sum over both particle and hole indices.

Having the matrix M, we obtain J ', Sz, and
D 3 = D 3 from S2 by using Eqs. (2.63), (2.56),
and (2.57}. The generalized ring series is defined by
continuing this process. Thus we define

i~"+"=~S'"' n ) 2

S," = (1 —eb 'GbQ)J n ) 3

' —g(P iP2 I
GbQJ "'

IP iP2)

(2.64)

(2.65)

(2.66)

J tot ~ Jt+)
72 =3

(2.67)

where GR stands for generalized ring. The quanti-
ties J "', S2", and D„are represented by diagrams
involving exactly n hole lines. In particular,

D3 "——D3, and D4 is the four-hole-line contribu-
tion of class B1 in the notation of Ref. 8.

The generalized ring series is summed by invert-

ing an appropriate matrix. Defining

(b)
FIG. 4. The first two forward-going ring. diagrams.

The ordinary nth order ring diagram is contained
in D„. Figure 4 shows the ordinary ring dia-

grams of third and fourth order. Note that diagram
4(a) is identical to diagram 2(a). The contribution
from the ordinary ring diagrams is obtained from
our formulas as follows: (1) In Eq. (2.62) for M we

replace C by its lowest-order contribution Co from
Eqs. (2.48)—(2 49). (2) Also in Eq. (2.62) we in-

clude only the X from "1 + X." (3) We omit
particle-particle interactions; i.e., we replace Eq.
(2.65) by $2" ——J '"'. Thus the generalized ring
series contains all the ordinary ring diagrams of Fig.
4. These diagrams are often called forward-going
ring diagrams. The backward-going ring diagrams,
of which one example is shown in Fig. 5, are not in-

cluded in the generalized ring series. The reason
that it is preferable to treat the backward-going rings
separately from the forward-going rings is discussed
in Ref. 6 in connection with Fig. 43.

D. Perturbation theory for d' and C

s,"' = gs,'"',

g) GR y g) GR

N=3

one easily finds

(2.68)

(2.69)

In numerical work Gb is treated exactly, but G,
is approximated by a sum of separable terms. To

S2" ——[I —(1 —eb 'Gb Q)~] 'S2 ', (2.70)

(2.71)

Dtot '4 2 Q(P1P2 I
GbQJ"' IP iP» (2.72)

So in order to calculate the generalized ring series
(M-type calculation) we must first construct the
matrix M of Eq. (2.62). Then we can iterate the

. generalized ring series using Eqs. (2.64) —(2.66} and
sum the entire series using Eqs. (2.70)—(2.72). FIG. 5. A backward-going ring diagram.
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make the calculation tractable it is necessary to
truncate this sum. Thus a small error 5G, is al-

ways present because of the omitted terms. We can
largely correct for this error by using first-order per-
turbation theory. From Eqs. (2.45) and (2.62) we
see that the basic quantity needed in either an 6'-

type or M-type calculation is C, which involves

G,D [see Eq. (2.46)]. Thus we need a formula for
the first-order change in G,D caused by a change

5G, in G, . Since G,D occurs only between three-

body states with particle 3 above the Fermi sea, it is

sufficient to calculate Q35(G,D)Q3, where Q& is the

projection operator that requires particle 3 to be
above the Fermi level.

From Eq. (2.42) we obtain to first order in 5G,

5(G,D) = 56, —5G,X(Q/e, )6,

(2.79) shows that Eq. (2.74) remains valid when

[G,Xgle, ]" is replaced by [6,(g/e, )X]"in the
left-hand sum, and this establishes the desired result

Eq. (2.75).
The first-order change 6d' caused by 5G, is

5d' = Gb(Q/eb)X5(G D)X(gleb )Gb(1 + X) .

(2.80)

Using Eq. (2.76) and its Hermitian conjugate, we see
that Eq. (2.80) remains valid if we insert Qs just to
the left and right of 5(G,D). We then use Eq.
(2.75), after which the factors Q3 are removed by
again using Eq. (2.76). The result is

56' = Gb(Q/eb)XD 5G,DX(Qleb)Gb(1 + X) .

(2.81)

. —G,X(Q/e, )5G, +
Rearranging and inserting factors Q3 gives

Q35(G.D )Qs

(2.73) The preceding argument cannot be used to calcu-
late 5C because the absence of a factor Q on the left

of Eq. (2;47) prevents the use of Eq. (2.76). We
can, however, derive

= Qs g ( —)"[G~XQ/e ]"56,
n=0

X g ( —) [X(Q/e. )6 ] Q3 ~

m=0

5(QC) = Q(1/eb)XD 5G, DXQ .

If we now define

AC = (1/eb)XD 56,DXQ,

(2.82)

(2.83)

(2.74)

The right-hand sum in Eq. (2.74) gives the operator
D. The left-hand sum would be the series for the
Hermitian conjugate D if we could replace
[G~XQ/e~]" by [G~(g/e, )X]". We will now show

that this replacement is justified in Eq. (2.74), so .

that we get, to first order in 5G„

then AC is not the first-order change in C, but it is
true that

5(QC) = QEC . (2.84)

Since any interesting quantity involves QC rather
than C alone, it.is sufficient for our purposes to cal-
culate AC.

Q35(G,D)Q3 ——Q2D 5G,DQ3 . (2.75)

To justify the replacement Xg/e, ~ (Q/e, )X in

the left-hand sum of Eq. (2.74), we use the formulas

Q3XQ =Xg,
G~X(g/e, )Q3 ——Q3G, (Q/e, )X,

(2.76)

(2.77)

[G,XQ/e, ]"Q3 ——Q3[6,(g/e, )X]", n ) 0

(2.78)

Q3'= Q3. (2.79)

Equations (2.76) and (2.77) are easily derived; Eq.
(2.78) follows from Eq. (2.77); and Eq. (2.79)
expresses the fact that Q3 is a projection operator.
From Eq. (2.76) we see that Eq. (2.74) remains valid

if a factor Q3 is inserted just to the right of 5G, .
Since [5G„Q3]= 0, we can move this factor to the

left of 56, . Then application of Eqs. (2.78) and

E. Transformation to relative

and total momentum variables

1

D2 ~ z Q(plp2 I
Gb lpip2) (2.85)

where the state
I p 1 p2) is defined by Eqs. (2.6) and

For nuclear matter all operators of interest con-
serve total momentum. We take advantage of this

by transforming to a representation labeled by rela-

tive and total momenta. This also allows us to el-

iminate explicit factors. of A and 0 in favor of

p =A/Q.
We first review this process for the two-body en-

ergy D2. The extension to D3, D„,and Sz isGR (&

then straightforward. Spin and isospin variables

play no role and are suppressed.
We have2
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(2.7). Defining

ko =
2 (Pi —P2}

P= P1+ P2 s

(2.86)

(2.87)

so that a three-body plane wave can be written

expi(k, ri+ k2 r2+ k3 13)

= expi(A 9F + K p + k r) . (2.103)

we use the fact that G conserves P to get

(p 1 p2 I Gb Ip i p2} = Q '(2ir)'( ko
I
Gb(P}

I
ko)

(2.88)

Since 6 conserves A, we find

(pi pip2I & lpga pip2)

= Q (2m. ) (Koko
I
8'(M)

I Koko), (2.104)

1 = 1) —12 . (2.90)

In Eq. (2.88) Gb depends on P through eb and Q
(see Sec. IV). Using

g —+Q(2m) Jd pi
P)

and putting Eq. (2.88) into Eq. (2.85) gives

(2.91)

+2 2 (2ir) 'p ' f"pi" p2(ko I
Gb(P}

I
"o)

(2.92)

where ko and P are functions of p ~, p2 given by
Eqs. (2.86) and (2.87), respectively. Equation (2.92)
is the desired expression for D2.

We proceed analogous' for D&. For any three
single-particle momenta k i, k2, k3, we define

M = k)+ k2+ k3, (2.93)

where the state
I
ko) of relative motion has the wave

function

(rlk )=2 ''(27T} ''(e ' —e '
)

(2.89)

where 4, Ko, ko are defined by Eqs. (2.93), (2.94),
and (2.95), respectively, with k; ~ p;. In Eq.
(2.104) we also have defined

IKoko} = IKo} I
"o

(p IKo) = (2n) exp(iKo p),
where

I
ko) is defined by Eq. (2.89). The state

I
Ko) describes the motion of particle 3 relative to

the center of mass of 1 and 2. In Eq. (2.104)
d'( P7) operates in the space (2.105) and depends on

because e„g„and G, depend on 4 (see Sec.
IV). Putting Eq. (2.104) into Eq. (2.40) and using

Eq. (2.91) gives

D3 ———,(2ir) 'p ' Jdp, dp2dps

X(Koko
I
&(~) IKoko}

(2.105)

(2.106)

(2.107)

where

which is the desired formula for D3.
We must make a similar treatment of the pair ex-

citation amplitude Sz. The two-hole-line contribu-
tion to Sz is found from Eq. (2.55} to be

(ab IS&
'

lpip2) = Q '5(P,P')(2n)i(k IS& '(P)
I
ko),

(2.108)

K = —,(ki+ k2) —, —,k3,

k = —,(ki —k2),

(2.94}

(2.95)
k = —,(a —b),
P'= a+ b,

(2.109)

(2.110)
P= k, + k, = —,A" +K.

The inverse transformation is

k) ———, A + —,K+ k,
]

k2 ———,A + —,K —k,
k3 ———, A" —K .

We also define the coordinate transformation

)(ri+ f2+ I'3),

P 2( I + 2} 3

r= I) —r2,

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

("
I
S'z '(P)

I
"o}= —(k

I
I:i~eh(P)]Gb(P)

I
ko)

(2.111)

and 5(P,P') is a Kronecker delta. Similarly, from
Eq. (2.60) we find

(ab
I

J 'Ipip2) = Q (2ir) 5(P,P')(k
I
J (P)

I
ko),

(2.112)
where

(k
I
J '(P)

I
ko)

= Jdp3(Kok ICeb 'Gb(1+ X)
I
Koko} .
(2.113)
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=P+ p3,
1~ 2Kp= 3P 3 p3.

(2.114)

(2.115)

III. PARTIAL-WAVE REPRESENTATION

For numerical work we use a partial-wave

representation and introduce spin and isospin vari-

ables. Several diferent sets of two-body and three-

body states are needed later on, and in this section

we define these states and give several useful formu-

las for transforming from one basis to another.

A. States of the spectator particle

We first consider s'tates of the variable p of Eq.
(2.101) describing the motion of the spectator parti-
cle 3 relative to the center of mass of 1 and 2. The
state

~

K} is defined by giving its wave function

(p ~K) = (2ir) ~ exp(iK p),
where K is defined by Eq. (2.94). The completeness
and orthogonality relations are

(K
~

K') = gK —K'),

In this equation the right-hand matrix element
depends parametrically on 4, and A,KO are func-
tions of P,p3 given by

where y and p are single-particle spin and isospin
functions, respectively. The resulting changes in

orthogonality and completeness relations and in the
overlap equation (3.7) are obvious.

B. Tpvo-body states

The spatial wave functions of relative motion for
particles 1 and 2 are defined by

(r
~
k)„,= (2ir) ~ exp(i k r ), (3.10)

(r
~

klm )„,= i (2/ir)'~ kji(kr)1'~m(r) . (3.11)

These definitions are analogous to Eqs. (3.1} and

(3.4) and lead to similar orthogonality, complete-
ness, and overlap formulas. In Eqs. (3.10) and
(3.11) we use nonantisymmetrized states (subscript
na). It is only the overall two-body wave function,
including spin and isospin, that should be made an-

tisym metric.
Next we include spin and isospin and then an-

tisymmetrize by applying the operator
2 ' (1 —Pi2). Doing this for the states (3.10) and
(3.11) gives

(r ~kSMs ll, ) = (2ir') 2

y[eik r
( }S+Te ik r~—

f«~K)(K~ =1. (3.3) X XM,(1,2)&T (1,2), (3.12)

The partial-wave state
~

KLM) is defined by

(p ~KLM ) = i (2/ir)' 'Kjl. (Kp)&1M(p),

(3.4)

( r
~

klmSMsl i, ) = 2'~ v(IST)(r
~

klm )„,

X XM, (1,2)&T (1,2), (3.13)

where

y. fdK ~KLM)(KLM
~

=1.
LM

(3.6)

where jI is a spherical Bessel function. Equation
(3.4} gives

(KLM iK'L'M') = 5(LM iL'M')5(K —K'),

, (3 5)

v(IST) = [1 —( —)'+ + ]/2, (3.14)

and XM and A,T are two-body spin and isospin

functions, respectively.
The two-body states used most often in numerical

work are defined by

(r
~
klSjj, l i, ) = 2' v(IST)i (2/ir)' kji(kr)

From Eqs. (3.1) and (3.4) we calculate the overlap
integral

(K ~K'L'M') = K '&(K —K')&~ M (K) . where

&& 3riis(1 2)A T,(1 2) (3 15)

(3.7) &Jis(1,2) = g (ISmMs Ijj.)rim(r)XM (1,2) .
mM&

We include spin and isospin by writing

(p [Kcr3r3) = (p i K)y, (3)p,,(3), (3.8)

(p ~

KLM cr3T3) = (p ~
KLM)y, (3)p, (3), (3.9)

Using the notation

f = IISJT),

(3.16)

(3.17)
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we can write the completeness relation for the states
(3.15) in the form

—,g f dk
I kfj, T, )(kfj, T,

I

= Wi2, (3.18)

We now introduce a representation that will be
used later for t;he pair excitation amplitude S2 and

the generalized ring series. The lowest-order ap-
proximation S2 is eb 'Gb —[see Eq. (2.111)]. Us-

ing an angle-average Pauli operator, we find in Sec.
IV C that 6 conserves Ijj,SX i,' J and is independent

ofj„T,. In analogy with Eq. (4.30) we can there-

fore write

(kfj, T. IS&"
I kofoj o*Toz)

= 5(Sjj.TT.
I
Soj oj o ToTo* )

&& (kl
I
Sz '(J oSoTo) I

kolo)

where Wi2 is defined by Eq. (2.10). Overlap in-

tegrals among the various two-body states are
derived straightforwardly. For example, an overlap
integral that will be needed in Sec. V A is

(kSMs'l l, Ik'fj'', '
T,

'
)

= 5(STTg
I
S'T'Tz )2v(l'S'T') k '5(k —k')

X g(l'S'm'Ms Ij j', )Yi ~ (k) . (3.19)

We expand the k dependence of Sz (fplkkp) in this

way and denote the expansion coefficients by

S2(fplnkp) T.hus we have

S~(fpinko) = fdkpn(k)S2(f plkk p)
t

(3.26)

Other quantities are transformed between the k and

n representations in the same way. For example,
the matrix element appearing in Eq. (5.19) is defined

by

(doKon "l
I
C(g Ra ) IdoKpn'I')

= f dk "dk 'p„(k ")(d pK pk "l
I
C (g 9'a )

)(
I
dpKpk'l')p„'(k') . (3.27)

we can now see the reason for working with S2
rather than with S2 ——QS2. Equation (3.22) for S2

'

is a smooth function of k and is therefore suitable
for expansion in the polynomials p„(k). However,

S2 is obtained by multiplying S2 by the angle-

average Pauli operator Q (P,k) of Eq. (4.3), which
has a discontinuous first derivative with respect to k.
Thus S2 is not a smooth function of k, and it would
be inefficient to expand it in p„(k). Instead, we cal-
culate S2 as an expansion in P„(k) and multiply by

Q (P,k) at the end of the calculation.
Next consider the dependence of S2 on kp. We(2)

can approximate any function F(kp) by
where

(kl
I
S2 (j oSoTo) I

kolo) = —(kl
I
eb Gb

I
kolo)

P
F(ko) g F(m)ko

m=1
(3.28)

(3.21)

fp„(k)p (k)dk = 5(n,m) .

Any function F(k) can be expanded as

(3.23)

and we have suppressed the dependence of Gb on P.
We now define

S2 '(folkko) = (kl IS2 'VoSoTo) Ikolo)

(3.22)

with similar definitions for S2" and J "'. The new

representation is now obtained by expanding the

dependence of S2 on k and kp in certain basis(2)

functions.
Consider first the dependence on k, and let p„(k)

be a complete set of orthonorrnal functions,

We determine the coefficients F(m) by requiring
that Eq. (3.28) be exact at p grid points koi, ...ko~.
This gives

P
F(m) = g Y(m, i)F(kp;), m = 1,2 p,

(3.29)

where the matrix Y is the inverse of the matrix K
defined by

K(i,m) = kg ', i,m = 1,2, ...p . (3.30)

In Eq. (3.28) the first term contains the zeroth
power of kp. If we want the leading term to be kp,
we simply apply the above procedure to kp "F(kp)
instead of to F(ko). In particular, for S2" and J "',
we define the transformation between the kp and pl
representations by

F(k) = QF(n)p„(k), (3.24) S2" (fplkkp) = g S2"'(fplkm )ko™, (3.31)

. where

F(n) = fF(k)p„(k)dk . (3.25)
S2 (fplkm) = g kp' Y(m, i)S2 (fplkkp )

(3.32)
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We have used the fact that Sz"' is proportional to
l0+ 1

ko' as ko~0. This dependence on ko comes
from the factor koji (kor) in Eq. (3.15)for the wave

function of the inital state.
In deriving equations for computation of the gen-

eralized ring series, we will frequently transform
between the k and n representations and also
between the ko and m representations.

C. Three-body states

Three-body states are obtained as products of
states of particle 3 with states of relative motion of
particles 1 and 2. For example, the state

~
Ko3r3, kSMsl l, ) is simply the product of the

states (3.8) and (3.12). After taking the product, it
is often useful to recouple angular momentum and
isospin. Applying this procedure to Eqs. (3.9) and

(3.15) gives the three-body state

~

Kk [(L—, )J(IS)j]gg, ( —,T)W~, )

—=
~

dKkl, g g, 9'w w, ), (3.33)

where

(3.34)

(3.35)

In Eq. (3.33) L is coupled to the spin of particle 3
to give J, and the isospin of particle 3 is coupled to
T to give ~. The other couplings are self-

explanatory. In numerical work, as a result of ap-
proximations explained in Sec. IV, total angular
momentum +, total isospin W, and parity 9' are
all conserved. Since 9' is conserved, it is con-
venient to write it explicitly in Eq. (3.33), even

though it is redundant because of Eq. (3.35). The

&& (dKkl, g g, Ha ~,
~

= M», (3.37)

where Wii is defined by Eq. (2.10).
If we start with Eq. (3.33) but couple the angular

momenta differently we obtain the state

i
Kk [(Ll)W( , S)P']g—g,( , T)a ~—,) .

The states (3.33) and (3.38) are related by

(3.38)

~

dKkl, g g, 9'a W, )

X
~

Kk [(Ll)W( , S}P']g+—,( , T)~~, )—,

(3.39)

where the curly bracket on the right of Eq. (3.39) is

a 9j symbol, and we use the notation

a =2a+1. (3.40)

.Matrix elements of G take a simple form in states

(3.33) while matrix elements of X are more con-
veniently calculated in states (3.38}.

Two other overlap integrals that are used later on,
and whose derivations are straightforward, are

orthogonality and completeness relations for the
states of Eq. (3.33) are

(dKkl, g g, 9'M M,
~

d'K'k'I', y'g, H'M 'M, )

= 2v(IST)5(K —K')5(k —k')

x 5(dig g,~~, (d'I'g'g, a'a, ),
(3.36)

,'g—fdKdk ldKkl, gg, en~, )

(K'o3r3k'S'Ms T'T, ~dKkl, g g, 9'w w, }

= 2v(IST}5(S'T'
~
ST)K '5(E —K'}k '5(k —k'}

(L M~3
I
JJ*)(ISmMs

I Jj.)(JJJj. I XX*)( T'AT
I
~~ )YLm(K ') Yim(k')

MJ mj

(K'o3r3,k'fj'z Tz ~dKkl, g g, 9'ww, ) = 2v(IST)K '5(K —K')5(k —k')5(f f')( —,Tr3T, ~Ww, )

)& g(L ,Mo3
~
JJ, )(JJJ—,J, ~gg, )YI.M(K') .

MJ
(3.42)

The following identities among spherical harmonics
and Clebsch-Gordan coefficients will also be used
later:

g(abmn
~

ck )(abmn
~

c'k') = 5(ck
~

c'k'),
mn (3.44)

g YIM (K ) Y„-M(K ) = (4m } 'L, (3.43)
g(abmn

~

ck)(a'bm 'n ~ck) = 5(am ~a'm')c/a

(3.45)
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The separable representation for G„given by Eq.
(4.32), motivates the definition of a diff'erent type of
three-body state. Using the fact that 6, does not af-

fect the quantum numbers (KLJri) of particle 3,
and using Eqs. (4.30) and (4.32), we find

(dKkl, g g, 9'S W,
~

G,
~

d'K'k'1', g'g, H'a'W, )

= 5(d g g,a a,
~

d 'g 'g, a 'W, )5(K —K ')

X gggi (k,K)~p (K)gg (k K) (3.46)
P

We now define the state
~

d pK,gg, HP a, } by

giving its overlap with the complete set of states
(3.33}:

(d'K'k'1', g'g, P'W'W,
~
dPK,g g, HW~, )

=5(K —K') 5( d'g'g, 'W'a, '
~
dg g,WW, )

g=gjdK,
a dP

(3.50)

5(a,a') = 5(d,d')5(PP')5(K —K') . (3.51)

IV. MATRIX ELEMENTS OF Q, e, v, 6, X

We plan to write the equations of Sec. II using
the basis states defined in Sec. III. To do that we
need matrix elements of the operators Q, e, G, and
X in these basis states. In this section we derive for-
mulas for these matrix elements. We also introduce
several approximations that are necessary to make
the numerical work tractable. These include use of
an angle-average approximation for Q, and the use
of constant average values for

~
g

~

and coal, instead
of letting these quantities depend on p ~,p2, p3.

Xgg (k',E) . (3.47) A. Matrix elements of Q

Then we find the convenient formula

G. = g g J dK ~dPK,g g,~~~, )

ff,S~ dP

XAg&(K)(dPK,g g, WWW,
~

. (3.48)

a = IdPKI, (3.49)
l

This representation of 6, plays a central role in

reducing the equations to a form suitable for numer-
ical work. Also in connection with this equation, it
is convenient to introduce the following notation,
which will be used later:

= 0, otherwise, (4.1)

where ki and kz are given by Eqs. (2.97) and
(2.98). However, in numerical work we use a
partial-wave basis. In the basis constructed from
Eqs. (3.4) and (3.11) we find

The operator Q requires
~
k,

~
& kF and

~
kz

~
& k~. It is diagonal in a representation la-

beled by K,k, and depends parametrically on 4,
with eigenvalues

Q (W,K,k }= 1, if k, & k~ and kz & kF

„,(KLMklm
~
Q(A )

~

K'L'M'k'I'm')„,

= JdK dk (KLM ~K )„,(klm (k )Q(X,K,k )(K (K'L'M')(k ~k'1' m)„, ,

= 5(K —K')5(k —k') fdK, dk, Q(M, K„k,) Yr'sr(K, ) YL sr (K, )Yi~(k, ) Yj ~ (k, ) . (4.2)

The integral in Eq. (4.2) is to be evaluated using

~
K,

~

= K,
~
k,

~

= k. The complicated angular
dependence of Q (M,K„k, ) prevents use of the
orthogonality properties of the spherical harmonics.
Thus no further simplification is possible, and Q
does not conserve any of the quantum numbers
(LMlm). Also, since Q(M, K„k,) QQ(M,
—K„—k, ), Q does not conserve parity 9'
= ( —)'+'.

In this paper we avoid these complications by us-

ing an angle-average approximation for Q. Con-
sider a state where particles 1 and 2 have magni-
tudes P and k of total and relative momentum,
respectively t'see Eqs. (2.95') and (2.96)j. The angle-

average approximation to Q is diagonal in this

representation with eigenvalues

Q(P,k)=0, k + ,P (k~—
= min I 1,(k + ,P —k~ )/Pk—I,otherwise .

(4.3)

This formula has usually been derived for P & 2kF,
but it holds for any value of P.

The volume of k space excluded by Q depends
on P but is never larger than the volume of two
Fermi spheres. This is a very small fraction of the
important region of k space, which is a sphere
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Q, (E,k) = Q(P„k), (4.4)

whose radius is about 4 fm '. Largely for this
reason, the use of the angle-average app'roximation
for Q has been found quite accurate for calcula-
tion of the two-body energy D2. In the calculation
of D2 one always has P & 2k+, so that Eq. (4.3) is

1

exact for k & kq + —,P. In the three-body equa-

tions, however, values of P larger than 2k~ occur.
In this case, as pointed out by Ioannides (private
communication), Eq. (4.3) remains approximate
even at fairly large values of k. Thus the fraction of
k space in which Eq. (4.3) is exact becomes smaller
as P increases, even though the volume in k space
excluded by Q remains fixed. For this reason it
would be worthwhile to check the accuracy of 6-
matrix elements calculated using Eq. (4.3) for large

P, but this has not yet been done.
The angle-average approximation (4.3) is applied

differently in the two cases (a) particle 3 is above the
Fermi sea and (b) particle 3 is in the Fermi sea. In
case (a) we shall want to apply Q, to three-body

states in the basis of Eq. (3.33), labeled by E,k with

parameter M = Mo.
'

From Eq. (2.96) we see that
P depends on the angle between Mp and K; so P
does not have a definite value in the basis of Eq.
(3.33). However, we force Q to be diagonal in this

basis by choosing an appropriate average value of P
and using Eq. (4.3). Thus we define

Qs(k) = Q(Pb, k),

where

(4.8)

(4.9)

B. Matrix elements of e

= —,k /m* —Ep, k (k~. (4.10)

The parameters m ~ and Ep are obtained from self-

consistent two-body calculations.
As explained in Sec. II A, we distinguish the two

operators e, (particle 3 above the sea) and eb (parti-
cle 3 below the sea). From Eq. (2.20) or Eq. (2.23)
we find

e, = —,(ki + k2 + ki ) —co3, (4.11)

where k; is the momentum of particle i above the
Fermi sea. We rewrite this in terms of A,E,k us-

ing Eqs. (2.97)—(2.99). For A we use the average
value A, of Eq. (4.6). We also replace co& by its

average value co3, which is seen from Eq. (4.10) to
be

The energy denominator e depends on the single-

particle spectrum, which we take to be

E(k) = —,k, k & kF

where

P =(4M /9+K')'" (4.5)

C03 —0.9kF /m * —3Ep

Thus we find

(4.12)

is the rms average of P over the angle between 4"p
and K.

In numerical calculations we have neglected the
dependence of A on p&, p2, p3 and instead have

used the fixed, average value

'e, (E,k) = y, 2+ ki,

where

2 ' 2 3 2y, = —,Ap+ 4E

(4.13)

(4.14)

(4.6)

+P= P1+ p2~ (4.7)

and we simply replace P by its'rms value over two-

body states in the Fermi sea. Thus we define

Since 4 o does not vary, the dependence of Q, on
A o is suppressed in Eq. (4.4).

In case (b) we apply Qb either to a two-body state

[as in Eq. (2.26)] or to a three-body state of type
(3.33) that occurs just before the last or just after
the first interaction in a three-body diagram [as in

Eq. (2.27)]. In neither case do we treat the depen-
dence on P in detail. We know. from momentum
conservation that

The operator e, is diagonal in the basis (3.33) and
takes the value (4.13).

The operator eb is used for a state of two particles
with momenta k ~, k2 above the Fermi sea and two
holes p i, p2 in the sea. Equation (4.10) and either
Eq. (2.18) or Eq. (2.23) give

eb ———,(ki + k2 ) —E(pi) —E(pi) . (4.15)

Introducing relative and total momenta via Eqs.
(2.86), (2.87), (2.95), and (2.96), and using the spec-
trum (4.10), gives

eb ——k + ,P (1 —I/m~) —k—o/m + 2Ep.

(4.16)

Just as in our treatment of Qi, in Sec. IV A we
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now replace P by an average value. We average
P = (pi + p2) over p, and p2, subject to the
constraint

~ pi —p2 ~

= 2ko. The result depends
on ko and is given by

P (ko) = 2.4kb (1 —x)[1 + x /(3x + 6)],
(4.17)

where

yb
——0.3(1 —2/m*)kr + 2Eo. (4.22)

Equations (4.19)—(4.22) are used for both two-

body and three-body states.

C. Matrix elements of v and 6

Since the two-body potential v conserves jST and
is independent of j„T„wecan write

x = ko/kF .

Thus we finally get

(4.18)
(kISJj, 'I C,

I

u
I
k'I'Sjj TT ) = (kl

I
u

(4.23)

eb(k, ko) = k + yb (4.19)

yb ———,P (ko)(1 —1/m*) —ko /m* + 2Eo .

(4.20)

We now define eb by averaging Eq. (4.20) over
kp. This average is most easily obtained by replac-
ing P and ko in Eq. (4.16) by their average values

6kF /5 and 3kb. /10, respectively The .result is Si2 ——3(o i. r )(o2. r ) —o i o2 . (4.25)

For a given two-body (JST), the potentials con-
sidered in this paper can be written

vj = uj (r) + vP (r)Si2+ v/q (r)1 S,
(4.24)

where the tensor operator is

eb(k) = k + yb (4.21) Using Eq. (3.15) we then find

(kl
~

uj ~k'I') = i v(IST)(4kk'/ir) f jikr f 5(l,l')uj (r) + (ISj ~S, ~I'SJ' &up (r)

+5(l,l')(ISj
~

1 S ~ISj &viz (r)]ji(k'r)r dr, (4.26)

where, forA = S&2 or A = l S, we have defined

(ISj l~ II'Sj &
= &&jls(1») l~ I +Ji's(1.»&

(kISjj,lI, (G (k'I'SJj, 'll,') = (kl IG Ik'I')

(4.30)

and Pjb is defined by Eq. (3.16). The factor I
in Eq. (4.26) should be noted.

The equation for 6 is

(4.27) Putting the completeness relation (3.18) into Eq.
(4.28), we find

(kl iGJs ik'I') = (kl iuj ik'I')

——, g f dk "(kl ~uj (k "I")

G = u —u(Q/e)G (4.28)

and we solve this i'n the
~
klSjj, ll ,) representatio'n'

for the relative motion of particles 1 and 2. We use
the angle-average Q(P,k) of Eq. (4.3), and we have

e=k +y. (4.29)

Thus G depends on the two parameters P and y .
As discussed in the preceding two subsections, the
choice of P and y is different in the cases (a) and
(b). Since Q and e are diagonal and depend only on
k, 6 conserves jST and is independent of j„T,.
Therefore, we can write in analogy with Eq. (4.23)
{we suppress P and y )

XQ(P,k")(k "2+ y )
—'

X(k "I"
~

GJ ik'I')

(4.31)
For fixed values of j(ST,Py ) we solve this equation
numerically in momentum space to obtain matrix
elements of 6.

We will represent 6, as a sum of separable
terms,

(kl
~

GJ "~ k'I') = g gg (k,K)A~p (K)g~p( (k'+)
(4.32)

The values of P„y, depend on K, Mo, and B3
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through Eqs. (4.5) and (4.14). Since Mo and co3 are
held fixed in numerical work, we suppress them in

Eq. (4.32) and only indicate the dependence of G on
K. Note that in tensor-coupled channels the
strength Ap is independent of I and I'.

The strengths A, and form factors g in Eq. (4.32)
are found as follows. The variables j,S,T,K appear
only as parameters, and we suppress them. We
first set up a discrete grid k;, i = 1,2. ..R. In
practice we use

k; = 0(0.25)5(0.5)10 fm (4.33)

(il ~L ~jl') = w(k;)(k;I
~

G ~kjl')w(kj) (4.34)

where w (k) is a weight function that makes large k
less prominent in the matrix L. In practice we have
used w (k) = (k + y ) '. If vp and u p(k;I) are the
eigenvalues and orthonormal eigenvectors of L, we
have

so that R = 31. Since we use a cutoff in momen-

tum, values of k larger than 10 fm ' do not appear
in the three-body equations. Then we solve Eq.
(4.31) to get the matrix (k;I

~

G
~

kjl') of dimension

B = RN(/), where N(l) = 1 or 2 for uncoupled or
tensor-coupled channels, respectively. This is a real,
symmetric matrix, and a separable representation can
be obtained from its eigenvectors and eigenvalues.

However, we expect larger values of k to be relative-

ly less important in the three-body equations, and
we therefore define

Equations (4.34) and (4.3'6) give

gp~(k;) = Kp 'up(k;I)/w(k;)

2
Ap ——Kp vp .

(4.38)

(4.39)

We choose K~ so that

g [gpj(k;)]' = Bj'2, (4.40)

and this means the rms value of g is —,, independent
of P. This is convenient because the size of

~ Ap~

then determines the relative importance of each
term P in Eq. (4.37).

Equation (4.37) gives the desired separable
representation of 6 when the initial and final mo-
menta coincide with mesh points. For other values
of k,k', we obtain (kl

~

G
~

k'I') by interpolation of
the form factors gp~(k). In practice a cubic spline
interpolation formula has been used. The entire
procedure just described is carried out separately for
each set jST and each mesh point K; that occurs in
the three-body calculation.

D. Matrix elements of X

(k'I
I
G Ikjl ) = g gpj(ki)Apgpl'(kj) (437)

P=]

where

P = 1,2. . B(4.35).
B

(il ~L ~jl') = g up(k;1)vpup(kj/')
P= 1

(4.36)

g (il
~

L
~

jl')up(kjl') = vpup(k;I), In numerical calculations we need matrix ele-
ments of X in the basis (3.33). We calculate these

by first deriving matrix elements of X in the basis
(3.38) and then changing basis using Eq. (3.39). The
state (3.38) can be written

~

Kk [(L/)W( , S}W]gg, ( , T—)MM,)—
(WWW, W,

~ g gz)2' v(IST) ~Kk(LI)WW, )„,
~

( —,S)P'P', )
~

( , T)ww, ), (4—41)
~z~z

where
~

Kk (LI)WW, )„,is the product of states

(3.4) and (3.11), coupled to WW, . On the right of
Eq. (4.41) we have products of space, spin, and isos-

pin wave functions, and we therefore need space,
spin, and isospin matrix elements of X.

First consider the spin wave function, which can
be written more explicitly as

~
(2S)~~g) =

~ [ —,(3)[—,(1) 2 (2)]S]~~g),
(4.42)

1 1

where the notation —,(i) means spin —, for particle i

We have X = P&z3+ P&3z, and we first consider
matrix elements of P&23 between states of Eq. (4.42).
The operators P' and P', are completely symmetric
and therefore commute with all permutation opera-
tors. Hence all permutation operators are diagonal
in P' and W, . Also, all permutation operators
commute with the raising and lowering operators
for P'„and this means all matrix elements of per-
mutation operators are independent of P', . As a
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result, the only matrix elements of P 123 that occur
are

(4.43)

States with W = —, are totally symmetric, so that

A'(-, , ll) = 1 (4.44)

which leads to

To evaluate 8'( —,,SS') we note that

I( —,S')~~, ) = II —,(I)[—,(2)—,(3)]S']~~,),
(4.45)

/
/

/ kb
/

Kb a

FIG. 6. Diagram illustrating Eqs. (4.51)—(4.53). The
vertices of the triangle lie at the tips of the vectors
k „k2,k, . The vectoi's K„k, are defined by Eqs. (2.94)
and (2.95), respectively. , The vectors K, and Kq intersect
at the median of the triangle.

„,(KLMklm
I Pi23

I

K'L'M'k'I'm ')„,

—1 3'
A'( 2,SS') = (4.46)

dK, dk, „,KLMklm P123 K, k, „,
X „,(K.k. IK'L'M'O'I'm')„, . (4.50)

132 12 123 12

so that

[(—,S)P'P'g
I

P i32 I
( t S )WP g )]

(4.47)

where the first row or column corresponds to S = 0
and the second to S = 1.

This takes care of spin matrix elements of P123.
To treat P132 we note that

(4.51)

where

In state
I
Ka ka )na we suppose that particles 1,2,3

have momenta k1,k2, k3, respectively, so that K,
and k, are given by Eqs. (2.94) and (2.95), respec-
tively. Then in the state Pi23 I

Ka ka)na particles
1,2,3 have the respective momenta k3, k1,k2. Using
Eqs. (2.94) and (2.95) then gives

Pi23 I Ka k. }.=
I
Kb kb )na

= ( —)
+ 'A(P', SS') . (44g) ]

Kb = —2K'+ k, (4.52)

f dKd k
I

K k )„,„,(K k
I

= 1 (4.49}

where
I
K k )„, is a product of the states (3.1) and

(3.10), we find

%e now have all the ingredients for spin matrix ele-
ments of X. The discussion for isospin is exactly
the same.

We now turn to spatial matrix elements of X, and
again we first consider P123. By an argument simi-
lar to that for spin, matrix elements of P 123 are di-

agonal to W,W, and are independent of W, . Us-
ing the completeness relation

(4.53)

Figure 6 is useful in deriving the last two formulas.
We now put Eq. (4.51) into Eq. (4.50) and change

variables from K, k, to Kb kb using Eqs. (4.52) and
(4.53). We also perform the angular momentum
couplings (Ll)WW, and (L'I'}WW, and use the
formula

„,(K'k'
I
KLMklm )„,= (IN) '5(E —E')5(k —k')

XYl.br(K')Yj (k') . (454)

The result is

„,[Kk(LI)WW,
I Pi23 IE'k'(L'I')WW, ]„,= (INK'k') ' I d Kbd kb5(Eb K)5(kb —k}5(J '——E, )5(k' —k, )

X g(LIMm
I ~~z)Yg~(Kb)Y(~(kb)

X g (L, 'I'M'm
I ~~a)YI, M (Ka)Yi ia.(k, ),

M'm '

(4.55)

where K, and k, are functions of Kb, kb given by the inverse of Eqs. (4.52) and (4.53).
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Equation (4.55) is evaluated following Balian and Brezin, and the result is

(Kk(LI)WW ~P]2i ~K'k'(L'I')WW )„

= 25( ,K —+k —,K '——k' )8(1 —
i
cos82

i
)(KLkl

i f(W)
i

K'L'k'I '), (4.56)

where 8(x) is the unit step function and

(KLkl ~f(W} ~K'L'O'I') = 16m W 'L' (4m) '~ g ( —) (LIOm
~

Wm)(L'I'm —m'm'~Wm)
mm'

X Y] (cos8],0) FL, (cos82,0)F] ~ (cos83,0)

(4.57)

cos8] ——(K' —,K ——k )/Kk

cos82 ——(k —,K —K—' )/KK '

cos83 ——(K + k' ——,K' )/2Kk'

Noting that

(4.58)

(4.59)

(4.60)

(Kk (LI)~~g
~
P]32

~

K 'k'(L 'I')~~, )„
= ( —)'+' „,( Kk (LI )~~,

~

P ]p3 ~

X K'k'(L'I')WW, }„, . (4.62}

Equations (4.56)—(4.62) determine the required spa-

tial matrix elements of X.
A very important property of X is that it con-

serves parity 9' = ( —)
+ . This follows from

[P]23 +1 = 0 (4.63)

which is most easily derived in the basis
~

Kk)».
The effect of P ]23 in this basis is given by Eqs.
(4.51)—(4.53). Using these equations along with

H
~
Kk)„,=

~

—K,—k)„, , (4.64)

P]2 ~Kk(LI)WW, )„,= ( —}
~

Ek(LI}WW, )„, ,

(4.61}

we use P ~ 32 —. P i2P $ 23P ]2 to get

one easily verifies Eq. (4.63).
Later on we shall have to integrate expressions

like Eq. (4.56) over two momentum variables while

holding the other two fixed. Two cases arise:
(1) Integrate over k,k' for fixed K,K'. The delta

function in Eq. (4.56) is used to evaluate the integral
over k. The requirement

~
cos82

~
& 1 then deter-

mines the limits on k ' to be

iK , K'i &—k—' & K + ,K'—(4.65)

(2) Integrate over K,k for fixed K ',k '. The delta
function in Eq. (4.56) is used to integrate over k.
The limits on E are then

i

k' ——,K'
i & K & k'+ —,K' (4.66)

Figure 6 is useful in understanding Eqs.
(4.65)—(4.66).

We can now assemble our results to obtain the
matrix elements of X in the basis (3.33). From Eqs.
(4.48) and (4.62) we see that matrix elements of P]23
differ from those of P ~32 by a factor
( —)'+ + ( —)' + + . Since we consider only
states that are antisymmetric in particles 1 and 2,
this factor is unity. Thus matrix elements of X are
just twice those of P]2&. Equations (4.44), (4.46),
and (4.56) determine the matrix elements of X in the
basis (3.38), which is related to the basis (3.33) by
Eq. (3.39). A simple calculation gives

(dKkl, /g, 9'WW,
j
X

~

d'K'k'I', g 'g, H'a 'a, )

1L 2

= 85(gE,+w~ I+'g*&'~'~ ) g ~~[JjJ'j']' 2'
I S

J L' J1

. 2

j ' I' S' j'

X 8( —,K + k —,K' —k' )8(1 —
~

c—os82~ )

X (KLkl
~ f(W)

~

K'L'k'I')9t(P', SS')St(&,ll') . (4.67')
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V. FORMULAS FOR COMPUTATION

In this section we put the matrix elements of Sec. IV into the formal expressions of Sec. II to get practical
formulas for computation. We also introduce two additional angle-average approximations that arise when we

change integration variables from p; to Kp, ko in Eqs. (2.107) and (2.113).
We have seen that X conserves g g, Hu u, and has matrix elements independent of g ~, a, . Because of

our angle-average approximations, this is also true for Q, e, and G. Therefore, the same is true of operators
such as 8', C, and D that are built from Q, e, g, and X. We use this fact in our notation, writing, for exam-

ple,

(dKkl, /g, Hu a,
~

d'
~

d'K'k'1', gg, Ha a, )
—= (dKkl

~

d'(g Ha )
~

d'K'k'l') (5 1)

where it is understood that the initial and final states in the right-hand matrix element have quantum numbers
Both D& and M will be given by sums of independent contributions from difFerent sets of g %W.

The variables M and co& have been suppressed in Eq. (5.1) because, as mentioned in Secs. IV A and IV B, we
use fixed average values for them.

A. Formula for D2 and D„

The two-body energy D2 is given by Eq. (2.92). The same formula also gives D„"if Gb is replaced by
GbQJ " . Putting spin and isospin into Eq. (2.92) gives

D2 ——, (2ir) 'p—'gI d p,d p2(kpSM ll&
~

Gb'(P)
~
kpSM&l l, ) (5.2)

where
~

k pSM, l l,} is defined by Fq. (3.12). We transform to the kgpI p, Tp, representation by using Eqs.
(3.18) and (3.19) to get

g(kpSM ll' IGb(P) 'IkoSM ll') = gv(fo)JoTo(4') 'ko (koioIGb
' '(P) Ikoio}

~o

(5.3)

(5.4)

where, for any function h (pi, . . . , p„), we define

where fp
——

t 1pSpj pTp j. In deriving Fq. (5.3) we used the fact that Gb conserves jj,Sll, and is 'indePendent

ofj„T„along with Fqs. (3.43), (3.45) and (4.30).
Putting Eq. (5.3) into Eq. (5.2) gives

D2 = g~(fo)joTo(kF ~24)(ko (kofo I
Gb(I') Ikofo))2

fp

(h )„=(4irkp'/3) "fdpi. . .dp„h(pi, . . . , p„) (5.5)

As a result of an approximation to be introduced in Sec. V C, GbQJ '"' conserves jj,Sll, and is indepe'ndent

ofj „T,. Hence Eq. (5.3) is valid for GbQJ '"', so that D„"is given by Eq. (5.4) with Gb replaced by
G QJ(n)

S. Formula for D 3 in terms of d'

In an 6'-type calculation we evaluate Di using Eq. (2.107). In order to include spin and isospin in Eq.
(2.107), we replace

~
Kokp} by the product of the states (3.8) and (3.12) to get

D3 2
(2ir)-'ip-'g I d pid p2d pi(Koo'i&ikoSMsl li

~

8'
I
Kocri&ikoSMs'l l,') (5.6)

We now insert Eq. (3.37) on either side of 8', use the fact that d' conserves~/, P'u W, and has matrix ele-
ments independent of g„W„and change variables from pi, p2, pi to Pi,Kp, kp via Eqs. (2.93)—(2.95). The
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result is

D', = —,(2ir) p 'g f dK dk dK'dk' f d M(doK'k'lo
I Q&h(Mg +W) IdpKklo)

x (dpKklp
I

d (g HM )
I
doK'k lo ) (5.7)

where

(doK'k'lp
I g3h(~g +~)

I dpKklp) = —, y y f dKod ko(doK'k'lo, gg, e'MMg
I
KpoirikoSMs'ii, ')

ST mag

X (K0~3+3koSMs ii,
I
d'oKklo ++z+~ ~z ) (5.8)

In the integral the notation (3h) stands for "three-hole" and means that, for the given value of P7, the vectors

Kp, kp are restricted so that all three single-particle momenta from Eqs. (2.97)—(2.99) are in the Fermi sea.
Also, g, means summation over all magnetic quantum numbers.

Substituting Eq. (3.41) into Eq. (5.8), we can perform the sum over r&,T„a, to get

(doK'k'lp
I Q3h(Mg Hw )

I
doKklo)

= v(loSoTo)v(lpSoTo)5(So To
I
SoTo)5(K —K'}l(k —k')~

X f d17ad koKo ko 5(Ko —K)5(ko —k)
(3}1)

+ g(Lo i Moir3 I JoJos}(Lo i Mo o3
I
~o Joz }(loom pMs I jalap }(loSomoMs I jo jos }

mag

&& (Jpj piojpi ISSz)(Joj o Joj oz I X/ }Y*' (Ko}YI~,(Ko)Y*' ' (ko)Yi m (ko}

(5.10)

where the sum is over all magnetic quantum numbers. Equation (5.9) cannot be simplified further because the
angular integrations are restricted by the requirement that all three single-particle momenta be in the Fermi
sea, so that we cannot use the orthogonality of the spherical harmonics. To proceed, we make the angle-

average approximation

f dkpY' (ko)Yi~ (ko)~ f dko(4n) '5(lamp Ilpmp )

When this is put into Eq. (5.9), all sums over magnetic quantum numbers can be done using Eqs.
(3.43)—(3.45), and the result is

(doK'k'lo
I gih(~g H~ )IdoKklo) = v(loSoTo)&(dolo Idolp)li(K —K')@k k V~

X (4ir) ' f ' d Kpd kpKp kp 5(Kp —K)5(kp —k} . (5.11)

Putting this into Eq. (5.7) gives

D 3 = y g a (kp /72}(Kp kp (d pKpkplp I
d'(g HA )

I
d K Qkplop) )3 (5.12)

where the angular bracket is defined by Eq. (5.5)
Equation (5.12) is our basic formula for D i in terms of 8'. It has been obtained using the approximation

(5.10), which we expect to cause only a small error for several reasons:
(1) The most important contributions to Di are from terms with lp ——lo ——0. In this case Eq. (5.10) is ex-

act.
(2) If lp and lp have opposite parity, the most important case being la = 0, lp ——1, the integrand of Eq.

(5.9) is an odd function of kp. But if ko is allowed by the condition p; & k~, i = 1,2,3, then —ko is also al-
lowed because changing the sign of ko simply interchanges. particles 1 and 2. Hence the integral over ko in

Eq. (5.9) vanishes, and Eq. (5.10) is again exact.
(3) D3 is largest for L p ——L p

——0. In this case we have L p ——Lp, Mp ——Mp, and Eq. (5.9) can be reduced
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to Eq. (5.11) without using the approximation (5.10) at all.
(4) If Lp aild Lp have opposite parity, the most important case being Lo = 0, Lp ——1, then, since d' con-

serves R = ( —) ', l p and 1p must have opposite parity, and Eq. (5.10) is exact as discussed in point (2)
above.

C. Formula for M in terms of C

In an M-type calculation we use the matrix M to obtain the generalized ring series. To obtain M, we start
with Eq. (2.113) for J ' '. We introduce spin and isospin by' using the states of Eqs. (3.8) and (3.15}to get

(kfj T
I

J' '(P)
I kofajozToz) = g J d p3(Koo3&3kfj. T. I(eb«b)«b 'Gb(1+ +) IKO'r3r3kafajo. TO.»

cT37 3 (5.13)

where
1~ 2~Kp= 3P 3 p3 (5.14)

and we have introduced C in place of C through Eq. (2.48). We must first rewrite Eq. (5.13) using the basis

I
dKkl, g g, 9'WW, ). The result will then be expressed as a matrix applied to eb 'Gb ——S2 '. This matrix

is the M matrix [see Eqs. (2.61) and (2.63)j.
The transformation of the right-hand side of Eq. (5.13) to the

I
dKkl) basis is carried out using Eqs. (3.37)

and (3.42). After using Eq. (3.45) for the isospin Clebsch-Gordan coefficients we find

(kfj, T,
I

J' '(P) Ikafal'O, TO, )

= 5( ll ITpTp ')'g g (W/Tp)v(lSTO)v(1pSpTp)
g~LJL(yfocr3 g~JgJozMMo

XI d p 3K0 I LM(K O~L~0 (Ko)(L 2 ~~r3
I
JJ )(Lo i Moir3

I
JOJos }

x (JJJ,J. I g g.)(Jail oj o

x (dK pkl
I (ebleb)c(g +a )eb 'Gb(1 + x)

I
doKokolo)

(5.15)

Suppose now that we change variables from p3 to Kp, using Eq. (5.14). Then for a given magnitude Ko, the

requirement p3 & k~ restricts the allowed directions of Kp, so that we cannot use the orthogonality of the
spherical harmonics in Eq. (5.15}. Nevertheless, inside the integral of Eq. (5.15), we make the angle-average

approximation

~LM (K0 )~t ~o (Ko )~ (4ir) &(Llbf
I
L OM 0 ) (5.16)

All sums over magnetic quantum numbers can now be carried out, and one finds an expression in which

L = Lp. Parity conservation then implies that ( —)' = ( —) '. Since we also have T = Tp and
l+S+T o+ o+ o

( —} + + = ( —)
' ' ', it follows thatS = Sp. The result is that J' ' conservesj OSOTal'O, T&, and is in-

dependent ofj p„TO, . Thus we can use the notation of Eq. (3.20) for J ' '. The final result is

(kl
I

J' i(P joSoTo) lkolo) = P E~ [JOTO] &(IOSOTO)(4ir)
xLgo'.

xf d P3Kp (dpKpkl
I
(ebleb)c(E+~ )eb Gb(1+ x) ldoKokolo) .

(5.17)

This is the desired expression of Eq. (5.13) in the
I
dKkl) basis.

Having J ' ', we can calculate D3 by constructing GbQJ ' ' and using it in place of Gb in Eq. (5.4). The
resulting formula for D3 turns out to be equivalent to Eq. (5.12). Thus the angle-average approximations
(5.10) and (5.16) lead to the same approximation for D3.
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Equation (5.17) depends on P through the relation (5.14) between Ko and p&. In numerical calculations, an

appropriate average over P is made (see Sec. VI B). In calculations of D2 it is found that a similar average
over I'. produces errors of a few percent, and we expect a comparable percentage error here and in the higher-
order terms in the generalized ring series.

Thus the dependence on P disappears, and we write the left-hand side of Eq. (5.17) as J ' '(fpl, k,k o), using
the notation introduced in Eq. (3.22). To extract the M matrix, we express the right-hand side of Eq. (5.17) as
a matrix (the M matrix) applied to S2 '. In Eq. (5.17) we insert the completeness relation (3.37) on either side

of eb 'Gb, and then we transform to the (fplnm) representation as discussed in Sec. III B. The result is

J' '(fplnm) =
fol n m

(fplnm I~ I
fol'n'm')Sq '(fpl'n'm') (5.18)

where

(folnm I~ Ifol'n'm')
—10—1

,'v(fo)—v(fo )gko ' I'(m»')g(n IFs/eb(koi)]I"")

X g g~(joTp)-'(4ir)-' f dp, K,-' f dK,'dk,'

&~ L(r'oL0 ~o

+m
x (doKon "1

I
C(g 9w )

I
doKon'1')k, '

)& (dpKo ko lo
I

1 + X
I dpKpkp(lp) (5.19)

(n
I [eb/eb(ko)) In" ) = f dkp (k)(yb +" )(yb +" ) 'p "(") (5.20)

Equation (5.20) depends on kp through yb, which is defined by Eq. (4.20).
The reason for splitting C into the two factors ebleb and C is that matrix elements of C depend on ko;

through the factor eb on the left, while matrix elements of C are independent of kp;. Since a major part of
the computational effort goes into calculating matrix elements of C or C, it saves computing time to use C so
that these matrix elements do not have to be recomputed for each new mesh point ko;.

D. Formulas for the generalized ring series

Equation (5.18) is the explicit statement of Eq. (2.63) in the (fplnm) representation. In numerical work the
iterations implied by Eqs. (2.64) —(2.66) and the matrix inversion of Eq. (2.70) for S2" are carried out in the
(fplnm) representation. In this subsection we derive several formulas, in addition to Eq. (5.19) for M/, that are
needed to carry out these calculations. We make extensive use of the transformations discussed in Sec. III B
between the k and n representations, and between the ko and m representations.

To evaluate Eq. (2.70) for S2" we need the matrix eb 'G»Q»M. We start with the equation

0 0(folkko I eh 'G»Q»~
I

fol'n'm') = —, g f dk "(kl
I

eb '(k, ko)G»
' 'Qb Ik 1')(fol "k "ko I~/Ifol'n'm')

(5.21)

which is obtained by inserting the completeness relation (3.18) between Q» and A/. In Eq. (5.21) both eb

and Gb depend on kp, and this fact must be taken into account in transforming from (k,kp) to (n,m). The
result is

—lo —1 0 0
(fplnm

I
eb G»Q»~/ I f l' o'mn') =

2 y r(m, i)kp; . y (nl
I
eb (ko;)Gb (kp;)Qb In 1 )

&& gko'; (fpl "n "m" IM I
fpl'n'm')

m"

(5.22)
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Given the matrix M in the (folnm ) representation, Eq. (5.22) shows how to calculate the matrix eb GbQM
in the same representation.

In Eq. (2.65) we must apply eb 'GbQ to the vector J '"'(folnm) to get a new vector K(folnm),

K(folnm) = [eb 'GbQJ '"'](folnm) (5.23)

The operator eb 'GbQ depends on ko through, the energy denominators; so we transform J'"' from m to ko
before operating with eb GbQ. A derivation similar to that of Eq. (5.22) gives

I

K(folnm) = g I'(m, i)ko; '
—, g (nl

I eb '(ko;)Gb ' '(ko;)Qb
I

n'l') g J'"'(fol'n'm')ko'; . (5.24)
I'n '

Finally, we must evaluate the energy D„oftheGR

nth term in the generalized ring series. From Sec.
VA we have

D„=g v(foj)oTo(kF /24)
fp

/

X (ko '(kofolGbQJ"'Ikofo)&2 .

(5.25)

g[(kipi I
G

I
kip3) + (k2p3

I

6 Ik2p3)]

(5.27)

where we use the two-body states defmed by Eq.
(2.7). Consider the second term of this expression.
Eliminating the volume 0, introducing spin and

isospin, and applying Eq. (5.3) to G, gives for this

term

Assuming J "'(folnm) to be known, we calculate
the matrix element in Eq. (5.25) from

—eb
' U(k2, 5E)

where

(5.28)

(kofo I
GbQJ "'

I kofo)

=
2 g(koiol Gb

' 'Qb lnl)J"'(folnni)ko'
lnm

(5.26)

U(k2, 5E) = —, g v(fj)T
f

x I dpi(k'1
I
G, (f,P',y ) lk'l)/

E. Third order bubble diagram
(4@k' ) (5.29)

Equations (5.12) and (5.19) give formulas for D 3

and M in terms of d' and C, respectively. The bub-
ble contribution Ds(B) of Fig. 1(a) to Di is obtained
by replacing d' by d's in Eq. (5.12), where d's is
defined by Eq. (2.50). The bubble contribution to
M is obtained from Eq. (5.19) by using the 1 from
1 + X and by replacing C by Co, defined in Eq.
(2.49). It turns out that these methods are numeri-
cally inefficient for calculating the contribution of
the bubble diagram to either D3 or M. In this sub-
section we derive a formula that is more efficient for
calculating the bubble contribution to M. The cor-
responding contribution to D3 can then be obtained
as the first term in the generalized ring series. A
simpler calculation of D i (B), using the ideas given
below but not calculating M, is feasible but has not
been implemented numerically.

The contribution of the bubble diagram to M is
obtained from Fig. 7 and from a similar diagram
where the p3 bubble is inserted into the line k i.
The eFect of the bubble interaction is simply to
inultiply (kik2 I~a Ipip2) by

(5.30)

P' =
I
k~+ pi I

y' = —P' —E(pi) + 5E,
5E = E(ki) —E(pi) —E(p2)

(5.31)

(5.32)

(5.33)

Pi P k k
I 2

P

FIG. 7. Diagraln showing the bubble contribution
M~ to the matrix M, as discussed in the text.

In the calculation of G, (f,P ',y ) the energy denom-
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(5.34)

ko= —,
I pi —p2I (5.35}

inator of an intermediate state of relative momen-
tumkisk +y.

In our approximation scheme for the generalized
ring series we have $2 ——S2(folkkp), where

k = —, Iki —k2I k&+ k2 ——p&+ p2
I

This average can be written

(5.36)

Therefore, before multiplying S2 by U (k2,5E), we

must take an average of U(k2, 5E) over k i, k2, p i,p2,
subject to the constraints of Eqs. (5.34), (5.35), and
to momentum conservation. ,

U(k ko} = fk k d "id "2"pi" p25(k z I
"i "2I)5(ko —

z I pi p2I}'5(ki+ "2 —pi —p2)U(k2&5E)k;)kF

x f „dk,dk, dp, dp, 5(k ——, Iki —k, I)
k; &kF

—1

X 5«o ——,
I pi —p2I }5(kl+ k PiP2} (5.37)

Equation (5.37) is evaluated by transforming to the variables P, k, kp defined by
+

P = k)+ k2 ——p)+ p2

k = —,(ki —k2)

ko = —, (pi —P2) .

Using Eqs. (5.33), (5.38)—(5.40), and (4.10), we find

k, = ( ,P'+ k'+—kPz)'",

k, = ( ,'P'+ k' kPz)",-—
5E = —,ki —(kp + ,P )Im*—+2Ep,

where

z =P.k

Therefore, U(k2, 5E) depends on k,k p,Pp, and Eq. (5.37) can be reduced to integrals over P and z. The
result is

1

U(k, kp) = f w(kpP)dP f dz8(ki —kp)8(k2 —kF}U(k2,5E)
1 —1

X f w(kp P)dP f dz8(ki —kF)8(k2 —kb )

where

w (kp,P) = P, if 0 & P & 2(kB —ko)

= (Plkp)(kp —kp —~P ), if 2(kp —kp) & P & 2(kF —kp )

= 0, if P ) 2(kp —ko )'~

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

The first term of Eq. (5.27) gives an identical contribution. Therefore, denoting the bubble contribution to
M by Mz, we have

(~BS2)(folkko) = —I 2U(k ko)«i (k ko))(kl
I S2(fo} I

kolo} (5.47)

Transforming to the (folmn) representation, we find

(foliim I~B Ifol'"'m'} = 5(fofo }5(l l') g l'(m i}ko ' f dkpn(k)[ 2U(k koi)«b(—k koi) jp„'(k)

(5.48)
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In numerical work we evaluate U(k, kp) from Eq.
(5.45) and substitute the result into Eq. (5.48) to
obtain Mz.

F. Calculation of G,D

6, = g la)A~(a l
(5.49)

Applying (a
l

to Eq. (2.43) and using Eq. (5.49)
gives

(a
l

D = (a
l

—g (a
l XQ, le,

l
a')X (a'

l
D

a'

(5.50)

whose solution is

Both 8' and C involve the operator G,D, where
D is determined by Eq. (2.43). To calculate G,D
we use the basis

l
dKkl, g +,9'WW, ) of Eq. (3.33).

We suppress the conserved quantum numbers

g g, HW~, and use the notation of Eqs.
(3.49)—(3.51). We can then write Eq. (3.48), within

a given g Ra manifold, in the form

6, into Eq. (2.43) for D and apply (ai
l

from the
left to get

(ai lD = (a]
l

—yN(a], a)& (a lD, (5.56)

where the sum includes only the unperturbed a.
Since N(ai, a) and A~ are real, the Hermitian conju-

gate of this equation is

Dtla, ) = lai) —QN(ai, a)i~tla). (5.57)

We now put Eq. (5.51) and its Hermitian conjugate
into Eqs. (5.56) and (5.57), respectively. These
equations are then put into Eq. (S.SS), which in turn
is used in Eqs. (2.81) and (2.83} for 5d' and l}C,
respectively.

So our procedure for calculating G,D is as fol-
lows. The most important states a are treated ex-
actly by constructing N(a, a') from Eq. (5.52), in-

verting it, and using Eq. (5.53). A set of less impor-
tant states a& is then included by first-order pertur-
bation theory.

)(~(a lD = gN '(a,a')(a'
l

a'

where

N(a, a') = A, '5(a,a') + (a
l XQ, le,

l

a')

From Eqs. (5.49)—(5.51) we find

G,D = g l
a)N '(a,a')(a'

l

aa'

(5.51)

(5.52)

(5.53)

G. Calculation of d'

For the d'-type calculation of D3 from Eq.
(5.12), we need diagonal matrix elements of d' in

tile
l
dpKpkplp) representation. Consider first the

contributions d'z and 6'z from the bubble and ring
diagrams of Figs. 1(a) and 2(a), respectively. For a
given set of conserved quantum numbers g Hw,
which we suppress, we use Eqs. (2.50), (2.51), and
(5.49) to get

56, = g l
ai}A, ,(ai

l

a&

(5.54)

which is the desired solution for GaD
In practice the number of states a that can be

treated in this way is limited by the requirement
that the matrix N(a, a') not become unmanageably

large. Additional states a can be approximately in-

cluded by first-order perturbation theory. Let G,
and D be calculated from the unperturbed set of a
that are treated exactly. Let ai label the states to be
treated by perturbation theory, so that

(1 pKpkl plod's
l
d pKokolo) = g Fo"(a)A+o" (a)

(5.58)

(doKokolo
I
&z

l
doKokolo} = QFo" (a)~No" (a}

(5.59)

where

Fo"(a}= (a I X(Qi «b )Gb
I
d oKokolo)

(5.60)

The perturbation corrections 5d' and b,C from Eqs.
(2.81) and (2.83}, respectively, both contain the
operator

Fo (a) = (a lX(Qbleb)GbX l
doKpkolo)

(5.61)

Dt5G, D = QDt
l
ai)A, ,(ai

l
D

a&

(5.55)

To evaluate Eq. (5.55} we substitute Eq. (5.49) for

For ease of writing we suppress the dependence of
Fp" and Fo" on (doKpkplo). The lowest-order con-
tribution to D3 is the sum of Eqs. (5.58) and (5.59).
The higher-order contribution comes from
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To calculate d', we put Eq. (5.49) for G, into Eq.
(2.44) to get

(d pKokolo I
&

I
d pK pkolo)= g Eo"(a)E(a), (5.63)

a

where

E(a) = A, (a ~DX(Qb/eb)Gb(1 + X)
~

dpKpkplp)

(5.64)

Putting Eq. (5.50) into Eq. (5.64), we find that F(a)
satisfies the linear equation

'F(a) = Fp" (a) + Fp" (a)

—g (a
f XQ, /e,

/

a')F(a'), (5 65)
a'

which can also be written,
I

g N(a a )E(a ) = Fo (a) + Eo (a)

where N(a, a') is defined by Eq. (5.52).
The states a included in the matrix N(a, a') are

called unperturbed states. First-order perturbation

theory can be used to treat an additional set of
states a&. For reasons given below, perturbation
theory is used only for the higher-order contribution

58H ——58 —5d'z —5d'a. Using Eq. (2.81) for
5d' gives

(dpKpk pip
~
5@ir

~
dpKpkplp)

=g (d&okolo
I
Gb(Qb/eb)X

a&

XA,
,(ai~ DX(Qb/eb)Gb(1+ X)

~
dpKpkplp)

—QEp" (ai) A~, [Fp"(ai) + Fp" (ai)]
a&

(5.67)

Using Eqs. (5.56) and (5.51), we find the matrix ele-

ment in Eq. (5.67) to be

(ai
I
DX(Qb/eb)Gi (1 + X)

I
d pKokolo)

= Fi)"(a, ) + Fp" (ai)
—g N(ai, a)N '(a,a')[Fp" (a')+Fo" (a')],

(5.68)

where a,a' are summed over the unperturbed states.
A similar result holds for the other matrix element
on the right of Eq. (5.67). Thus it is sufficient to

(d pKokolo I
&H

I
d pKokolo)

= (dpKokolo
l

& —&a —&z Id pKokolo)

(5.62)

calculate the inverse matrix N '(a,a') only in the
unperturbed space in order to calculate the first-
order perturbation correction.

The above procedure is straightforward, but some
modifications are necessary in practical calculations.
In practice the steps to be followed are:

(1) The ring contribution is calculated using Fq.
(5.59). Since no matrix inversion is involved, one
can include as many states a as required for the
desired numerical accuracy.

(2) The bubble contribution to D i is calculated as
described in Sec. V E, not from Eq. (5.58). Howev-

er, Fq. (5.58) must still be evaluated because it is

subtracted from 6 to get 6&H in Eq. (5.62).
(3) A set of unperturbed a is chosen, Eq. (5.65) is

solved for E(a), and the result is used in Eqs. (5.63)
and (5.62) to get the unperturbed contribution to c~H.

(4) A set of perturbation states ai is chosen, and

Eqs. (5.67) and (5.68) are used to calculate the
first-order correction 5@H, which is added to the
unperturbed contribution from step 3.

We have not implemented the perturbation calcu-
lation of 5d'0 in d'-type calculations. The corre-
sponding calculation of hC has been implemented,
however, in M-type calculations, and this is

described in the next subsection.

H. Calculation of C

Equation (5.19) for M requires matrix elements
of C in the (d pKpnl) representation (we suppress the

conserved quantum numbers g 9'W). The lowest-

order contribution Cp is defined by Eq. (2.49). Put-
ting Eq. (5.49) into this equation gives

(d pKonl
l
Co I

doKon'1')

= g (d pK pnl
~
(1/eb )X

~

a)

X &.(a IXQb ~doKon'1') . (5.69)

To get the higher-order contribution CH ——C —Cp,
we put Eq. (5.53) into Eq. (2.47) and subtract Cp to
get

(d+pnl
~
CH

~

doKpn'1')

= g(dpKpnl
~
(1/eb)X

~

a)
aa

X [N '(a,a') —)i,,5(a,a')]

X (a'~XQb IdoKon 1 ) . (5.70)

Equation (5.70) is used for the contribution to CH
from unperturbed states a. The first-order correc-
tion ACH from perturbation states a& is found from
Eqs. (2.83) and (5.54) to be
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(doKpnl
~ HACH ~doKpn'1')= g (doKpnl

~

(1/eb)XD ~aiQ, ,(ai IDXQb I
doKon'1')

a&

—g (dpKpnl
~

( 1/e b )X
~
ui)A,

, (ai
~
XQb

~
dpKp n '1')

a&

(5.71)

From Eqs. (5.56) and (5.51) we find

(ai ~DXQb ~dpKon'1')

= (&1 )XQb ~doKpn'1')

—QN(ai, a)N '(a,a')(a' ~XQb ~

dpKpn'1'),
aa'

(5.72)

where a,a' are summed over the unperturbed states.
Equation (5.72) gives one of the required matrix ele-

ments of Eq. (5.71). The other one is

(d pK pnl
~
(1/ e b )XD

~

a i ) = (ai
~

DX/e i, ~

d pK pn1)

(5.73)

and is obtained from Eq. (5.72) with Qb replaced by
(lie b).

We can now summarize the procedure used in
practical calculations of C and M:

(1) Equation (5.69} for Cp is evaluated, using as
many states a as required for the desired numerical
accuracy.

(2) The result for Co is put into Eq. (5.19), and
only the X is used from 1+X in this equation.
This gives the lowest-order ring contribution M~ to

(3}The bubble contribution Ms is calculated as
described in Sec. V E.

(4) A set of unperturbed states a is chosen and
Eq. (5.70) for CH is evaluated.

(5) The perturbation correction hC& is calculated
from Eq. (5.71) and is added to CH. The sum is

put into Eq. (5.19) to get MH.

This means that in the nth term of Q&DQi we can
replace X(Q/e, ) by (Q/e, )X, and, corresponding-
ly, we can make the same replacement in Eqs.
(5.52) and (5.65) without affecting either d' or M.

From the relation

(u
~
(Q/e, )X

~

a') = (a' ~XQ/e,
~

a) (5.76)

one sees that replacing X(Q/e, ) by (Q/e, )X in the
matrix of Eq. (5.52) is equivalent to replacing that
matrix by its transpose. In calculations using an
angle-average approximation for Q~, this change is
found to give a nonzero but very small change in
D & (H}. (See Sec. VII E.) Symmetrizing the matrix
of Eq. (5.52) is also found to change D

& (H) only
slightly. Using a symmetric matrix is convenient
for numerical work because it reduces the storage
needed in the computer. Therefore, in all numerical
calculations we have symmetrized the matrix (5.52)
before using it to calculate 6& or C&.

if XQ, /e, is replaced by (Q, /e, ')X in this matrix.
Note first that in formulas for d' and QC the

operator D occurs only betwe'en three-body states
with particle 3 above the Fermi sea. This follows
from Eqs. (2.44) and (2.47}. Hence it is sufficient to
restrict our attention to Q3DQ3, where the projec-
tion operator Q3 requires particle 3 to be above the
Fermi sea. Using the Hermitian conjugate of Eq.
(2.77), it is easy to show that

Q [X(Q/e. )G. ]"Q = Q [(Q/e. )XG.)"Q

(5.75)

I. Symmetrization of kernel

The lowest-order (bubble and ring) contributions
to either 8' or C are obtained by putting the opera-
tor D of Eq. (2.42) equal to its leading term, D = 1.
Higher-order contributions come from the higher-
order terms in D, the term of nth order being

( —)"[X(Q/e, )G, t" . (5.74)

This is the origin of the matrix (a
~
XQ, /e,

~

a ) that
appears in Eqs. (5.52), (5.53), (5.65), and (5.70). We
now show that D3 and the M matrix are unaffected

VI. NUMERICAL METHODS

In this section we give the methods we have used
to evaluate the expressions of Sec. V on the comput-
er.

A. 6'-type calculations

In an d'-type calculation the formulas of Sec.
V G are used to calculate diagonal matrix elements
of 8', and these are put ino Eq. (5.12) to obtain D 3.
A separate calculation is done for each set of con-
served quantum numbers g %u, and these in-
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dependent contributions are summed in Eq. (5.12).
In Sec. V G we encounter g—:g&& f dE. '

The integral is evaluated by using Gauss points E;,
i = 1,2, . . .N(K), on the interval K;„&K & K,„.
The cutoff E,„must be large enough to give a
good approximation to the integral over
E;„&E& oo, and E,„=8fm ' is found tobe
adequate. Standard values of mesh parameters,
cutoff momenta, etc., are given in Table I. The
lower limit E;„is taken to be

K;„=(kF —A o/9)' (6.1)

oTo
X Q(P, ,k)(kl

I eb 'Gb
I kolo)

(6.2)

where A o is the fixed, average value of total three-

body momentum; see Eq. (4.6). The choice (6.1) is

somewhat arbitrary and is discussed in Ref. 17. It
must be checked that D3 is insensitive to reasonable

changes in E;„.
Let us now consider the evaluation of Fp" (d PK)

from Eq. (5.60), where we replace a by the more
explicit notation d PK of Eqs. (3.49)—(3.51). In Eq.
(5.60) we insert the completeness relation (3.37) on
both sides of X and use Eq. (3 47) to get

Fo"(d PK)

= —, g f dk dk'gg (k',K)(dKk'I'IX IdpKokl)

TABLE I. Standard values of parameters used in nu-

merical calculations, as discussed in the text.

Parameter Value

N(K)
E
N(k)
k

N(Kp)
N (I( p)

N(k, )

~ max

Ip

Lp
+min

Pb

aJVp

603

8
8 fm-'
6
8 fm-'
3
6
3
8

0, 1,2

Ip+Lp ( 2
(kF2 ~p /9) /2

( ) kF5

kF /10Ptl 3Ep

We use Eq. (4.67) for the matrix element of X, and
we use the delta function in this formula to integrate
over k'. The limits on f dk are then det'ermined

by Eq. (4.65), except that (1) we require k & k
where the cutoff k,„=8 fm ' has been found
adequate, and (2) the factor Q(Pb, k) vanishes for k
less than (kF —Pb /4), see Eq. (4.3). Thus Eq.
(6.2) becomes

Fo"(d13K) = g J~ k' 'dkgg (k',K)Q(Pb, k)(kl
I
eb 'Gb '

I
kolo)

11'

1 1L —, J Lo —, Jo

X +98(W,SSo)%(WTTo) l S j ' l So jo
'

X WP'[Jj Jojo)'~ (KLk'l'I f(W) IKoLokl) (6.3)

where

k' = ( K'+ k' — K'—)' '—(6.4)

Up ——min[ k,K + ,Kpj—
Lo ——max[ (kF —,Pb )'i, IK ——,—KoI ]

(6.5)

(6.6)

The integral over k in Eq. (6.3) is evaluated by
changing variables from k to y, where

k —E +EE~+ 4EO (6.7)

We use N(k) Gauss points in the variable y, where
N(k) = 6 has been found to be adequate. We have
found it unnecessary to make any special provision
for the discontinuous derivative in Q(Pb, k) at
k =kF+ 2I'b.

Equation (6.3) is evaluated at the N (K) Gauss
points K;, at N (Kp) mesh points Ko; on the interval

[0,4kb/3], and at N(ko) mesh Points ko; on the in-
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terval [O,kz]. I"or each pair of mesh points
(K,Kpj ) we have a separate set of N (k) mesh

points k, each with a corresponding value of k'
from Eq. (6.4). Using the standard values of Table

I, we then find

N(K)N(Ko)N(k) = 8 X 3 X 6 = 144

distinct sets (K,Ep,k,k'). We refer to each set as a
grid point, so that 144 grid points are used in

evaluating Eq. (6.3) when the standard parameters
of Table I are used.

The form factors gg ( k ',K) are calculated be-

forehand, as described in Sec. IV C, and stored in

an array with rows corresponding to grid points and

with one column for each distinct set of variables

(jSTl'p). Matrix elements of eb 'Gs are treated

similarly, with columns labeled by (loSplpTpl kp).
To treat matrix elements off(W) in Eq. (6.3), we
use Eqs. (4.57) —(4.60) and note that each grid

point determines values of cos81, cos82, and cos03.
Arrays of YI for these arguments are calculated
and stored, and these are used to evaluate matrix
elements off{W) from Eq. (4.57) as needed. The
result for I' p" is a two-dimensional array with rows
labeled by (d PK) and columns labeled by-
(d pK pkpl p). The size of this array depends on

g 9'~ and is typically about 300 && 100.
To evaluate Fp" (a) we start with Eq. (5.61) and

insert the completeness relation (3.37) 'between Gb
and X. %e then encounter an integration of type 2
[see Eq. (4.66)], and the final result is

ex
Fo"(dPK) = 2 g f ko 'dKoFo" (dPK, doKokolo )

010

X g SP(W,SoSp)9P(W, ToTo)WP'[Jo jp Jojo]'~

Lo

g 'lp

1

Jp Lp

Sp gp lp

1 Jp

Sp jp '(KoLokplo
~
f(W) ~KpLokolp) (6.8)

where

ko ——( ,Ko +—ko —,Ko )'—
=

I 2Ko —kol
1

Ue& = &E'p+ kp

(6.9)

(6.10)

(6.11)

j = 1,2,...N{kp). To obtain Fp" at the points
(Ep,kp ) required in Eq. (6.8), we use the interpola-
tion formula

Fo"(d PK,d p Ko ko 1o )

In Eq. (6.8) we have indicated that Fo'" is calculated
with initial state

~
dp Kp kp lp } which difFers from

the initial state
~

d pKpkplp) of Fp".
The integral over Kp in Eq. (6.8) is evaluated by

transforming to the variable y defined by

Kp = 4Ep + Kpk(p + kp (6.12)

Then Gauss integration in y is used with N,„(Kp)
Gauss points, where N,„(Kp) = 6 is the standard
value. A grid point in Eq. (6.8) is defined by each
distinct set (Kp,kp Kp kp }. The total number of
grid points is

N(Kp)N(kp)Ne„(Kp) = 3 y 3 && 6 = 54

when the standard parameters of Table I are used.
Values of Fp

' are available from evaluating Eq.
(6.3) on the grid points (Ko;,kp~), 1 = 1,2, ...N(Kp),

N(EO) N(ko)

g B(m,n)K k ", (6.13)
m=1 n=1

where the coefficients B (m, n) are chosen so that
Eq. (6.13) is exact on the grid points (Kp;,koj ). A
different set of B(m, n) is required for each distinct
set of the variables (dPKdp lp ). The leading term
in Eq. (6.13) has been chosen to be linear in Kp and
kp liecause the initial state

~
dpKp kp lp ) has this

property for Lp
——1p

——0. The array
Fp" (dPK, doKpkplp) has the same size as Fp".

We next evaluate (a
~
XQ, /e,

~

a'), which appears
in the Eq. (5.65) that determines F(a). We insert
the completeness relation (3.37) on either side of X
and then use Eq. (3.47). Using Eq. (4.67) for X, we
find an integral of type 1 [see Eq. (4.65)], and the fi-
nal result is
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U
(d'P'K' ~XQ,Ie,

~
dPK) = g I k' 'dk gj~i ( k', K')g JIii (k,K)[Q, (K,k)/e, (K,k)]

ll '

L' —, J' L

X g A(W,S'S)9F(~,T'T)WW[J'j'Jj ]' 1' S' j ' '
I

J
2

S J

y (K'L'k'1'
~

f(W)
~

KLkl) (6.14)

where

k' = ( —K'+ k' —'K')' '—

L = maxI (kb. —,P, )'~,—~K'—, K
~ ], —

(6.15)

ifP, g2k~
= iK' ——,K i, if P, & 2kpP

U = min[ km, „,K'+ —,K ]

(6.16)

(6.17)

when the standard parameters of Table I are used.
Equation (6.14) is a square matrix whose dimension

N (d pK) is typically in the range 200 to 400.
Having calculated Fp", Fp", and (a

~
XQ,le,

~

a'),
we put these quantities into Eq. (5.65) and solve for
F(a). For each set (d pKpkplp), Eq. (5.65) is a set of
N (d pK) linear equations which are solved numeri-

cally. Having F(a) we can use the equations of
Sec. V G to calculate diagonal matrix elements of d'

in the (doKpkplp) representation (we have not car-
ried out the perturbation calculation described in
Sec. VG).

The diagonal matrix elements of d'&, @~,d'z are
now put into Eq. (5.12) for D'3, which involves an

and Q, (K,k), e, (K,k), and P, are defined by Eqs.
(4.4), (4.13), and (4.5), respectively. The lower limit
L is determined as follows. For P, & 2kF, Q, (K,k}
= Q(P„k) does not vanish for any value of k, and
L is determined from Eq. (4.65). For P, & 2kF,
Q, (K,k) vanishes for k & kF —,P, )'~, and—this
fact is used in Eq. (6.16}.

Equation (6.14) is evaluated in essentially the
same way as Eq. (6.3}. The integration is done us-

ing N(k) Gauss points in the variable y defined by

k =E +EEy+ 4E (6.18)

The form factors and matrix elements off(W } are
handled in the same way as for Eq. (6.3). The
number of grid points (K 'Kk 'k) is

N(K)N(K)N(k) = 8 X 8 X 6 = 384

average over three-body states in the Fermi sea.
Since we use a fixed value A = Mo, the only
remaining dependence on pi, p2, pi in Eq. (5.12) is

through (Kp, kp). Matrix elements of 6' are calcu-
lated on the grid points (Ko;,kpJ ) i = 1,2. . .N (Kp),

j = 1,2...N(kp). We make the approximation

Ko 'ko '(doKoko1o
~
«g +~ )

~

d oEok pip)

W (Ko)W (ko)

= g pa(m, n}K, -'k",-',
m=1 n=1

(6.19)

where @ can be any of @H,d~, @~, and the coeffi-
cients A (m, n) are chosen so that Eq. (6.19}is exact
on the grid points (Ko;,k,z) The thre. e-body average
of each term is then calculated analytically (see
Table III of Ref. 17). The grid points K p; and kpj
have been chosen to be Gauss points on the inter-
vals (0,4kFl3) and (O,kF}, respectively.

B. ./8-type calculation

-/l-type calculations are done in the (fplnm)

representation, which depends on the choice of the
orthornormal expansion functions P„(k). These
functions are defined on the interval

k;„(k ( k,„, where

k;„= (kF —, Pb )'~— (6.20)

The cutofF k,„must be chosen large enough that
contributions from k,„&k g oo are negligible,
and k,„=8 fm ' has been found adequate. Ex-
pression (6.20) for k;„ is the point where Q (k,Pb)
vanishes. The main quantity of interest is S2 ——

QbSq, which is nonzero only for k & k
We have taken the p„(k) to be orthonormal poly-

nomials

n)1 (6.21)

where P„ is a Legendre polynomial and E„ is

p„(k) = N„P„ i[ 1+2(k —k;„)l(—k —k;„)],
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chosen so that

k

J„p„(k}dk= 1 (6.22)

AII expansions are truncated after n functions

P„(k), where nm~ = 8 has been found adequate.
The method permits much greater flexibility than
this. For example, we could use different values of
n for different two-body channels gp, I). We
could even use different expansion functions p„(k)

for different (fp, l). However, we have not explored
either of these possibilities, nor have we tried a
choice ofp„(k) different from Eq. (6.21).

The formulas in Sec. V H for C involve the ma-
trix elements (dpK ~XQs

~
d+pnl) and

(dPK ~X/e~
~

d pKpnl) T. o evaluate the former, we
insert the completeness relation (3.37) to the left of
X and use Eq. (3.47). Inserting Eq. (4.67) for ma-
trix elements. of X, we find an integral of type 1, see
Eq. (4.65}. The result is

(dPK ~XQs ~dpKonl) = 2g f I,, k' 'dkgg (k',K)Q(Ps, k)p„(k)

1

L —, J Lp

X gu(P', Sso)sP(~, i-io)9P[JJ"J~"p]'~'1 S j 1 S,
Jp

Jo
'

x (KLk'1'
I
f(~) IKoLokl) (6.23)

where the matrix element off(W) is given by Eq. (4.57). The momentum k' and the limits of integration
Up Lp are given by Eqs. (6.4) —(6.6). The numerical evaluation of Eq. (6.23) is done in exactly the same way
as that of Eq. (6.3) for Fp". We obtain (dPK X/eb

~
doK pnl) in the same way except that in Eq, (6.23)

Q(Pb, k) is replaced by (k + yb ) ', where yb is given by Eq. (4.22). These results along with Eq. (6.14) for
(d PK

~
XQ, /e,

~

d'P'K') are sufficient to evaluate the formulas for C given in Sec. V H.
Once the matrix elements of C have been calculated, we can evaluate Mi' starting with Eq. (5.19). It is use-

ful to rewrite Eq. (5.19}as
—lo—1

(fplnm ~M
~

fpl'n'm') = gkot ' I'(m &)g(n
~
es/eb(koi) ~n")(fonl"koi ~~ ~fol'n'm')

n"

which defines M. We then write M = M "+ M'", where M " is calculated using the 1 from the term
1 + X in Eq. (5.19) and M'" uses the X. We obtain

(folnko I~"'~fol'n'm') = ——,v(fo}v(for@(fofo ) g g~ [joTo] '(4~) '

gTLPO

(6.24)

I
XJd P3Kp (doKpnl~ C(g H~ )~ dpKpn'1')k„'™ .

(6.25)
To evaluate M'", we put Eq. (4.67) into Eq. (5.19) and note that we have an integral of type 2, see Eq. (4.66).
The result is

(folnkp; ~M'"
~

fo'1'n'm')

= —v(fo)v(fo ) P /~ (j oTo) (4~) I d p3Ko
&~LHOLo Jo

I

X f '"k,' 'dK, '(doKonl
~
C(g Hu ) ~dpKpn'1'}kp '

ex

Lp

X g&(W,SoSp}A'(a,Tp Tp)W&[Joj o Jol'p]I~2' lp So

Jo

io 'Io

1

Jo

~o Jo

x (Kp L p k p 1p ~ f(~ )
~

K poLp,'k1 p) (6.26}
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where L,„, U,„, and kp are given by Eqs.
(6.9)—(6.11). Except for the integral over p 3, the
numerical evaluation of'Eq. (6.26) is simil'ar to that
of Eq. (6.8) for Fp" M. atrix elements of C are need-
ed at the mesh points Eo; used in the integration.
They are obtained by interpolation from values cal-
culated at the N(Kp} mesh points Kp;. The interpo-
lation formula is

evaluate expression (6.31) numerically. The pro-
cedure we have actually used is somewhat different.
Instead of evaluating Eq. (6.31) for an average value

of P, we have averaged the entire integral over P,
i.e., we make the replacement I(P)~ I, where

I = fd p, d p I(P =
l p&+ p2l)/fdp, dp, .

(6.33)

(dpKonl
l
C(g 9'a ) ldpKon'l')

N(K0) g

g A(k)Kp
k=1

(6.27}

Putting Eq. (6.30) into Eq. (6.33) and using Eq
(6.28) gives

I = m Eo EodEo (6.34)

where the coefficients A (k) are determined so that
Eq. (6.27) is exact whenever Kp coincides with one
of the mesh points Eo;. A different set of coeffi-
cients is calculated for each distinct set of quantum
numbers (dpKpnl dp n'I'g 9'~. The mesh points

Eo; are chosen for convenience in carrying out

fd p 3 in Eq. (6.26) as described below.
We now turn to the integral over p3 that occurs

in Eqs. (6.25) and (6.26). The integrand depends on

p3 through Kp and M, which are defined by

——,p3l)/f d p~d p, . (6.35)

Formula (6.35) can be evaluated analytically to give

tv(Kp) = (81nk~ /2) g A„x"
n=1

where

(6.36)

where

~(Ko) = fd P id Pzd P3~(Ko —
l 3 (P&+ P2}

1~ 2~
Kp ———,P ——,p3 (6.28) x = KplkF (6.37)

M =P+ p3 (6.29)

where P = p1+ p2. In our approximate treatment
we use a fixed, average value of A, so the integrand

depends on Eo but not on A .- Thus the integral

I(P) to be evaluated has the form

I(P) = fd p3 f(Kp), (6.30}

where f(Kp) can be read off from either Eq. (6.25)
or (6.26).

One approach now is to change variables from p3
to Ko and perform the angular integrations analyti-
cally. The result is

The coefficients A„are different in the two cases
2 2" 4

0 & x & —, and —, & x & —,. They are given in
- Table II.

To evaluate the integral of Eq. (6.34), we use the

methods of Ref. 26 to find Gauss points Eo; and
corresponding Gauss weights appropriate to the
weight function tv (Ko). Thus the integrand of Eq.
(6.25) or (6.26) is evaluated at N(Kp) Gauss points

Kp&, where N(Ko) = 3 is usually used.

TABLE II. The coefficients A„ to be used in Eq.
(6.36) are given as rational fractions. Column (a) is used

2 2 4
for 0 & x & —and column (b) for

3 & x & —.The A„

are zero for other values of x.

I(P) = f v(Kp, P)f(Kp)dKp, (6.31)
(a) (b)

where

v(Ko,P) = 27nKo~/2 0 (Ko ( kF

= (9n/8)Ko( 9Ko /P + 6Ko-
+ 4kF /P —P}

3kF 3P & EO & 3kF + 3

= 0, otherwise (6.32)
I

We can choose a reasonable average value of P and

0
1

3

0
0

27

16
243

160

0
243

2240

16

35
8

3
18

5

0
45

16
243

160

0
243

2240
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Now we turn to the numerical evaluation of M~,
using the formulas of Sec. V E. The interval of in-

tegration in Eq. (5.48) is divided into the two inter-
vals

(kb. —, Pb —)'~ & k & kF + ,Pb-

kF+ —,Pb &k &k

(6.38)

(6.39)

with 8 and 16 Gauss points being used, respectively,
on these two intervals. Thus, for each discrete value

kp;, Eq. (5.45) for U (k,kp;) must be evaluated for
24 mesh points k. This is done using Gauss integra-
tion, choosing subintervals in z and P with due re-

gard to discontinuities in the 8 functions and in the
derivative with respect to P of Eq. (5.46) for
w(kp, P).

The values of U(kz, 5E) needed in Eq. (5.45) are
obtained by interpolation from a previously comput-
ed table. The table of U(k2, 5E ) is calculated for
seven equally spaced values of 5E and for k2 on the
grid

k2 —kF ——0(0.5)4(1.0)k,„ (6.40)

where all numerical values are in fm '. Interpola-
tion is done as follows. For each value of 6E in the
table, cubic spline interpolation is done in k2. The
resulting seven values of U are then interpolated in
5E by fitting them with a sixth-order polynomial.

The table of values U(k2, 5E) is calculated using

Eq. (5.29). The integral over p3 reduces to a two-
dimensional integral over

~ p3 ~

and cos8(ps, k2).
Two Gauss points are used in

~ p3 ~

and three in
cos8( p3, k2).

The sum over two-body channels f = (lsj T) in

Eq. (5.29) is carried out as follows. For each chan-
nel with l & 3 the reaction matrix 6, is explicitly
calculated. All channels with l & 4 are included
using the approximation 6, = v. In this approxi-
mation it is possible to sum analytically over all
channels using the formulas

g (21 + l)j& (kr) = 1
l=o

g (21 + 1}ji (kr) = —,[1+jp(2kr)] . (6.42}
even l

The numerical accuracy of the procedures
described above is about 0.2 Mev in D3 (8}at
k~ ——1.8 fm '. As kF is decreased below 1.8
fm ', D3 (8) gets rapidly smaller (see Table
XXXIII), and we expect the numerical error in

D3 (8) to also decrease rapidly.
The numerical methods described so far are suAi-

cient to carry out steps (1}—(5) given at the end of

Sec. VH to obtain the M matrix. Having M, we
begin the iteration of the generalized ring series by
calculating J ' from Eq. (5.18). We apply
eb 'GbQ to J ' ' by usin~ Eqs. (5.23) and (5.24),
and we then construct S2 according to Eq. (2.65).3)

The energy D 3
"

D3——is calculated from Eqs.
(5.25) and (5.26), and then we start the next itera-
tion by applying M to S2 .(3)

The two-body average over the Fermi sea in Eq.
(5.25) is defined by Eq. (5.5). When the quantity
F (kp) to be averaged over p i, p2 depends only on
kp ———, p i

—p2 ~, as is the case in Eq. (5.25), one
finds

kF
(F(kp})2 ——24kb ' J dkpF(kp)

Xx (1 ——,x+ —,x )

(6.43)

where x = kgkF. The integrand of Eq. (5.25} is
calculated from Eq. (5.26} at N(kp) mesh points

k0;, which are taken to be Gauss points on the in-
terval (O,kF). The result is fitted to a polynomial of

2lo
N(kp) terms with leading power kp ', and the in-

tegral in Eq. (6.43) is evaluated analytically.
After carrying out several iterations, we sum the

entire generalized ring series. We evaluate Eq.
(5.22), insert the result in Eq. (2.70), and invert the

appropriate matrix to obtain S2". Then J"' is ob-
tained from Eq. (2.71), and D,« is obtained from
J "' in exactly the same way that D3 was obtained
from J' '.

Besides the energy, the main quantities of interest
are $2"'(fplkkp) and S2 (fp1kk(). These are ob-
tained by transforming from S2" (fplnm) to
S2" (fplkkp), as explained in Sec. III 8, and multi-

plying by Q (Pb,k), with a similar procedure for
S tot

2

VII. TEST CALCULATIONS
A. Preliminary remarks

In any numerical calculation we must truncate all
partial-wave expansions and choose a set of mesh
parameters. We must constrain the calculation to a
manageable size but still obtain reasonable numeri-
cal accuracy, preferably better than 1 MeV per par-
ticle in the energy. In this subsection we specify a
standard set of truncations and mesh parameters.
This set has been used in the production calcula-
tions of Sec. VIII. In later subsections of this sec-
tion we describe test calculations that show what ac-
curacy is attained with the standard parameters and
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with other choices. Our approximations have
forced us to use fixed average values of E;„,PI„
M, and co3, and we also explore the sensitivity of
our results to variations in these quantities. Most
numerical tests have been made at kF ——1.8 fm
which corresponds to a density more than twice the
empirical saturation density. Because of the factor
kz in Eq. (5.12) for D &, we expect numerical errors
to decrease quickly as kF is decreased below 1.8
fm-'.

To define any calculation we must specify the
two-body potential U, the Fermi momentum kF, and
the parameters m ' and Ep that define the single-

particle spectrum through Eq. (4.10). The potentials

v2, vs(Reid), and full Reid are defined in the Ap-
pendix. The values of m* and Eo obtained from
self-consistent two-body calculations are given in

Table III.
Additional parameters to be specified are (1) the

mesh parameters N(E), N(k), N(E )pN(kp),
N,„(Ep),n, E,k,„; (2) the fixed average
values of E;„,Ps, M, and coi, (3) the sets of quan-
tum numbers {gHWI, {dp,lp) {fp,lI, Id,PJ, and

{d t,Pt ) to be included (the set {d,PJ is treated by

matrix inversion and the set {di,Pi I by first-order
perturbation theory). The standard values of most
parameters are given in Table I. Some of these have
been discussed earlier in Secs. IV and VI, and oth-
ers are discussed below.

Relative orbital angular momenta l are especially
important in truncation of partial-wave expansions.
The relative two-body wave function for given rela-
tive momentum k and given 1 isji(kr), which goes
to zero as l increases for fixed k and r. Intuitively,
this means that two particles with given relative
momentum can be close enough to interact only for
suAiciently small l. This is the physical reason that
truncating partial-wave expansions is permissible.
Various l values occur at several different places in
the calculations. The l value corresponding to two
particles in the Fermi sea is denoted lo. The final-
state 1 in (kl

~
Sp

~

kpl ) or in (kl
~
ei, Gs

~ k pip) is
called 1. We use 1' or I' (jST) to represent the
minimum l value corresponding to a two-body
channel jST included in G„so that

1'(jsT) = j (uncoupled channels)

=j —1 (tensor —coupled channels) . (7.1)

TABLE III. Results of self-consistent two-body calculations for various two-body potentials
and Fermi momenta. The quantity T = 0.3 kF is the average kinetic energy of a particle in
the Fermi sea. In the calculation of D2, the sum over channels IpS pJ pTp having lp & 3 is
done analytically, using the approximation G = v and Eqs. (6.41) and (6.42). For v2 at
kr = 1.8 fm ', later and more accurate calculations gave m" = 1.09, Ep = 1.40 fm ', corre-
sponding to an average single-particle potential energy of 0.3 kF (m ' —1) —Ep ———61.4
MeV, compared with —61.1 MeV obtained from the values of m*, Ep given in the table.
Since these average potential depths are nearly equal, our use of the less accurate values given
in the table will not significantly affect the three-body calculations. Similar remarks apply to
v2 at kF ——1.4 and 1.6 fm

kF
(fm ')

Ep
(fm )

Potential v2

D2
(MeV)

T+D2
(MeV)

K2

1.4
1.6
1.8

1.185
1.188
1.189

0.857
1.121
1.319

—19.7
—25.7
—30.5

Potential v 6(Reid)

4.7
6.1

9.8

0.140
0.197
0.270

1.4
1.6
1.8

0.642
0.596
0.561

2.035
2.537
2.966

—35.39
—41.81
—45.73

—11.01
—9.96
—5.42

0.149
0.190
0.246

Potential full Reid

1.2
1.4
1.6
1.8

0.705
0.637
0.581
0.539

1.502
2.019
2.521
2.938

—27.40
—34.91
—40.78
—43.69

—9.48
—10.53
—8.93
—3.38

0.121
0.150
0.192
0.250
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The quantum numbers L, Lo are also relative or-
bital angular momenta, describing the motion of
particle 3 relative to the center of mass of particles
1 and 2. Three-body states are labeled by L(Lp)
when particle 3 is above (below) the Fermi sea. It is

intuitively clear that particle 3 must not be too far
away from the center of mass of 1 and 2 if we are
to have three-body correlations. Thus we expect
partial-wave expansions in L,L p to converge (how-

ever, in some cases we find the convergence to be
too slow for efficient computation —see Sec. VII B).

Let us now proceed to specify the standard sets of
quantum numbers. We consider first the ring (R)
and higher-order (H) terms. The 10 sets

fp ——{lpSrJ'pTpj with lp & 2 are included, and for
each set fp, all values of Lp satisfying L p + l p & 2

and R = ( —)
' ' are included. For each pair

fpL p, and a given g, all Jp consistent with the cou-

Pling (Jp jp)g are included. The requirement

Lp + Ip & 2 implies g & —,. For odd parity,
P' = —,only Lo+ lo ——1 is possible, so. that

g & —, in this case. For each combination g 9',
1 3

the values W = —, and —, are both included. The set

[jSTPI depends on the two-body potential and is

different for the ring (R) and higher-order (H) cal-
culations. These sets are specified in Tables IV—VI
for the potentials v2, v6(Reid), and full Reid, respec-
tively. The notation 3R + 9A means that 3 positive

TABLE IV. Standard sets {jSTP{and {jSTl3,I used

in production calculations for the potential u2. Since u2

is a central potential with no spin or isospin dependence,
we use the same set of p or pi for alljST having the
same value of l'j(ST) defined in Eq. (7.1). The notation
3R + 9A means that 3 positive A~'s and 9 negative A,~'s

are included.

Ring Higher order

3R +9A
2R + 10A

2R + 10A

1R + 11A

2R+ 1A

1R+ 1A

1A

1A

1R +1A
1R

Ap's and 9 negative Ap's are included. The 1R form
factor corresponds to the largest positive Ap, the 2R
to the second largest, etc. The 1A form factor corre-
sponds to the largest

{ Alt { among the negative Xtt,
the 2A to the second largest, etc. For a given two-
body channel jST, all pairs (L,J) are included that
are compatible with the values of g,H. Note thatif'= —, only T = To ——1 is allowed.

For the bubble (8) term, calculated by the
method of Secs. VE and VIB, all sets fp having

Io & 2 are included, and all jST are included, using
the appproximation 6 = v for l'(jST) & 4, as

TABLE V. Standard sets {jSTpI and {jSTpiI used in production calculations for the
v6(Reid) potential. For the higher-order contribution, the sets {jSTpJ (treated by matrix in-
version) and {jSTpi] (treated by first-order perturbation theory) depend on the value of +.
The channels jST are given in spectroscopic notation.

jST

Ring
1

2

Higher order
3 S/ = —or—
2 2

j3i

7

'So
3 3Si- D)
1p
3p
3p

'p2-'Fz
'D

D
D3- 6
'F
'F3
3 3F4- H4
16
36
3 3Gs- Is

2R +SA
6R +SA
6R +2A
2R +4A
7R
8R +SA
1R +4A

SA

8R +SA
SR +2A
8R
SR +7A

ZR + 1A

4R +2A
3R
1R +2A
3R
2R +2A

1A

1R + 1A

2A

1A

1R
1R
2R

1A

1A

1A

1A

IR+IA
3R+ 1A

2R
1R + IA

2R
1R +1A

1A

1A

1R
1R + 1A

1R

1R
1R+ 1A

2A

1A

2R
1R
2R

1A

1A

1A

1A

1R+ IA

3R+1A
2R
1R + 1A

2R
1R+ 1A

1A

1A
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I

TABLE VI. Standard sets (jSTPI and IjSTPi I used in production calculations for the full
Reid potential. For the higher-order contributiou, the sets IjSTpI (treated by matrix inver-

sion) and CjSTpi J (treated by first-order perturbation theory) depend on the value of g. The
channels jST are given in spectroscopic notation,

jST

Ring Higher order
5

'So
3 3S1- D1
1p

'po
3p

P2- F2
1D

3D
3 3D3- G3
'F
F3

3 3F4- 84
1G

3G

3G 31

2R+SA 2R+1A
7R + 4A SR + 2A

6R + 2A 3R
3R + 2A 2R + 1A

6R 3R
8R + 5A 2R + 1A 2R + 1A

2R +3A 1A

6A 1A 1A

8R +4A 1A 3R
SR +2A
6R +2A
SR +5A 2A

1A

1A

1R +1A
4R +1A
2R
1R +1A
2R
1R+ 1A

1R 1R +1A
1R + 1A 4R + 1A

1R 2R
1R 2R +1A
1R 2R
3R + 1A 1R + 1A

1A

1A 1A

3R + 1A

1A

1A

1R 2R+ 1A

1R+1A 3R+1A
1R 2R

2R + 1A

1R 2R
3R+lA 1R+1A

lA 1A

1A lA

3R+1A

1A

1A

described in Sec. VI B.
The dimensions of the square matrixes M, C, 6',

and N are N(fplnkp), N(doKonl), N(dploKpkp),
and N(dPK), respectively, where

values of L p,Jp which must satisfy Lp + l p ( 2 and

(-) ' ' = % and be compatible with the angular
momentum couPling [(Lp—,)Jpjo]g. The contribu-

N(fiinlkp) = n N(kp)N(fpl)

N(dpKpnl) = n ~N(Kp)N(dpi)

(7.2)

(7.3)

TABLE VII. Calculation of N (fpl), N (dplp) aild

N (dpi ) as described in the text for g Ha = —,+, —.

N(doloKoko) = N(Ko)N(ko)N(dolo) (7 4) fp
' N(fpl) Lp Jp N(dplp) N(dpi )

N(dPK) = N(K)N(dP) (7.5)

Here, N(ab ...) means the number of distinct sets of
the variables a,b ... .

To get an idea of the sizes of these matrices we
consider in detail the case g RW = —,, +, —,.
Table VII shows the calculations of' N(f pl ),
N(dp, lp), and N(dpi ). The left-hand column gives
in spectroscopic notation the 10 sets fp having

lp & 2. The sPcctroscoPic notation sPecifies lpSplp,
and Tp is determined by the requirement that
lp + Sp + Tp be odd. The second column gives the
contribution to N(f pl ) from each two-body channel

fp. This is 1 for uncoupled channels and 2 for
tensor-coupled channels (in this example we assume
a tensor force is present). The sum of all contribu-
tions is N(f pl ) = 14. This result is independent of
g O'W and enters Eq. (7.2) for the dimension of

The third and fourth columns give the allowed

'So

Si

1p

3p

3p

3p
2

1D

D1
3D

3D

Total

1

2

1

14

3

2
1

2
3

2
5

2.
1

2
3

2
3

2
1

2
3

2
1

2
3

2
1

2
1

2
1

2

1

1

1

0
14

1

6

1

0(2)

1

0
18(20)
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TABLE VIII. Calculation of N(dP) and N(d P, ) for higher-order terms using the full

Reid potential, as explained in the text, for g9'W= —,+, 2.

jST N(L,J) N(dl3) N(diPi)

'So
3 3Si- Di
1p
3p
3p
3 3P2- F2
1D

D
3D 3G

'F
F3

3 3F4- H4
1G

36
3 3Gs- Is
Total

1

3
3
1

3
4
4
4
4
4
4
4
4
4
4

1R + 1A

4R + 1A

2R
1R +1A
2R
1R +1A

1A

2
15
6
2
6
8

43

1R
1R + 1A

1R
1R
1R
3R +1A

1A

1A

3R+ 1A

1A

1A

1

6
3
1

3
16
4
4
16

4
4

70

tions from each channel to N(dplp) are summed to
give N(d pl p) = 14, which enters Eq. (7.4) for the
dimension of d'.

The sixth column of Table VII gives the contribu-
tion from each channel fp to N (d pl ). For example,
the channel fp ——S i has 3 pairs (Lp,Jp) and 2
values of l, giving 6 combinations in all. The sets
(dpi ) corresponding to ( S, ,Lp ——O,Jp ———,,I ),

( Di,Lp ——O,Jp ———,, l) are identical because Si and

D i have the same values ofj pS'pTp. Therefore, the
2 sets I dpi j corresponding to fp

——D i have al-

ready been included in the row labeled S~, and this
is indicated by the entries 0(2) for fp

——D i and
18(20) for the total of N(d pl ). In the computer
program to evaluate M'" from Eq. (6.26), there is a
loop on fp', and for each new channel fp' all matrix
elements (d+ pnl

~

C
~ dpEpn '1') are read from a

sequential dataset on disk. It is therefore convenient
to treat the two identical sets [do,l I mentioned
above as distinct, even though this means that some
matrix elements of C are stored twice. When this
procedure is used, the size of the matrix C that is
stored on disk is obtained by using N (d pl ) = 20.

3
Note that we cannot make a state with / = —,

using fp
——D3 and Lp+ lp & 2. Hence rows and

columns of M corresponding to fp
——D3 receive

no contribution from terms in Eq. (5.19) haying
Similarly, rows and columns of M corre-

sponding to To ——0 receive no contribution from
three-body states with a = —,.

Table VIII shows the calculation of N(d p) and

TABLE IX. Dimensions of various matrices for a cal-
culation of higher-order terms using the full Reid poten-
tial with +H~ = —,, +,—,, as discussed in the text.

Variables No. of .

combinations

N(dPK) = dimN
N(d iPiK)

N (dpKpkplp) = dime'

N(dpKpln) = dimC
N(fplnkp) = dime

344
560
126
480
336

N(d ipi) for g Hu = —, , +, —,. The first column

gives jST in spectroscopic notation. For each jST
all values of L,J consistent with g,R = —,, + are
included. The number of L,J pairs is simply the
smaller of 2j + 1 and 2g + 1 is shown in column
2. Column 3 gives the set of unperturbed p used in
the calculation of higher-order terms for the full
Reid potential (see Table VI). The contribution to
N(dp) from each jST is simply the number of p
times the number of pairs N(L,J). The last two
columns show similar results for the set of pi that
are treated by first-order perturbation theory.

Using Eqs. (7.2) —(7.5) and the results from
Tables I, VII and VIII, we find the values shown in
Table IX. To construct the higher-order contribu-
tion MPH we must invert the matrix
(dpE ~N ~d'p'K') of dimension 344. To sum the
generalized ring series we must invert the matrix of
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Eq. (2.70), whose dimension is dime = 336. In or-
der to use standard matrix-inversion programs, it is
necessary for these matrices to fit into the fast
memory of the computer. Since we use
(dPK

~
N

~

d'P'K') in symmetrized form, it requires
344 X 345 )( —, = 59000 locations, while M re-

quires 336 X 336 = 113000 locations. Our com-
puter has 250000 locations of fast memory, of
which 40000 are used for program instructions.
Thus both matrices fit comfortably into core. How-
ever, the matrix C requires 480 )& 480 = 230000 lo-
cations and has to be read from disk to core in

small sections. The matrix (diPiK ~N ~d'P'K')
used in perturbation theory is 560 X 344, which is
also quite large. However, this is not troublesome
because the perturbation corrections from different

disci are not coupled but are purely additive. Thus
we break (diPiK

~

N
~

d'P'K') into several smaller
matrices, all having right-hand dimension

N(dPK) = 344, with the sum of the left-hand
dimensions being N(d &t3&K) = 560. Each of these
smaller matrices can then be treated separately in a
first-order perturbation calculation.

B. Qualitative discussion of convergence in

L+la,1'(jST)

In this subsection, using a combination of accu-
rate numerical results and rough but reasonable for-
rnulas, we try to gain some intuitive understanding
of what to expect for convergence in L p lo and
l'(jST}.

Consider first the range of /0 to be included. A
measure of the size of S2 is given by the parameter
~ defined by

Gg=vg, (7 9)

where the correlated two-body wave function P is

TABLE X. Contribution to K2 and KGR for the fu11

Reid potential at kF ——1.8 fm ', as discussed in the

text.

replacing Si by —(Q/eb)Gb in these formulas. The
approximation K = ~zR is defined by using

S2 = QbS2", where S2" is the sum of the general-
ized ring given by Eq. (2.70}. Contributions to K2

and ~OR for the full Reid potential at kF ——1.8
fm ', using the single-particle spectrum specified by
Table III are shown in Table X as functions of
(fo,l). .These results are obtained from the produc-
tion calculations of Sec. VIII.

A technical point must be mentioned here. In
evaluating Eq. (7.8) we use the angle-average Qb(k}
from Eq. (4.8). Putting S2 ——QbSz into Eq. (7.8)
would give a factor [Qb(k)] in the integrand.
However, the exact Pauli operator Q satisfies

Q = Q, so thatone power of Qis sufficient. In
evaluating Eq. (7.8) we have used Qb(k) rather than

[Qb(k)] in the integrand. This gives values of «

5 —10% larger than using [Qb(k)].
In Table X contributions from individual (fo,l)

are also summed over all variables except lo to get
contributions from lo ——0, 1, and 2. The conver-

gence in lo is seen to be very rapid. It will be seen
later that contributions to D3 and D3 "also con-
verge very fast in lo, so that including only

lo ——0,1,2 is an excellent approximation.
The rapid convergence in Io of S2 = —(Q/e)G

is understood intuitively as follows. If the two-body
state (kgo) is denoted P, we have

' X (p@21S2S2lpu 2)
&Pe

(7.6) K2 KGR

which can be written

& = g v(fo)joTo(kp'/l2)
fp

X (ko (kafo~S2S2~kgo))2 (7.7)

[compare Eq. (5.4)], where

«afoIS2S21kafo)

= —, g fdk(kI ~S2(jPo'o)jkoIo)'.
I

(7.8)

The two-body approximation K K2 is obtained by

'Sp
3S1(l = 0)
S1(l = 2)
1p
3p
3p

P2(l = 1)

1D

D1(l = 2)
D1(l = 0)

D3(l = 2)
D3(l = 4)

Total

0.0479
0.0660 0.2102
0.0963
0.0108
0.0082
0.0099 0.0359
0.0031
0.0039
0.0004
0.0002
0.0001 0.0042
0.0008
0.0000
0.0027
0.2503

0.0553
0.0699 0.2566
0.1314
0.0147
0.0074
0.0178 0.0460
0.0021
0.0040
0,0004
0.0002
0.0008 0.0051
0.0017
0.0000
0.0020
0.3077
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defined by

0 = 0 —(Q/e)GO (7.10)

TABLE XI. Contributions to D2 in the approximation
6 = v for the potential v2 at k~ ——1.8 fm

The second term in Eq. (7.10) is S2 ' and represents
the difference between P and f caused by the two-

body potential. The wave function P contains the
factor ji (kpr ) which, for lp & 2 and kp & kz, is

small at small r, where the potential is strong.
Thus, for lp ) 2, the strong part of U has little op-
portunity to deform the wave function, and we ex-

pect tP = P so that Sz ' ——g —P is small.
Note that this argument does not apply to the

two-hole-line contribution D2 to the energy. If
f = P, then G = u, and the matrix element appear-
ing in D2 is

(k(jo I
u

I kgfo) ~ Ir2drui (r)J'i 2(kor )

Ip D2(lp)
(Mev)

lp D,(l, )

(MeV)

530.50
—18.29
—10.35
—6.33
—2.01

5

6
7
8

9to oo

—2.16
—0.85
—0.91
—0.34
—0.80

qualitative considerations spin and isospin are un-

necessary, and we omit them. We also use unsym-
metrized spatial states, and to avoid writing the sub-

script na repeatedly, we use the notation

(7.11) ~ ~ t ~ ~ ~ 11' o (7.13)

The weak, long-ranged tail of v contributes appreci-
ably to this integral, even though it is unable to de-

form the wave function and give a contribution to
S2. 'Equation (7.11) converges in lp, but rather
slowly. We illustrate this with results for the poten-
tial U2. Contributions to D2 in the approximation
G = u are given in Table XI as a function of lo for

U2 at kz ——1.8 fm '. The convergence is seen to be
slow. The observed odd-even staggering comes
from the statistical weight of Eq. (5.4). Summing
this over j o&SpTp for fixed 1o gives

v(fo)jpTp = 6(2lp + 1 ) Ip even
JPpTp

= 10(2lp + 1), lo odd . (7.12)

Since u2 has a one-pion exchange potential (OPEP)
tail at large r, we expect qualitatively similar results
for more realistic nucleon-nucleon potentials, except
that the contributions from individual lo will alter-
nate in sign, being negative for even Io and positive
for odd lo. In any practical calculation the sum
over lp must be performed analytically using Eqs.
(6.41) and (6.42).

Next we study convergence in Lo. Consider first
the contribution 83(8) of the third-order bubble di-

agram calculated in an 8'-type calculation. For

Ps' ——Gs(Q/es)Pi32G, Pi23(Q/eb)Gb . (7.15)

Here Pz' differs from 8's of Eq. (2.50) by replace-
ment of X = PI23+ P132 by either P123 or PI32.
Thus Eq. (7.15) is only one of four terms whose
sum is 6'z, but the arguments to be given below ap-
ply equally well to any of these four terms.

In Eq. (7.15) we insert the completeness relation
(4.49) to the left of P»2 and to the right of P i23.
Putting the result into Eq. (7.14) and using Eq. (3.7)
gives

Ms = fd K'd k 'd Kd kKo 5(E' —Eo)

o)IL~o(+ )yl

x & ko
I Gi Q/eb I

" '&
& k

I
(Q«b )Gs

I
"o&

&& &K'k 'IPi32G, Pi23 IKk& (7.16)

Using Eqs. (4.51)—(4.53) for P i23, and noting that
P I 32 —P }23 we find

We want to investigate the convergence in Lo of

~B= g & &oL oM ok o I
&a

'
I
&oL oM ok o »

LpMp LpMp

(7.14)

where

&K'k'IP», G.P», IKk& = gk ——,'K+ —,'K —k )& ——,
'K' ——,'k'IG. I-, K —K ——,'k & . (7.17)

This is put into Eq. (7.16) to get
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Mi] ——fd K 'd K d k 'Kp 5(K ' —Kp)5(K —Kp) YL ~, (K ') YL~o(K )

X& "o
I GbQ«b I

"'&("'——,K'+ —,'K )(Qleb)Gb
( kp)( ——,K' ——,k '(6,

(
—,K' —K ——, k ').

(7.18)

Since ( k '
~
(Q leb )Gb

~
kp) is largest in the region

k' = 3 —4 fm ' (see Fig. 8), and since
1 . 1 i 1

—,E ='
—,E' = —,Ep is typ~~ally only about 1 fm-',

it is reasonable in Eq. (7.18) to make the replace-
ment

(k ' ——,K'+ —,K i(Q/eb)Gb i kp)

~ (k'
~

(Q/eb)Gb i k]]) . (7.19)

For qualitative considerations we replace 6, in

Eq. (7.18) by an efFective two-body potential. We
consider the two cases:

(1) G, ~ u]r(r) (Wigner force, acting the same in

all partial waves);

(2) 6,~ uM (r)P", where P' is the space exchange
operator (Majorana force).

The two-body matrix elements of these eA'ective po-
tentials are given by .

(q'~ v]]
~
q) = (2') fdre 'q q "v]r(r)

(7.20)

(q'~uMP"
~ q) = (2m) f1re 'q+q"'ul(r)

(7.21)

When this approximation to G„along with Eq.
(7.19), is put into Eq. (7.18), the angular integrals
over K ', K can be evaluated using

f YL,~,(K)e'"'dK=i '4~jL, (Kr)YI~,(r),

(7.22)

and the final result is

g Ma = (2+) 'Ko'f dk'1&k'I(Q«)Gb lko& I'
LOM0

X g(2Lo+ 1)fdr
L()

jL (Kpr )u]] (r)

( —) 'jl ( , Kprj)l (Kpr—)vM(r)e
(7.23)

Equation (7.23) tells us what to expect for convergence of Di (B) in Lp. Consider first the Wigner force.
Since L p ranges from 0 to 4k+/3, the integral in Eq. (7.23) is similar to that in Eq. (7.11), and the convergence
in Lp will be similar to the convergence in lp shown in Table XI, i.e., quite slow. This is why we avoid ex-

panding Di (B) in L p and, . instead, use the method of Sec. V E. For the Majorana force, Eq. (7.23) looks more
favorable. There is an additional oscillating function exp(ik 'r) in the integrand, and the alternating signs will

give cancellation between even and odd values of L p. However, 'we have made a special selection of permuta-
tion operators in obtaining d'z in Eq. (7.15) from 8'i]. Other choices will give terms that converge badly for a
Majorana force.

We next study the third-order ring contribution D3 (R) with respect to convergence in L p. Thus we consid-
er

MI] = (KpL pMpkp
~

t/ g'P]23
~

Kohl pMpk]]) (7.24)

-, -, - 5(K' —Ko) 5(K —Ko) —+
Mi] ——fd K 'd k 'd K YL*~ (K')Yl yg (K )(kp

~
Gbg/e

~

k ')
Kp Ep

where we have used P]23 from the right-hand factor X = P]q3 + P]32 in Eq. (2.51) for d']]. Proceeding as in

the treatment of Eq. (7.14), we find

X ( k — K — K + kp
~
(Q/e)Gb

~

— K — kp)

X ( —,'K'
—,'k ~6.

~

—,'K + —,K —k, ——, k') . (7.25)
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For qualitative considerations we may replace the left-hand momentum in the matrix element of (Q/e)G~ by3~ 1
k [compare Eq. (7.19)]. Furthermore, this matrix element is largest when the inital state

~

——,K ——,kp)
has lp ——0 (see Table X). For lp ——0 the matrix element varies slowly with the initial momentum

3 1——K ——kp (see Fig. 36 of Ref. 8}, so we replace this momentum by ——,kp. Treating G, the same as in

the third-order bubble contribution, we obtain

g Mit —(2m ) 'Ep f1k'(kp~GbQ/e ~k')(k'~(Q/e)Gb
~

——, kp)
LoMo

X g(2L, + 1)f dr
Lo

( —) 'ji. (Epr)jr. ( —,Epr)vs (r)e

1 i(k'+ ko) rji ( , Epr )v~(—r)e
(7.26)

Consider Eq. (7.26) for the Wigner force viF(r)
Since the matrix elements of Gb Q/e and (Q/e)Gs

ikor
vary little with kp, we can average e over two-

body states in the Fermi sea, using Eq. (5.5) with

kp ——(pi —p2)/2. The result is

(e '
)2 ——I ( , kFr)— (7.27)

where the Slater function I (y} is

I U» = 3y 'J ib» . (7.28)

Thus, for the Wigner force, the integrand in Eq.
(7.26) differs from that of Eq. (7.23) for the third-
order bubbliI by an additional factor I ( , kFr), —
which goes to zero at large r. Now, for Lp & 2
and Ep & 4kF/3, the integrand of Eq. (7.23) for
Mz is small at small r and has a peak around
r Lp/Ep ~ But at this point, I ( , kFr) is sm—all so
that the contribution to Mz from a given L p is
much less than the contribution to M~. Also, the
larger Lp is, the larger is the value of r where the
integrand for Mz is maximum, and the greater is
the effect in M~ of the decreasing function
I ( , kFr) We—there.fore conclude that (1) for a

given Lp & 2, the contribution to Mz is much less
than the contribution to Ms, and (2) the rate of
convergence in Lp is faster for Mq than for M~.
Thus it may well be efficient to expand in Lp for
M~ even though it is inefficient for Mz. Similar
remarks apply to the Majorana force in Eq. (7.26)
and to formulas obtained using other possible
choices of the permutation operators in Eqs. (7.15)
and (7.24).

Next we consider convergence in the two-body
channels jST included in 6, . Truncation of jSTis
made according to the value of I ' = I'(jST) defined
by Eq. (7.1). In the third-order bubble diagram of
Fig. 1(a) the matrix element of G, is (bp3

~
G,

~
bp3)

For qualitative considerations we neglect spin and

I

isospin and replace G, by an effective potential

vi (r) that may depend on I'. Then the middle ma-
trix element in D3 (B) is

(q'~v
~
q) = (2m ) 'g(2l'+ 1)

X f r drji(q'r)vi(r)

X Ji(qr)Pr("q' q»
(7.29}

where q' = q = —,(b —p3). Since q' = q, the

factor Pi (q'. q ) in Eq. (7.29) is exactly unity, and
since q = q

' tan be larger than kz, the convergence
of Eq. (7.29) in I' will be slower than the conver-
gence of D2 in lp shown in Table XI. Thus conver-
gence of D3 (B) in I'(jST) is quite slow. In prac-
tice, as described in Sec. VI B, we do the sum
analytically for l' & 4, using the approximation
G = v. Summing analytically over l' does not ap-
pear to be possible in an 6'-type calculation using
Eq. (5.58).

The situation is. different for the third-order ring
contribution D3 (R), where the middle interaction is

(bp3
~
G,

~
cp2) [see Fig. 2(a)]. Using momentum

conservation b + p3 ——c + p2, we see that the
middle interaction has the form of Eq. (7.29) with

(7.30)

= —,b —P2+ 2P3 (7.31)
In the approximation of zero hole momenta, i.e., all

p; = 0, we have q
' = q, and convergence in l' is

the same as for D3 (B). However, the zero-hole-
momenta approximation is unlikely to be very accu-
rate for D3 (R) for the following reason. A typical

1

value of b is 2 —4 fm ', so that —,b is of the order
of kF or a little larger. Therefore, as p2 and p3
range over the Fermi sea, the angle between q

' and

q will vary over an appreciable fraction of the inter-
val [O,ir]. When I' is large, this has two conse-
quences: (1) The rapid variation of Pi (q'.q ) in Eq.
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C. Numerical study of convergence in L p l p l (JST)

We first consider d'-type calculations of the bub-
ble (B}and ring (R) contributions to D3. Table
XII shows r'esults for the two-body potential v 2 at
kF ——1.8 fm '. Since v2 is a central potential, each
jSThas a unique value of I', and all contributions
from a given 1' are summed and shown in the table.
Comparing columns A and E, we see that for
1' ) 2 we have

~

R (1')
~

&&
~

B(1') ~, where R (1')
and B(1') are the contributions from a particular
value of 1' to D3 (R) and D; (B), respectively. Thus
column A for I' & 2 essentially shows the conver-
gence of B in l'. It is seen to be rather slow, as ex-
pected from the arguments in the preceding subsec-
tion.

Columns B, C, and D show the additional contri-
butions to D3 (B) + D3 (R ) obtained by including
(L p lp) = (4,0), (5,0), and (6,0), respectively. For
the bubble contribution it is found that including

(Lo,lo) = (3,1) has only 10—20% as much effect as
including (4,0}. Thus the pair (Lo,lo) having lo ——0
gives the dominant effect on the bubble of pairs
(L p lo) having a given value of Lo + lo. This is
found not to be true for the ring contribution, how-
ever. Inspection of columns A, 8, C, and D shows
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(7.29) will tend to damp out the integrals over p2
and p3. (2) The average value of Pt (q'q ) will be
closer to its rms value (21'+ 1) '~ than to the
value unity that obtains when q

' = q. Thus we ex-

pect that summing over momenta p; in the Fermi
sea will cause the third-order ring diagram to con-
verge much faster in I' than the third-order bubble
diagram. This is borne out by numerical calcula-
tions, where ring contributions from I' = 3 are al-

ready very small (see Sec. VII C).
As for higher-order contributions to D3, we know

that these arise from regions of configuration space
where all three particles are close together. ' Thus
we expect that both Lo and lo must be small, which
in turn means that g is small. In intermediate
states, where I( and k are often 3—4 fm ', larger
values of L and l' will be important, and conver-

gence in 1'(jST) will be studied numerically in Sec.
VII D.

In summary, we expect rapid convergence of D3
in lo. We expect D3 (B) to converge only slowly in

L p and 1'(jST), and these diIIiculties are overcome
using the method of Secs. V E and VI B. The ring
contribution D 3 (R ) is expected to converge much
better in Lo and 1'(jST). D3 (H) should converge
well in Lo and lo, and convergence in I'(jST) must
be tested numerically.

TABLE XII. Bubble (B) and ring (R) contributions to D3 for the two-body potential v& at
kF ——1.8 fm, using d'-type calculations with various sets of (Lp, l p). The contributions from
individual I' in the middle G matrix of Figs. 1(a) and 2(a) are shown. For each l' the second
column shows the rank of the separable approximation to 6,. Column A gives the contribu-
tion to the sum B + R including (Lp, lp) = (3,0) plus all (Lp, lp) having Lp+ lp & 2. Succes-
sively including (Lp, lp) = (4,0), (5,0), and (6,0) gives the changes in B + R shown in columns
B, C, and D, respectively. Column E gives the ring contribution including all (Lp, lp) having
Lp+ lp & 2. Column F gives the change in the ring contribution when the additional pairs
(Lp, lp) = (3,0) and (2, 1) are included. All energies are in MeV, and the standard parameters
are used except for (Lp, lp) as specified above. The values of m* and Ep are taken from Table
III. In each case all states g KW permitted by the chosen set of pairs (Lo,lo} are
included.

A
B+R

8 C D
A(B + R) h(B + R) A(B + R)

E
R

F
A(R)

0
1

2
3
4
5
6
7
8

9
10

Total

3R +9A
2R + 10A

2R + 10A

1R + 11A
12A

12A

12A

12A

12A

12A

12A

55.65
—2.70
—8.80
—8.27
—2.04
—1.49
—0.48
—0.48
—0.19
—0.21
—0.08
30.91

—0.022
—0.122
—0.109
—0.202
—0.126
—0.201
—0.109
—0.157
—0.078
—0.092
—0.042
—1.26

—0.007
—0.060
—0,047
—0.094
—0.065
—0.113
—0.068
—0.105
—0.062
—0.095

—0.72

—0.077

- 18.62
—1.30

0.020
—0.137

0.015

17.22

0.010
—0.036
—0.043

0.012
—0.002

—0.059
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that convergence of D3 (8) in Lo is rather slow, as
expected. The convergence in Lo gets worse as l'
increases.

Column E shows that D3 (R) converges in I'
much faster than Ds (8), as was made plausible in

the preceding subsection. In production calcula-
tions we have calculated Di (R) by including only
I' ( 3. To estimate the error caused by this trunca-
tion, we assume, in accord with the preceding sub-

section, that Di(R) converges faster in I' than

Di(8) to write

(7.32)

so that

I') 3
/

R (l')
/

& i
R (3) g J

B(l')
f
/

[
8(3)

[
.

I') 3

(7.33)

This upper bound on the omitted terms might be
unrealistically small if R (3) were accidentally very
close to zero. In the present case we do not expect
this to happen because

~

R (3)
~

is the largest of
~

R (I')
~

for I' = 2,3,4. Thus we expect Eq. (7.33)
to give a safe upper bound. From columns A, B,
and C of Table XII we find 8 (I' & 3) + R (I' & 3)
= 35 MeV, and columns E and F give

R (l' & 3) = 17 MeV, so that 8(l' & 3) = 18 MeV.

Detailed calculations using the method of Sec. V E
give 8(all I') = 7 MeV, so that 8(I' ) 3) = —11
MeV. Using 8 (I ' = 3) = —8.5 MeV, we find that
Eq. (7.33) gives

i
R (1')

[ & ( l l/8. 5)
(

R (3) [
= 1.3

i
R (3) [,

I'& 3

(7.34)

which for v 2 is 0.18 MeV at kF ——1.8 fm

The qualitative arguments of Sec. VII B that led
to Eqs. (7.32) and (7.33) are also valid for more
complicated potentials than v2. Also, contributions
from I' ) 3 are dominated by the long-ranged
OPEP tail of the potential, which has the same
strength and range for u2, U6(Reid), and the full

Reid potential. Thus we expect Eq. (7.34) also to
be valid for the u6(Reid) and full Reid potentials.

Table XIII shows contributions to Di (R ) from
individual jST for the v6(Reid). and full Reid poten-
tials at kF ——1.8 fm . Contributions obtained by
summing overjST for fixed I'(j ST) are also shown.
The convergence in I' is seen to be rapid. Summing
the absolute values of contributions from I' = 3 and
multiplying by 1.3 [as suggested by Eq. (7.34)] gives
0.11 and 0.07 MeV, respectively, for the U6(Reid)

and full Reid potentials. These are our estimates of
the error in D; (R ) caused by omission of contribu-
tions with I' & 3. The value 0.07 MeV is entered in

TABLE XIII. Contributions to D3(R) for individual two-body channels jST included in
6„for the U6(Reid) and full Reid potentials at kF —1.8 fm '. The calculations are 6'-type,
using the standard parameters, and m*, Eo are taken from Table III. For each jST the
number of P's used is sufficient for numerical accuracy of 0.01 MeV or better.

jST
U6(Reid)

D'(R)
(MeV)

v = full Reid
D3(R)
(MeV)

'So
3 3Si- Di
1p
3p
3p
3P 3F
'D
D

3 3D3- G3
1F
3F
3 3F4—H4
1G

G4
G5 —I5

Total

2R +5A
6R +5A
6R +2A
ZR +4A
7R
SR +5A
1R +4A

5A

8R +5A
5R +2A
SR
5R +7A

5A

5A

4R +6A

1.01
—6.39
—4.56

0.07
—5.36
—2.82

0.51
1.13

—0.14
—0.01
—0.01
—0.06

0.02
—0.03

0.03
—18.63

—7.40

—12.67

1.50

0.02

2R +6A
7R +4A
6R +2A
3R +2A
6R
SR +SA
2R +3A

8A

SR +4A
5R +2A
6R +2A
5R +5A
3R +9A
2R + 10A

8R +8A

0.05

—0.54 —6.42
—5.88
—4.11
—1.16 —8.21
—6.04

3.10
0.19
0.50 0.77
0.08
0.02
0.03

—0.004
0.003

—0.025 —0.01
0.011

—13.82
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Table XXXII, which summarizes numerical errors
from various sources for the full Reid potential at

kF = 1.8 fm
The convergence of D 3 (R ) with respect to L p

needs to be tested only for I'(jST) & 3. The results
in Table XIII are calculated including (L p, lp) hav-

ing Lp+ lp & 2. For the u6(Reid) potential, the
calculation was repeated, including in addition the
pairs (Lp, lp) = (3,0),(2,1),(1,2) (all allowed sets

g 9'u were included in the calculation). Including
these additional pairs (Lp, l p) causes a small change
in the contribution to D3 (R) from each channel

jST. The absolute values of these changes were
summed for all /'(JST) & 3 and came to 0.24 MeV.
This process was repeated by including the addition-

al pairs (Lp, lp) = (4,0), (3,1), (2,2), and the sum of
the absolute values of the changes in D3 (R) for
l'(jST) & 3 was 0.08. Treating 0.24 and 0.08 as the

first two terms in a geometric series, one finds the
sum of the series to be 0.36 MeV. Since there is

considerable cancellation of the contributions among
different jST, this should be a substantial overesti-

mate of the contribution to D3 (R) from pairs

(Lp, lp) having L p + lp & 3. We take 0.3 MeV as a
rather safe estimate of the error in D3 (R) from this

source, for u6(Reid) at k~ = 1.8 fm '. We assume

the same estimate holds for the full Reid potential.
It is entered in Table XXXII.

So far we have omitted two-body states in the
Fermi sea with lo ——3. That this is a good approxi--
mation was checked in the following way for the

full Reid potential at kF ——1.8 fm '. First, the
contribution to D3 (8) from two-body channels

fp = 1pSpjpTp having lp ——3 was calculated using

the method of Sec. V E. It was found to be only
0.01 MeV. To save computer time, the effect on
D 3 (R ) of channels with lp ——3 was calculated using

a reduced set ofjSTp, listed as set 8 in Table XIV.
Set 8 gives D3 (R) = —13.77, in good agreement
with the value —13.82 MeV obtained with a full set

(see Table XIII). Thus set 8 is adequate for check-

ing convergence in lp. Using set 8, D3(R) was cal-

culated, including all pairs (Lp, lp) having

Lp+ lp & 3 except for (0,3). Then the calculation

was repeated, but now including the pair
(Lp lp) = (0,3), and the resulting change in D3 (R )

was found to be 0.019 MeV. [Note that the pair
(Lp Ip) = (0,3) contributes to D 3 (R ) only in states

3 9
having H = —and —, & g & —,. Hence only this

restricted set of g H needs to be treated to obtain
the effect of including (Lp, lp) = (0,3).] A similar

pair of calculations showed that including

(Lp, lp) = (1,3) changes D 3 (R ) by only 0.002 MeV.

Thus D3 (R) converges rapidly in lp, and for lp ——3
we find that Lo ——0 is much more important than
L p ——1. The error in D3 (R ) from the truncation

lo ( 2 is 0.02 MeV and is shown in Table XXXII.
Convergence in lp of D3 (H) was tested in exactly

the same way as just described for D3 (R), except
that set A ofjSTp was used from Table XIV. Us-

1 1 1 1

ing set A with the four g Hu sets —+ —,—
1 5 1

2 2 2 2

—, ——,, —, ——,, gives D3 (H) = —14.11 MeV for
the full Reid potential at kF ——1.8 fm '. A full set
ofjSTP gives —15.32 MeV for the same set of

The contribution from set A ofjSTP has
not been compared with that from a full set for oth-
er sets g Ha, but these other sets give very small
contribution sto D3 (H) (see Table XXXVII). We
conclude that set 3 is adequate for checking conver-
gence of D3 (H) in lp. Addition of (Lp lp) = (0 3)
and (1,3) changed D3 (H) by —0.007 and —0.001
MeV, respectively. In each case, all allowed sets of
g Ha were included. Thus the truncation lp & 2
causes an error of order 0.01 MeV in D3 and
this error is shown in Table XXXII.

We now study convergence in Lp of D3 (H), and
numerical results for the u6(Reid) potential are
shown in Table XV. The results shown include
only contributions from odd-parity states, % = —.
Comparison of rows 8 and D shows that including

lo ——2 changes the reslult by only —0.014 MeV.
The same result follows from rows C and E. This
is consistent with the rapid convergence in lo that

jST p (set A) p (set B) p (set C)

'So

S1- D1
lp
3p
3p
3 3P2- F2
1D

3D

'D -'G
1F
3F

F4- H4

1R+ 1A

1R +1A
1R
1R
1R
1R +1A

1R +1A
2R +1A
2R
1R
2R
1R +1A

1R

1R +1A
4R +2A
3R
2R
3R
3R+ 1A

1A

1A

1R +1A

1R

TABLE XIV. Reduced sets of jSTP used for test cal-
culations with the full Reid potential at kF ——1.8 fm

Set A is used for calculations of D3(H), usually including
1 1 1 1 3 1 5 1

only g H~ = —+ ———————and ———.
2 2' 2 2' 2 2' 2 2'-

Sets B and C are used in test calculations of D3 {R),usu-

ally including all allowed sets g 9'a . Further discussion
is given in the text,
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TABLE XV. Odd parity (H = —) contributions to
D3(H) for the v6(Reid) potential at k~ ——1.8 fm '. the

calculations are d'-type, and the standard parameters of
Table I are used except for 1V(Ep) = 4 and N(kp) = 2.
Set A ofj STp from Table XIV is used. For each set of
pairs {Lp,lpl, all sets g,W satisfying /' &—
+ max(Lp + lp) are included.

Row D ~p (H)
label (Me V)

Pairs (Lp, lp) included

A
B
C
D
E

—5.169
—5.1924
—5.1925
—5.2064
—5.2065

(1,0), (o, 1)
(1,0), (3,0), (0,1), (2, 1)

(1,0), (3,0), (5,0), (0,1), (2, 1), (4, 1)

(1,0), (3,0), (0,1), (2, 1), (1,2)

(1,0), (3,0), (5,0), (o, 1), (2,1), (4, 1), (1,2)

was found above. We also found above that the ef-

fect of (Lp, lp) = (1,3) was much less than that of
(0,3). Similarly, we expect the effect of
(Lp, lp) = (3,2) to be much less than that of (1,2),
and for this reason (Lp, lp) = (3,2) is omitted from
Table XV.

Comparing rows A and B or A and D in Table
XV, we see that increasing (Lp+ Ip) „ from 1 to 3

changes D3 (H) by —0.023 MeV (if lp ——2 is om-

mited) or —0.037 MeV (if Ip ——2 is included). In-
creasing (Lp+ lp)m~ from 3 to 5 then gives a fur-

ther change of only —0.001 MeV. This is seen by
comparing rows B and C or rows D and E. This is
excellent convergence in (Lp+ lp), and in all

further calculations of Ds (H) we use

(Lp + Ip) = 2. For R = —this means we use

only (L p l p) = (1,0) and (0,1), expecting a resulting
error of order —0.04 MeV in D s (H). For P = +
we expect that increasing (Lp+ lp) from 2 to 4
will produce a much smaller change. Thus, using

(Lp+ lp) = 2, we expect an error of order 0.05
MeV in D& (H) for the v6(Reid) potential at
kz ——1.8 fm '. Since U2 and the full Reid poten-
tial have similar strength and range to Us(Reid), we

use the same error estimate for them as well, and
the error 0.05 MeV is entered in Table XXXII for
the truncation 1.0+ lo & 2.

In summary, we plan to use (L p + lp) = 2 in

production calculations, expecting errors of order
0.3 and 0.05 MeV in Ds (R) and D & (H), respective-

ly, at k~ ——1.8 fm '. For D
& (B), L p is irrelevant,

and omitting states with lo ) 3 gives an error of
0.01 MeV. Using only 1'(jST) & 3 gives an error in

D3 (R) of order 0.07 MeV. This truncation does
not arise in D3 (B), and it is discussed for D3 (H) in

Sec. VII D, along with truncation in P.

D. Convergence of D3 {H) in jSTP

TABLE XVI. Contributions in MeV to D3 (H) from
set A ofjSTP given in Table XIV and from the full set
ofjSTP given in Table VI. The full Reid potential is

used at kF ——1.8 fm ' with standard parameters. The
results using set A are obtained from d'-type calculations,
and those using the full set from M-type calculations (see
Table XXXVII).

D3 (H)
(set A)

D3(H)
(Full set)

1 1+2 2
1 1

2 2
3 1.

2 2
5 1

2 2

Sum

—10.78
—1.84
—1.12
—0.37

—14.11

—11.44
—2.05
—1.22
—0.61

—15.32

In both d'- and &-type calculations the matrix
N(d PK, d'P'K ') of Eq. (5.52) must be inverted,

and additional states d iPi may be included by first-
order perturbation theory (recall the notation
d =—LJjST). In this subsection we investigate the
accuracy obtainable using various sets of d P, treated
either by matrix inversion or first-order perturbation
theory. For a given channel jSTwe include all LJ
consistent with given values of g H. Thus specify-

ing a set ofjST13 is equuivalent to specifying the set
of d P = LjjSTP. All calculations in this subsec-

tion are done with the full Reid potential at
kF ——1.8 fm ', using the standard parameters of
Tables I and III. As discussed in Sec. V I, the ma-
trix N (d PK,d'P'K ') between unperturbed states is

calculated and then symmetrized. The numerical
effect of symmetrization is given in Sec. VII E.

We first give results designed to lan how much
each individual component jSTP contributes to the
higher-order contribution Ds (H). We start with a
basic set ofjSTp, taken to be set A of Table XIV,
that accounts for the bulk of D& (H). Then we suc-
cessively include additional components jST13 and
observe the resulting change in D s (H).

In Table XVI the contributions to Ds(H) from set
A are compared to those of the much larger set of
Table VI that is used in production calculations.
To save computing time we consider only the four
sets g 9'a shown in Table XVI. These four sets
account for —15.32 MeV, which is over 90% of
the total contribution —16.48 MeV from all sets of
g O'W (sm Table XXXVII). Thus these four sets
of g P'W are sufIicient for studying convergence in

jSTp. For the sum of Ds (H) over these four sets
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g Hu, Table XVI shows that set A ofjSTp gives

more than 90% of the result from the full set of
jSTp. To assign contributions to D3 (H) from indi-

vidual components jSTp in set A, we put Eq. (5.63)
into Eq. (5.62), then Eq. (5.62) into Eq. (5.12), and
sum or integrate over all variables except jSTp.
The results are shown in Table XVII in the column
labeled Matrix inversion.

To assign contributions to D3(H) from individual
components jSTp not included in set A, we proceed
as follows. Consider the S~ —D

~ channel. We
perform a series of d'-type calculations of D&(H)
using the 2R + 1A, 3R + 1A, 4R + 1A,. . . separ-
able representation of G, in the S& —D

&
channel

(set A is used in all other channels). The difference
in D3(H) between the 3R + 1A and 2R + 1A cal-
culations is taken to be the contribution from the in-

dividual component (sSt —Dt, 3R), etc. Then a
similar series of calculations is done, using

1R + 2A, 1R + 3A, . . . in the S~ —D& channel, to
get the contributions from the individual corn-

ponents 2A, 3A, . . . . Analogous calculations are
done for the jST channels not included in set A.
The resulting contributions from individual com-
ponents jSTp are given in Table XVII in the
column labeled Matrix inversion.

The contributions to D3 (H) from individual com-
ponents jSTp not contained in set A can also be

TABLE XVII. Contributions to D3(H) from individual components jSTp, including the four sets g Hw of Table
XVI, as described in the text. The full Reid potential is used at kF ——1.8 fm with standard parameters. The notation
2R( ) means, for the given jST, that 2R is the last repulsive component, i.e., all further Ap are negative. In the P I chan-
nel all Ap are positive. All energies are in MeV.

jST Matrix
inversion

First-order
perturbation

jST Matrix
inversion

First-order
perturbation

'So

3 3S) —D)

1p

3p

1R
2R(4)
1A

2A

3A

4A

1R
2R
3R
4R
5R
6R
7R
8R
1A

2A

3A

1R
2R
3R
4R
1A

2A

1R
2R
3R
48(*)
1A

2A

3A

—3.827
—0.042
—0.207
—0.005
—0.003

0.000
—6.411
—0.131
—0.023
—0.013

0.042
0.000.
0.001

—0.001
—0.826
—0.064
—0.002

0.402
0.030
0.014
0.009
0.000
0.000

—1.480
—0.073
—0.004

0.000
—0.083
—0.008

0.000

—0.045

—0.197
—0.017
—0.036

0.041

—0.067

0.008
0.015

—0.087

—0.075

3p

3 3P2 —F2

lD

D

D3 —G

1R
2R
3R
4R
1A

1R
2R
3R
4R
5R
6R
1A

2A

3A

4A

1R
2R(*)
1A

2A

3A

1R(*)
1A

2A

3A

1R
2R
3R
4R
1A

2A

3A

—0.756
0.091
0.049
0.011

—0.045
—0.013

0.041
0.044
0.005

—0.002
—0.157
—0.053
—0.009

0.003
—0.010

0.000
—0.315

0.005
0.002
0.000

—0.208
—0.044

0.001
—0.291

0.054
0.035
0.005

—0.293
0.016
0.000

0.052
0.045

—0.013
0.041

—0.056

—0.337

—0.261

—0.296

—0.329
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TABLE XVII. (Continued)

jST Matrix
inversion

First-order
perturbation

1F

3F

F4 —H4

1G

3G

3 . 3Gs —Is

1R
1A

2A

1R
2R
1A

2A

1R
2R
3R
4R
1A

2A

3A

1R
2R
1A

2A

1R
2R(*)
1A

2A.

1R
2R
3R
4R
1A

0.011
0.006
0.001
0.008

—0.001
0.006
0.001
0.001
0.000

—0.001
—0.001
—0.093
—0.040
—0.002

0.006
0.003

—0.002
0.002
0.000
0.000

—0.054
0.018

—0.005
—0.002

0.005
0.003

—0.025

—0.098

—0.54

—0.025

calculated in first-order perturbation theory, using

set A as unperturbed set. The contribution from an
individual j iS i Ti13i is obtained by summing over

I i Ji in Eq. (5.67) for M'H or Eq. (5.71) for ECH.
Since we have not implemented perturbation theory
in d'-tpye calculations, we have used A-type calcu-
lations to evaluate the perturbation contributions to
D&(H). The results are shown in the last column
of Table XVII.

Comparison of the matrix inversion and perturba-
tion columns of Table XVII determines the accura-
cy of first-order perturbation theory starting from
the unperturbed set A ofjSTp One small poin. t
must be mentioned here. Consider, for example,
the individual component ( Si — D i,3R ). Its ma-
trix inversion contribution is the difference between
two calculations using the 3R + 1A and 2R + 1A

separable representations for G, in the S& —D i
channel. But its perturbation contribution is ob-
tained using the 1R + 1A representation from set A

in the unperturbed calculation, rather than the

2R + 1A representation. To the extent that com-
ponents jSTp outside set A can be treated in first-

order perturbation theory, their contributions are
additive and this difFerence is negligible. We ignore
it from now on because Table XVII shows that
first-order perturbation theory is reasonably accurate
for most components jSTp outside set A.

The accuracy of first-order perturbation theory,
starting from set A, is seen from Table XVII to be
far from perfect but still good enough to be useful.

For a given jST, perturbation theory is more accu-
rate for smaller

~ AIt ~, as is intuitively reasonable.
The relative accuracy of perturbation theory is also
seen to increase with increasing values of the quanti-

ty 1'(jST) defined in Eq. (7.1). In most cases where

there is a substantial difference between the matrix-
inversion and perturbation results, the diA'erence is

found to come almost entirely from +Ha
1 1= —, + —,. (This cannot be seen from Table XVII.)

Therefore, for several components jSTp, we use
matrix inversion for += —, and perturbation

theory for other values of g (see Table VI). This is

feasible because, for g = —,, at most two combina-

tions of L,J are allowed for any channel jST, so
that the matrix to be inverted remains small enough
to fit into the fast memory of the computer.

Table XVII allows us to test convergence of
D& (H) in 1'(jST), defined by Eq. (7.1), Summing
all contributions from the matrix inversion column
of Table XVII, for a given value of 1'(jST), gives

the results shown in Table XVIII. The convergence
in 1'(jST) is rapid, and we assume the contribution
to D i (H) from 1' (jST) ) 5 to be no larger in mag-
nitude than 0.05 MeV for the four sets treated in

I'(jST) Channels included
D3 (H)
(MeV)

Sp S1 —D1

P1 Pp P1 P2 —F2

'F3 F3 F4 —H4

'G4, 'G4, Gs —Is

—11.512

—2.788

—1.043

—0.104

—0.051

TABLE XVIII. Contributions to D 3 (H) for various
values of I' (jST) for the full Reid potential at kF ——1.8
fm ', as discussed in the text. Only the four sets

1 1 1 1 3 1 S 1—+ ——— ———— ———are included.
2 2'2 212 2' 2' 2
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Tables XVI—XVIII. To allow for contributions
from other g Hu, we increase this by 20%, ob-

taining an error of order 0.06 MeV from neglect of
contributions to D s (H) from 1'(jST) & 5.

For any choice of sets (jSTI3) and (jSTp) i, to be
treated by matrix inversion and perturbation theory,
respectively, Table XVII allows us to estimate the
resulting error in Ds(H). There are two sources of
error: (1) Certain components jSTp are left out so
that their contributions are missed, and (2) the con-
tributions obtained in first-order perturbation theory
differ from the correct ones obtained using matrix
inversion. These errors are shown in Table XIX,
using the sets (jSTp) and (jST13)t taken from Table
VI for the full Reid potential. The left-hand

column gives the channel jST, and the next column

gives the corresponding P's, including both unper-
turbed and perturbation P's. The column labeled
Error (1) is an estimate of the error from source (1)
and is obtained as follows. For a given jST, the ab-

solute values of the contributions from all P's ap-
pearing in Table XVII but not in Table XIX are
summed, using the matrix inversion column of
Table XVII. Also, the total contribution from all

repulsive (attractive) P's not shown in Table XVII is

assumed to equal the contribution of the last repul-
sive (attractive) P calculated, and this is added to the
sum defined in the previous sentence. The result
gives an estimate of the error from source (1) in the
four sets g H~ included in Table XVII.

The error from source (2) is estimated in the last
six columns of Table XIX. For each +Au and

jST, those p that are treated in first-order perturba-
tion theory are listed. The absolute values of the
differences between the perturbation contributions
and those obtained from matrix inversion are
summed, and this sum is listed in the column la-
beled Error (2} for each g Ha and jST. (These
results cannot be derived from Table XVII because
Table XVII does not give contributions from indivi-

dual g Hu. In Table XIX the contributions from
1 1

g O'M =
2 + z and —, ——, are added together

before listing. )

Adding together the errors in the last row of
Table XIX gives a total of 0.41 MeV. To allow for
additional sets of g Ru we increase this by 20%
to get 0.51 MeV. This is our estimate of the error
in D

& (H) caused by using the set of unperturbed P
and perturbation P listed in Table VI, for the full

Reid potential at kF ——1.8 fm '. In addition we
have the error of 0.06 MeV from neglect of jST
having I'(jST}& 5. These error estimates are en-

tered in Table XXXII.

E. Effect of transposed and symmetrized kerne1-

As explained in Sec. V I, all calculations of
higher-order terms have been done using a sym-

metrized kernel, i.e., the matrix

(a ~XQ, /e, ~a') (7.35)

of Eq. (5.52) is symmetrized before being used to
calculated 6'II or CH. The numerical effect of this
on D3 (H) is shown in Table XX, for the full Reid
potential at kF ——1.8 fm . The calculations are
M-type, using standard parameters, except that
N(ko) = 2, set 3 ofjSTI3 from Table XIV is used,

1 I 1

and only the four sets g HW = —, + —,, —, ——,,
3 1 5 1

—, are included. It was shown in the

preceding subsection that these sets ofjSTp and

g Ha are adequate for test calculations of D& (H).
In Table XX the values of D3 (H} in the columns
labeled Unsymmetrized, Transposed, and Sym-
metrized are obtained by using Eq. (7.35), its tran-

spose, and the average of these two, respectively, in

Eq. (5.52). The total spread of 0.023 MeV among
the three calculations is entered in Table XXXII.
The M-type result D3 (H) = —13.93 MeV from
Table XX differs slightly from the d'-type result of
—14.11 MeV in Table XVI because the two types
of calculation use different methods of integrating
over the Fermi sea.

F. Convergence of Ds(R) in P

In the calculation of D s (R) no matrix inversion
is required, so that one can include as many sets

jSTP as needed for any desired numerical accuracy.
Nevertheless, it is of interest to know how many P's
are needed for. each jST, and in this subsection we

give results that help to answer this question.
The results are shown in Table XXI. They are

obtained from d'-type calculations using the full
Reid potential at kF ——1.8 fm '. The standard
parameters of Tables I and III are used. Thus we
have Lp + lp & 2, and all sets consistent with this

Unsymmetrized
D 3 (H)(MeV)
Transposed Symmetrized

—13.954 —13.957 —13.934

TABLE XX. Values of D3(H) calculated using various
treatments of the kernel of Eq. (5.52), for the full Reid
potential at k = 1.8 fm '. Further discussion is given

in the text.
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TABLE XXI. Contributions to D3(R) from individual components jSTp for the full Reid potential at kF ——1.8
fm, s described in the text. The notation 3{-7) means 3 && 10 . All energies are in MeV.

'Sp S1 —D1 1p 3pp P1 3p 3F 1D 3D

1R
2R
3R
4R
5R
6R
7R
SR
9R
10R
11R
12R
1A

2A

3A

4A

5A

6A

7A

8R
9A

10A

11A
Total

—0.5620
0.0026

0.0056
0.0137
0.0043

—0.0002
—0.0001

0.0001

—0.536

—2.2387
—0.7254

0.2704
0.1813
0.0579
0.0327

—0.0151
0.0007
0.00l6
0.0003

—3.0999
0.1724
0.0333

—0.0066
—0.0009

0.0008
0.0001

—0.0001
—5(—7)

2( —5)

—5.876

—3.2151
—0.7518
—0.1242
—0.0142

0.0006
0.0002

—0.0030
0.0002

—4.107

—1.0892
—0.1152
—0.0211
—0.0001

0.0618
0.0047

—0.0009
—0.0001

0.0001
—3(-5)
—3(-5)
—5(—6)

3(—5)
4(—5)

—1.160

—4.4989
—1.3990
—0.1800

0.0210
0.0150

—0.0010
—0.0014
—0.0001

—1(—5)
0.0001

—0.0001
—0.0002

—6.045

—0.2528
—0.0585
—0.1287
—0.0432

0.0291
—0.0032
—0.0016
—0.0004

3.5012
0.0785

—0.0169
—0.0008

0.0018
.0.0003
0.0001

—0.0001

3.105

0.1924
0.0116

—0.0001
0.0014
0.0005

—0.0001
—0.0001

—1(—5)
0.0001
0.0001

0.192

0.4605
0.0504

—0.0123
0.0023
0.0013
0.0002

—0.0001
—3(—5)
—1(—5)

4(—5)
0.0001
0.502

—0.0130 —1(—7)
—0.0003

1R
2R
3R
4R
5R
6R
7R
SR
9R
1A

2A

3A

4A

5A

6A

7A

8A

Total

3 3D3 —G

0.0915
0.0724
0.0522
0.0002

—0.0021
—0.0037

0.001S

0.0016

—0.1558
0.0263
0.0022

—0.0015
0.0006
0.0003

—0.0003
—0.0004

0.085

'F

0.0264
—0.0044
—0.0017

0.0003
—5(—6)

—0.0003
—0.0003
—0.0002
—0.0001

0.0008
0.0007
0.0001

0.021

F3

0.0314
0.0019

—0.0038
—0.0004

0.0002
—0.0002
—0.0005
—0.0003

0.0024
0.0012

3(—5)
—2{—6)

0.032

F4 —H4

—0.0008
—0.0017
—0.0002
—0.0019
—0.0027
—0.0007

0.0003
0.0004

0.0241
—0.0069
—0.0084
—0.0074

0.0018
0.0029
0.0005

—0.0005
—0.001

are included (the calculations are done in the same
way as those of Table XIII).

For each two-body channel jST, Table XXI gives
the contribution to D3(R) as a function of p. For a
given jST, convergence in p is initially very fast.

The rate of decrease with increasing P eventually be-
comes very slow, but only after individual contribu-
tions have fallen to about 10 MeV in magnitude.
Study of Table XXI also shows that the sets of p
given in Table VI for the ring contribution are more
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than adequate. The convergence of D3 (R) in P is
similar for the potentials 02 and U6 (Reid).

G. Numerical tests of mesh parameters

In this subsection we give results that show what
accuracy can be obtained with various choices of
mesh parameters. All results are calculated using
the full Reid potential at k~ ——1.8 fm '. Similar
but less complete tests using potentials U2 and
v6(Reid) give results similar to the full Reid results.
Thus the full-Reid results are expected to be a good
guide in selecting mesh parameters for any reason-
able nucleon-nucleon force. The error caused by a
particular choice of mesh parameters is expected,
because of the factor kI in Eq. (5.12), to decrease
rapidly as kF decreases below 1.8 fm '. As in ear-
lier subsections, we sometimes use restricted sets of
jST13 and g HW in order to save computer time.

Table XXII shows the variation of D 3(R ) and

DI(H} with respect to N(K) [the value of N (K)
does not afFect D I (B), which is calculated as
described in Secs. V E and VI C]. For D I(R) we
use set C ofjSTp from Table XIV. With this set,
and with standard parameters [note that N(kc) = 2
is used in Table XXII], one finds D3(R) = —14.2
MeV, which is very close to the result —13.8 ob-
tained from the full set ofjSTp given in Table VI.
Hence set C is adequate for test calculations. The
convergence in N (K) is seen from Table XXII to be
poor, with fluctuations of 0.03 MeV even for N(K)
as large as 12. I attribute this to nonsmooth
behavior of Fc"(dPK) and (dPK ~XQ, /e,

~

d'P'K')
as functions of K,E'. One source of nonsmoothness
is the lower limit Lc of Eq. (6.6). If L z

——

~

K —Kc/2
~

were always valid, the variable y of
Eq. (6.7) would always run from —1 to 1. But the
angle-average Pauli operator causes Lc, and hence
the range of y, to vary in a nonsmooth way as a
function of K. Siinilar remarks apply to Eq. (6.14)
for (dPK

~
XQ, /e,

~

d'P'K'). To confirm this idea,
the calculations have been repeated with the factors
Q(Pb+) and Q, (K,k) replaced by unity in Eqs.
(6.3) and (6.14), respectively. Correspondingly, the
right sides of Eqs. (6.6) and (6.16) are replaced by
~K —Kc/2

~

and ~K' —K/2 ~, respectively. The
reaction matrix Gb in Eq. (6.3) and the form factors
g p in Eq. (6.14) are calculated as usual, not with

Q = 1. The results are shown in Table XXIII and
the convergence in N(K) is vastly improved. This
comfirms that the poor convergence in Table XXII
is caused by the Pauli operator. From Table XXII,

TABLE XXII. Variation of D3(R) and D3(H) with

respect to N (K) for the full Reid potential-at k~ ——1.8
fm '. The calculation of D3(R) includes set C of form
factors from Table XIV, and all sets / 9'w consistent
with Lo + lo ( 2 are included, . The calculation of
D3(H) uses set A of form factors from Table XIV and

1 1 1 1 3 1
includes g 9'W = ( —, + —, }, ( —, ——,}, ( —, —I ),

( ———). The value N(ko) = 2 is used. Except for
5 1

N (K), all other parameters are the standard ones of
Tables I and III. The calculations are d'-type.

N(K) D3(R)
(M V)

D3(H)
(MeV)

6
8

10
12

—13.941
—13.806
—13.765
—13.792

—14.064
—14.194
—14.133
—14.152

kI ——0(0.25)5(0.5)12 fII1 (7.36)

TABLE XXIII. Same as Table XXII except that

Q = I is used, as explained in the text

N(K) D3(R)
(MeV)

D3 (H)
(MeV)

6
8

10
12

—17.432
—17.398
—17.394
—17.394

—17.588
—17.597
—17.595
—17.594

the numerical uncertainties using N(K) = 8 appear
to be about 0.05 and 0.06 MeV, respectively, for
D&(R) and D3(H}. These values are entered in

Table XXXII.
We next study convergence in the cutoff momen-

ta K ~ and k . When E is changed, the
Gauss grid in E also changes, and we expect fluc-
tuations of order 0.05 MeV in DI(R) and D &(H) as
discussed in the preceding par@graph. These fluc-
tuations will obscure the convergence in E . To
avoid this, we study convergence in E,„by putting

Q = 1 as discussed above in connection with Table
XXIII.

While testing convergence with respect to k
and E,„, it is important to keep the functional
forms of the gp unchanged in Eqs. (6.3) and (6.14}.
This implies that the grid of relative momenta k
used in calculating the gp [see Eq. (4.33)] must
remain fixed. While varying k = j',„, we use
the grid
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rather than Eq. . (4.33). The grid of Eq. (7.36) allows

km» =- Km» to be as large as 12 fm '. WhenE,„ is increased, a correspondingly larger value of
N(E) is required to achieve a given numerical accu-
racy. It is found, for k = K»= 12 fm ', that
convergence in N (K) is achieved for N (E) = 12 to
0.002 and 0.005 MeV, respectively, for D 3 (R) and

D3 (H). Thus we use N(E) = 12 and observe the
variation of D s (R ) and D 3 (H) with k,„= E
The calculations are P-type, and the results are
shown in Table XXIV, using the same parameters
as in Table XXIII except for N(E), k,„=E
and the grid of Eq. (7.36). Both D3 (R) and Ds (H)
are still changing slowly at km» ——Km» = 12
fm '. It is not clear whether these changes are
caused by the change in the Gauss grid of points E;
or actually represent slow convergence with respect
to k = E . As a reasonably safe bound on
the error caused by using k,„=Em,„=8 fm
we multiply the change between km» = Em» ——8
fm ' and 12 fm '

by 3. . The resulting uncertain-
ties 0.04 and 0.09 MeV for Ds (R) and D3 (H) are
entered in Table XXXII.

Next we test D z(B) for convergence in k, us-

ing the calculational method of Secs, V E and VI B.
To save computer time only one mesh point in p3
and two points in cos8( ps, k2) are used to evaluate

Eq. (5.29) for U(k2, 5E), and we also use
N (ko) = 1. Furthermore, we use the approximation
G, = v for 1'(jST) & 3, rather than the more stand-
ard choice l'(j ST) & 4. All other parameters (ex-

cept nm~, see below) are the standard ones of Sec.
VI B and Tables I and III. These simplifications

give D3(B) = 16.8 MeV rather than the more ac-
curate value 23.8 MeV from Table XXXIII, but
this error will not appreciably affect convergence in

k . For k,„= 12 fm ', it is found that
n = 12 gives convergence to 0.001 MeV in n

and this value of n,„ is used to obtain the results
for Ds(B) given in Table XXIV. The values of
Ds(B) for k & 8 fm ' are fitted well by the for-
mula 16.781—29.6 k . Using this to extrapo-
late to k = ao, we find that using k,„= 8
fm ' causes an error of 0.06 MeV in Ds(B). This
value is entered in Table XXXII.

Convergence of D3 (R) and D3(H) with respect
to N(ECo) is shown in Tables XXV and XXVI for
d'- and A'-type calculations, respectively. To save

computing time, only the most important sets

g O'W (see Table XXXVII) are included in the M-
type calculations of D3 (R). The difFerence of order
0.25 MeV between the d'-type and A-type calcula-
tions of Ds (H) is caused by the different methods

k =E
(fm ')

D3(R)
(MeV)

D3(H)
(MeV)

D3(&)
(MeV)

6
8
9

10
11
12

—17.149
—17.402
—17.406
—17.408
—17.409
—17.414

—17.132
—17.578
—17.559
—17.553
—17.551
—17.549

16.349
16.723
16.738
16.750
16.759
16.764

of integrating over the Fermi sea that are used in
the two methods. Using the standard value
N (Eo) = 3 gives error in D s (R ) of about 0.12 and
0.03 MeV for d'- and &-type calculations, respec-
tively, and the larger of these is entered in Table
XXXII. For D3 (H) the error for N(Eo) = 3 is

about 0.03 MeV for both types of calculation.
Convergence with respect to N(ko) is shown in

Table XXVII. For D s (B) the calculations are simi-

lar to those of Table XXIV except that we use

n,„=6 to save computer time. Using N(ko) = 3
is seen to give errors of 0.014, 0.005, and 0.002
MeV, respectively, in D3 (B), Di (R), and D's (H),
and these figures are entered in Table XXXII.

Convergence with respect to n,„ is tested in

Table XXVIII. The convergence of D 3 (B) is good,
and using n m» ——8 gives an error of 0.003 MeV.
The convergence of D s (R ) and D 3 (H) is poor;
there seems to be a "noise level" of order 0.01 MeV
for n,„=8, 10, 12. I attribute this to nonsmooth
behavior of the functions being expanded in the

TABLE XXV. Convergence of D 3 (R ) and D 3 (H)
with respect to N(K p) for d'-type calculations with the
full Reid potential at kF ——1.8 fm '. Standard mesh

parameters are used except that N (kp) = 2 and N (Ep) is

varied. The sets ofjSTI3 and g Ha for D3(R } and D3
(H) are the same as in Table XXII.

N( j:p) D3(R)
(MeV)

D3(H)
(MeV)

2
3
4
5

—13.259
—13.806
—13.917
—13.909

—14.012
—14.194
—14.169
—14.173

TABLE XXIV. Variation of three-body cluster contri-
butions to the energy with the cutoff parameters k,„=E, as explained in the text. The Reid potential is-used
at kF —— 1.8 fm '. For D3(R) and D3(H) the sets of
jST13 and /Ha are the same as in Table XXII.
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TABLE XXVI. Convergence of D3(R) and D3(H)
with respect to N(KD) for Mi'-type calculations with the
Reid potential at k~ ——1.8 fm '. Standard mesh parame-
ters are used except that N(ko) = 2 and N(KD) is varied.
For D3 (H) the sets jSTp and / Ha are the same as in

Table XXII. For D3 (R ), set 8 ofjST13 from Table XIV
is used, and the sets / Hw included are (

—+ —, ),
1 1

1 3 3 1 1 1 3 3 5 1
( —+ —) ( —+ —) ( ———) ( ———) ( ———)2 2 ' 2 2 ' 2 2 ' 2 2 ' 2 2

TABLE XXVIII. Convergence with respect to n

for ~Xi'-type calculations with the Reid potential at

kF ——1.8 fm '. For D3(R) and D3(H), the standard

parameters are used except that N(ko) = 2. The sets

jSTp and g Ra are the same as in Table XXII. The
calculation of D3(B) is the same as in Table XXVII ex-

cept that n is varied and N(ko) is set equal to I.

N(K, )

2
3
4

. 5

D3(R)
(MeV)

—13.588
—13.388
—13.406
—13.408

D3 (H)
(MeV)

—14.032
—13.934
—13.949
—13.952

& max

6
8

10
12

D3(B)
(MeV)

17.741
17.810
17;813
17.813

D3(R)
(M V)

—13.548
—13.588
—13.591
—13.594

D3 (H)
(MeV)

—13.933
—13.934
—13.936
—13.943

basic set p„(k).The situation is analogous to the one
discussed earlier in connection with convergence in

N(E). In that case convergence in N (K) was

dramatically improved by putting Q = 1. For
D3 (H) I have checked that a similar improvement
in convergence with respect to n,„ takes place, if Q
is set equal to 1. The situation is presumably the
same for D3 (R), but this has not been checked by
explicit calculation. For n = 8, uncertainties of
0.03 MeV, i.e., 3 times the noise level, are assigned
to both D3 (R) and D3 (H) and are entered in Table
XXXII.

H. Sensitivity to K P, A, and co3

In numerical calculations we have used fixed,
average values of E;„,Pb, M, and co3 as discussed
in Secs. IVA, IVB, and VIA. In an exact calcula-
tion all these quantities depend on p&, p2, p3. In
this section we study the sensitivity of our numerical

results to reasonable changes in the above parame-
ters. This allows a rough estimate of the numerical
uncertainty caused by using fixed average values.
All calculations are for the Reid potential at
kF = 1.8 fm

The calculation of D3 (B) by the method of Sec.
V E does not depend on E;„.The variation of
D 3 (R ), D 3 (H), and their sum with E;„is shown

in Table XXIX. The total variation in the sum over
a wide range of E;„is seen to be 0.94 MeV. A
somewhat arbitrary but reasonable estimate of the
error from this source is 50% of this variation, or
0.47 MeV. Since this estimate and others to be
made later in this section are rather rough, there is
little point in increasing them by 10—20% to take
account of the omitted sets of g HW and jST13 in

Table XXIX.
The variations of D i (B), D3 (R ), D 3 (H), and

their sum with Pb are shown in Table XXX. The
sum is a function of Pb ——

t p i + p2 ~

and can be

TABLE XXVII. Convergence of three-body cluster

energy with respect to N(ko) for the Reid potential at
k~ ——1.8 fm '. for D3(R) and D3(H) the calculations
are d'-type, standard parameters are used, and the sets

jSTP and g Ha are the same as in Table XXII. Fur-
ther discussion is given in the text.

TABLE XXIX. Variation of D3(R), D3(H), and
their sum with K for the full Reid potential at kp
= 1.8 fm '. The calculations are d'-type, using standard

parameters except for K;„,whose standard value at this
value of kF is 1.61 fm '. The sets (jSTp) and (g Pa )

are the same as in Table XXII.

N(k, )

2
3
4
5

D3(B)
(MeV)

16.974
17.226
17.239
17.240

D3(R)
(Mev)

—13.806
—14.206

14.205
—14.201

D3 (H)
(MeV)

—14.194
—14.114
—14.112
—14.112

K min

(fm ')

0.41
0.81
1.21
1.61
2.01

D3(R)
(MeV)

—13.71
—14.14
—14.35
—14.21
—13.90

D3 (H)
(MeV)

—13.88
—13.94
—14.16
—14.11
—13.67

Sum

(MeV)

—27.59
—28.08
—28.51
—28.23
—27.57
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TABLE XXX. Variation with Pb of D3(B), D3(R), D3(H) and their sum for the Reid po-
tential at kF ——1.8 fm '. Standard parameters are used except that G = U is used for
I'(jST) & 3 in calculating D3(8). The calculations for D3(R) and D3(H) are 6'-type, using
the same sets (jSTP and (g HP ) as in Table XXII.

Pb
(fm ')

D3 (B)
(MeV)

D3(R)
(MeV)

D3 (H)
(MeV)

Sum

(MeV)

0.72
1.44
2.16
2.88

23.94
'24.25
24.24
23.88

—14.98
—14.50

14.05
—13.61

—14.48
—14.29
—13.99
—13.66

—5.52
—4.54
—3.79
—3.39

averaged over pi, p2 using Eq. (5.5) with n = 2.
The result for this average is —4.22 MeV, while the
sum at the standard value Pb ——(-; )' kz ——1.972
fm ' (obtained from Table XXX by interpolation)
is —3.93 MeV. Table XXX does not cover the full

range of Pb from 0 to 2kF ——3.6 fm ', but the pro-
bability of two particles having Pb less than 0.72
fm ' or larger than 2.88 fm ' is quite small. As a
reasonable estimate of the error, we take 50% of the
total variation in the sum shown in Table XXX. '

The resulting error estimate of 0.57 MeV is entered
in Table XXXII.

The fixed average value of total momentum A"
does not affect the calculation of D& (B) using the
method of Sec. V E. The value of M enters the cal-
culation of D i (R) and D3 (H) in two ways: it ap-
pears in the Pauli operator Q, through Eqs. (4.4)
and (4;5), and it appears in the energy denominator

e, through Eqs. (4.13) and (4.14). We first carry
out calculations in which A and co3 are simultane-

ously varied, keeping —V3 + 4"~/6 constant.
This has the effect of keeping Eqs. (4.13) and (4.14)
for e, and y unchanged and isolates the eAect of
M on Q, through Eqs. (4.4) and (4.5). Varying M
from 1.35 to 4.05 fm ' is found to give a total vari-

ation of 0.18 MeV in D & (R ) + D3 (H), and we as-

sume the numerical error from this source to be
0.09 MeV, which is entered in Table XXXII.

The energy denominator e, of Eqs. (4.13) and
(4.14) is affected both by M and roi. We can vary

e, by keeping M fixed and varying ~3. The results

for Di (R), Di (H), and their sum are shown in

Table XXXI. A fixed value of co3 is not used in
evaluating Di (B) according to Sec. V E. If the sum
in Table XXXI were linear in co3, then its average
over p &, p2, p3 would be obtained exactly by doing a
single calculation with average values of co3 and M,
which is precisely the calculation with standard
parameters. The sum in Table XXXI is not quite

linear, being fitted by —27.172 + 0.384co3

+ 0.0143co3 This can be expressed as a function
of pi, p2, p3 by using Eqs. (4.10) and (2.21).
Averaging this expression over p&, p2, p3 gives
—28.29 MeV, while a single calculation using

c03 ——3.404 fm gives —28.32 MeV. The com-
plete range of co3 is from —8.81 to 0.20 fm, and
using the quadratic formula quoted above gives a
variation in the sum of 2.35 MeV. A reasonable es-
timate of the error from using the average value of
c03 is 25% of this total variation. This gives an er-
ror estimate of 0.59 MeV, which is entered in Table
XXXII.

I. Estimate of numerical uncertainty in D 3

TABLE XXXI. Variation with co3 of D3 (R), D3 (H),
and their sum for the Reid potential at kF ——1.8 fm
Standard parameters are used except for co3. The sets
(jSTp) and i/9'u ) are the same as in Table XXII.

C03

(fm )

D3(R)
(MeV)

D3 (H)
(MeV)

Sum
(MeV)

—7.011
—4.306
—1.600

—14.82
—14.38
—13.81

—14.34
—14.18
—13.94

—29.16
—28.56
—27.75

In the preceding subsections of Sec, VII we have
studied in some detail the sensitivity of D3 to mesh
parameters, truncations, the use of a symmetrized
kernel, and values of E;„,I'b, A, and ~3. In this
subsection we put these results together to estimate
the total numerical uncertainty in D3. This estimate
is made for the standard parameters that are used in

the production calculations of Sec. VIII. By using
the detailed results in the preceding subsections, one
can make an analogous error estimate for other
choices of parameters.
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TABLE XXXII. Estimates of numerical uncertainty in D 3 from various sources for the
full Reid potential at k~ ——1.8 fm . The entries in part A are discussed in Secs, VII C—VII
G, those in part B in Sec. VII H, and those in parts C and D in Sec. VII I. Further discussion
is given in Sec. VII I.

Parameter and value Numerical uncertainty (MeV)
D3 (8) D3 (R)D3 (H)

A. Mesh parameters and truncations
I'(jST) & 3(R)
I'(jST) & 4(H)
Ip & 2
Lo+Ip& 2

P,P)(Table VI)
Symmetrized kernel
N(K) = 8
k =K =8fm
N(Kp) = 3
N(kp) = 3
n =8

0.01

0.06

0.014
0.003

0.07
0.06

0.02 0.01
0.30. 0.05
0.00 0.51

0.023.
0.05 0.06
0.04 0.09
0.12 0.03
0.005 0.002
0.03 0.03

(+5')' '=0.63 (part A)
B. Average values of K,Pb, M, co3

0.47 (total for R,H)
0.57 (total for B,R,H)

Mo ——
. ( s

)'~~k~(effect on Q, ) 0.09 (total for R,H)

co3 ——0.9kz2/m ~ —3Eo 0.59 (total for R,H)
(+5; )'~ = 0.94 (part B)

C. Angle averaging
Total error assumed equal to (+5; )'~2 = 0.94 from part B.

D. (+5;2)'~2 from parts A —C is 1.47 MeV.

The numerical uncertainties caused by use of the
standard parameters are collected in Table XXXII,
for the full Reid potential at kz ——1.8 fm '. Part
A gives the uncertainties coming from mesh param-
eters and truncations, as discussed in more detail in
Secs. VII 8 through VII G. We assume these un-
certainties are statistically independent. Thus the
square root of the sums of the squares of all entries
in part A gives the total error from part A. This
result is given as (+5; )'~ and equals 0.63 MeV
for part A. Part 8 gives the uncertainties estimated
in Sec. VII H due to use of fixed, average values of
&mjn &b ~ and c03 These are combined in the
same way as for part A to give a total uncertainty
from part 8 of 0.94 MeV.

Additional numerical uncertainty comes from our
use of angle-average Pauli operator and from the
angle-average approximations used to obtain Eqs.
(5.11) and (5.17). These angle-average approxima-
tions give an oversimplified treatment of the
geometry of the Fermi sphere in momentum space.

It is the same kind of oversimplification that leads
to the use of fixed, average values for E;„,I'b, 4,
and co3. Therefore, we take the uncertainty from
this latter source to be an estimate of the uncertain-

ty due to angle-average approximations, and this is
indicated in part C of Table XXXII. This assump-
tion is intuitively reasonable but can only be esta-
blished by doing more detailed calculations. For
example, one could treat the difference between the
exact and angle-average Pauli operators in first-
order perturbation theory.

In part 0 of Table XXXII the square root of the
sums of squares from parts A, 8, and C is calculat-
ed to be 1.47 MeV. This is our estimate of the nu-
merical uncertainty im D3 for the full Reid potential
at k~ ——1.8 fm . I believe the probability is better
than 50%%uo that the value D3 = —6.57 MeV ob-
tained with standard parameters (see Table XXXIII)
has a numerical error less than 1.47 MeV. Howev-
er, it will require better calculations to ascertain the
error with more certainty.
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TABLE XXXIII. Three-body cluster contributions D3(B), D3(R), D3(H), and their sum
D3 for different two-body potentials and Fermi momenta. All energies are in MeV and kz is
in fm '. For U2 and v6 (Reid) the columns headed 1.8A and 1.8B give results at
k+ ——1.8 fm ' with shifted energy denominators. In column 1.8A the spectrum of states
above the Fermi sea is shifted up by the constant amount 6 = 0.2 fm = 8.3 MeV. This is
equivalent to replacing Eo of Eq. (4.10) by Eo+ 0.2 fm ' everywhere in the calculation. In
column 1.8B, all energy demonimators e, (including those occurring inside the calculation of
6,) are increased by 0.6 fm = 24.9 MeV, while all energy denominators eb are left un-

changed. In the calculation of D3(B), for some channels 1SjT in the 6, matrix, fewer than
seven values of 5E were used (see Sec. VI B). This accounts for the small differences in D3(B)
between this table and Table XXXV.

kF. 1.4
Potential v2

1.6 1.8 1.8A 1.8B

D3(B)
D3(R)
D3(H)
Dc

v2D2

—0.96
4.55

—7.65
—4.06
—2.76 .

0.76
9.13

—16.88
—6.99
—5.06

6.86
17.20

—33.69
—9.63
—8.24

8.11
16.82

—33.25
—8.32

8.06
17.45

—33.95
—8.44

kF. 1.4
Potential v 6(Reid)

1.6 1.8 1.8A 1.8B

D3(B)
D3(R)
D3(H)
Dc

AD 2

3.34
—5.74
—3.96
—6.36
—5.27

9.52
—10.90
—8.52

9.90
—7.94

22.18
—18.64
—17.06
—13.52
—11.25

22.51
—18.19
—16.73
—12.41

23.01
—18.75
—17.11
—12.85 .

kF.. 1.2

Potential full Reid

1.4 1.6 1.8

D'(B)
DB(R)
D3(H)
Dc

~2D2

0.72
—2.14
—1.81
—3.23
—3.32

3.68
—4.57
—4.07
—4.96
—5.24

10.32
—8.39
—8.51
—6.58
—7.83

23.83
—13.90
—16.50
—6.57

—10.92

The absolute value of the numerical error is ex-
pected to be about the same for all three potentials
at k~ ——1.8 fm '. Taking D3 from Table XXXIII,
one then finds relative errors at kF ——1.8 fm ' of
23%, 11%,and 15% for the potentials full Reid,
us(Reid), and u2, respectively. If we go to smaller

kF for the full Reid potentials, the numerical error
will certainly decrease since the individual contribu-
tions from B, R, and H all decrease in magnitude
faster than kz (see Table XXXIII). Thus it seems
safe to assume that the error in D3 decreases as fast

as kF . This assumption produces relative errors for
the full Reid potential of 14%, 11%, and 9% for
kF ——1.6,1.4, and 1.2 fm ', respectively. From the
preceding numbers, it appears that the relative un-

certainty in D3 is no larger than 15% for any po-
tential or k~ except for the full Reid potential at
kF ——1.8fm '. Thus we will take the numerical
uncertainty in D3 to be 15% for all potentials and
all values of k~ considered in this paper except for
the full Reid potential at kz ——1.8 fm ', where we
use 1.47 MeV.
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VIII. NUMERICAL RESULTS

In this section we give numerical results for the
two-body potentials, v2, vs(Reid), and full Reid.
These potentials are defined in Appendix A. The
three-body calculations are &-type, using the stand-
ard parameters of Tables I and III—VI, as dis-

cussed in Sec. VII.
The three-body cluster results are given in Table

XXXIII. The rough estimate D3 = ir2D2 is seen to
give the correct order of magnitude for all three po-
tentials, and over a range of densities.

From Tables III and XXXIII the results for
vs(Reid) and full Reid are seen to be similar. More
detailed comparisons between the two potentials are
given in Tables XXXIV, XIII, and XXXV. The
results for D2 in Table XXXIV show that vs(Reid)
and full Reid give substantially different results for
individual partial waves, even though the sum over
partial waves difFers very little in the two cases. At
kz ——1.8 fm ' the main difFerence in D3 between
vs(Reid) and full Reid comes from the ring contri-
bution (see Table XXXIII). Contributions to
D q(R ) from individual two-body channels jST in
the 6, matrix are shown in Table XIII. The big-

TABLE XXXIV. Contributions to D2 from individual
channels fp = 1pSpj pTp for the v6(Reid) and full Reid
potentials at kF ——1.8 fm '. The same values of m* and
Ep are used for both potentials [they are self-consistent
ones for v6(Reid) from Table III]. The contribution from
channels with 10 & 3 is calculated in the approximation
G = v. The total of —45.53 MeV for v6(Reid) differs by
0.2 MeV from that given in Table III because coarser
mesh parameters are used here.

TABLE XXXV. Contributions to D3 )8) from indivi-

dual 1SjT in the middle 6 matrix for the two-body poten-
tials v 6(Reid) and full Reid at k~ ——1.8 fm '. The
method of calculation is described in Sec. VIB.

1SjT v 6(Reid) Full Reid

gest difference between the two potentials occurs in
the P2- I'2 channel. Table XXXV shows contribu-
tions to D3(8) from individual two-body channels
lSjT in the 6, matrix. A big difFerence between
vs(Reid) and full Reid is again found in the P2
channel.

The results from Table XXXIII using shifted en-

ergy denominators are useful for two reasons. First,
they provide necessary data for estimating the result
of a three-body coupled-cluster calculation using the
Bochum truncation "[we call this a CC(3) cal-
culation]. In a CC(3) calculation the generalized

ring series is summed, certain less important classes
of diagrams are summed, and the single-particle po-
tential energy U(p i) of states in the Fermi sea is
modified. Comparison of columns 1.8 and 1.8B
shows how much of the shift comes from the three-

body denominators e, . This information is useful in

estimating certain four- and five-hole-line terms that
appear in the CC(3) approximation.

A second use for column 1.8A in Table XXXIII
is to apply a test of the hole-line expansion
described in Ref. 3. As discussed in Ref. 3, a
necessary condition for the validity of the hole-line

expansion is

B(D, + D, ) r)D,

Bh

fp

'So
S

1p
3p
3p

1D

3D

D
D3

1p& 3
Total

v6(Reid)

—23.51
—20.05

9.42
—12.16

21.10
—3.60
—9.74

4.82
—12.18

0.73
—0.36

—45.53

D2(MeV)
Full Reid

—23.51
—14.81

9.42
—5.78
28.35

—20.82
—8.26

4.01
—12.51
—0.48

1.95
—42.44

'So
S1

1p
3p
3p

1D

D1
D
D3
1F
3F

F3
F4
1&3
Total

5.16
10.58
9.68

—3.25
14.05
7.56

—9.41
2.81

—9.24
—0.35

0.89
—2.52

3.63
—2.15
—5.14
22.31

4.66
12.00
9.70
4.36

17.99
—11.62
—6.20

2.06
—6.92

0.61
1.35

—0.72
3.42

—3.51
—3.22
23.97
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where 6 is a momentum-independent shift of the
single-particle energy of states above the Fermi level.
%'hen the very small hole-hole term is neglected,
condition (8.1) can be written to a good approxima-
tion as

TABLE XXXVII. . Three-body cluster contributions
from individual g 9'a for the full Reid potential at
kF ——1.8 fm ', as described in the text. Note that the
results for D3(8) are only accurate to 10—30%%uo.

BD3 —2K2 (g K2 . (8.2)
&3(&)
(MeV)

D'(R)
(MeV)

D3(H)
(MeV)

Using the results for D3 in columns 1.8 and 1.8A of
Table XXXIII to evaluate BDi /Bb, one finds the
results shown in Table XXXVI. The condition
(8.2) is seen to be well satisfied at kF ——1.8 fm
for both u2 and ub(Reid).

The three-body cluster contributions from indivi-

dual sets g HW are shown in Table XXXVII, for
the full Reid potential at k~ ——1.8 fm '. The
results for D3 (H) are from the complete M-type
calculation. Those for D3 (R) are from an d'-type

calculation using set C ofjST13 from Table XIV.
These results are expected to difFer by less than 5%
from those of the full calculation. The results for
D3 (B) are calculated in the same way as those for

D3 (R). [The more accurate method of Sec. V E for

D3 (B) does not yield separate contributions from
individual g HW. ] The truncations l'(jST) & 3
and I.o + la & 2 are inaccurate for D3 (B), and
these results are therefore only roughly correct,
probably with errors of 10—30%. For D3 (H) the
dominant contribution comes from

1 1

g H~ = —, + —,, and all other even-parity contri-

butions are practically negligible. The total odd-

parity contribution is about 40% of the dominant
one. The same remarks apply to the sum

D3(B) + D3(R) but not to D3(B) or D&(R) indivi-

dually.
Results for the generalized ring series are given in

Tables XXXVIII and XXXIX for the energy and

for ~, respectively. In Table XXXVIII the rows

1 1—+—
2 2
1 3—+—
2 2
3 1—+—
2 2
3 3—+—
2 2
5 1—+—
2 2

5 3—+—
2 2
7 1—+—
2 2
7 3—+—
2 2
1 1

2 2
1 3

2 2
3 1

2 2
3 3

2 2
5 1

2 2
5 3

2 2

Total

10.38

3.17

14.02

0.05
—0.20

—0.15

—0.15

—0.02

2.38

0.99

1.07

0.01
—0.76

0.12

30.91

1.02
—3.00

—14.21
—0.02

0.16

0.10

0.04

0.02

2.84

0.30
—0.14
—0.58
—0.62
—0.12

—14.21

—11.44
—0.03
—0.13
—0.05
—0.14

—0.01
—0.001
—0.001
—2.05
—0.58
—1.22

—0.22

—0.61

0.0001
—16.48

S, = Qb QS2''
l =2

(8.3)

n = 3,4,5,6 give the values of D3 = D3'
D& = Dq(B1) (no. tation of Ref. 8), D5 ", and

D6 ". The next row gives the sum of these four
contributions. The row labeled Sum to oo gives
D „, obtained from Eqs. (2.70)—(2.72). In, Table
XXXIX rom n gives ~„calculated by putting

Potential BD'/M —2sc2

V2

v 6(Reid)

0.012
0.013

0.270
0.246

TABLE XXXVI. Test of Eq. (8.2) for the two-body

potentials v2 and v6(Reid) at kF ——1.8 fm ', as described
in the text.

into Eq. (7.7) for a.. [Note that Qb rather than Qb
is used in the evaluation of a See the paragraph
following Eq. (7.7).] The row labeled ao gives the
result of putting Sz" ——QbSz~ into Eq. (7.7), where
S2" is obtained from Eq. (2.70).

The main feature of Table XXXVIII is that the
generalized ring series converges quite rapidly. This
is true for all three two-body potentials and for all
densities considered. There is a slight but clear ten-

dency for the convergence to be slower at lower
density. The rapid convergence means that (1) we
are not compelled by these results to modify the
hole-line expansion, and (2) these results give no in-
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TABLE XXXVIII. Energies D„"from the generalized ring series for diNerent potentials

and kF. The columns headed 1.8A and 1.88 have the same meaning as in Table XXXIII. All

energies are in MeV and kF is in fm . Further discussion is given in the text.

kF. 1.4 1.6
Potential u2

1.8 1.8A 1.8B

3
4
5
6
Sum
Sum to 00

—4.06
—0.41
—0.043
—0.018
—4.53
—4.56

—6.99
—0.98

0.004
—0.050
—8.02
—8.04

—9.63
—2.13

0.44
—0.28

—11.61
—11.55

—8.32
—1.93

0.51
—0.28

—10.02
—9.93

—8.44
—2.11

0.59
—0.34

—10.30
—10.21

kF. 1.4 1.6
Potential u 6(Reid)

1.8 1.8A 1.8B

3
4
5
6
Sum
Sum to 00

—6.36
—1.00
—0.23
—0.073
—7.66
—7..74

—9.90
—1.50
—0.28
—0.077

—11.76
—11.81

—13.52
—2.01
—0.28
—0.071

—15.88
—15.90

—12.41
—1.71
—0.19
—0.044

—14.35
—14.36

—12.85
—1.83
—0.22
—0.057

—14.96
—14.98

kF. 1.2
Potential full Reid
1.4 1.6 1.8

3
4
5
6
Sum
Sum to 00

—3.23
—0.62
—0.17
—.0.065
—4.08
—4.17

—4.96
—0.91
—0.20
—0.063
—6.13
—6.19

—6.58
—1.24
—0.18
—0.060
—8.06
—8.10

—6.57
—1.51
—0.018
—0.077
—8.18
—8.18

dication that long-range correlations are important
in nuclear matter.

All calculations in this paper use the "convention-
al" single-particle spectrum of Eq. (4.10), i.e., the
single-particle potential energy U(k) is set equal to
zero for k ~ kz. Interesting suggestions for
nonzero choices of U(k) for states above the Fermi
sea have been made. It is important to test the con-
vergence of the generalized ring series for such
choices of U. The methods developed in this paper
could be used to do this. Note that a nonzero U(k)
for k ~ kz gives an explicit contribution to the M
matrix. This contribution is obtained from Eqs.
(5.45), (5.47), and (5.48) with U(k2, 5E) in Eq.

(5.45) being replaced by the negative of the chosen
nonzero U(k2) for k2 ) kp.

Table XXXIX shows that the generalized ring
series modifies K substantially from the two-body

approximation K2. This is presumably because K„
involves cross terms from products such as
S2' 'S2"'. However, the convergence of K„ is still

quite fast. The difference K„—K2 is nearly in-

dependent of density, even though a2 varies roughly
askF .

Table XL shows contributions to D 3 and to D~R
from individual channels (fp I):(IpSpj pTp I), for
the full Reid potential at k~ ——1.8 fm '. These
results are obtained by putting Eq. (5.26) into
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TABLE XXXIX. Approximations to ~ from the generalized ring series as described in the
text. The columns headed 1.8A and 1.8B have the same meaning as in Table XXXIII.

kF.. 1.4 1.6
Potential v~

1.8 1.8a 1.8B

kF.

0.140
0.159
0. ,163
0.165
0.166
0.170

1.4

0.197
0.224
0.231
0.233
0.234
0.237

1.6

0.270
0.300
0.310
0.309
0.311
0.312

Potential v 6(Reid)
1.8

0.261
0.283
0.290
0.288
0.289
0.289

1.8A

0.270
0.293
0.303
0.300
0.303
0.303

1.8B

0.149
0.199
0.214
0.219
0.222
0.227

0.190
0.249
0.263
0.267
0.269
0.271

0.246
0.312
0.326
0.328
0.329
0.331

0.236
0.293
0.302
0.304
0.304
0.304

0.246
0.307
0.318
0.321,

0.322
0.323

kF. 1.2
Potential full Reid
1.4 1.6 '1.8

0.121
0.164
0.179
0.185
0.189
0.200

0.150
0.196
0.209
0.213
0.215
0.220

0.192
0.241
0.252
0.256
0.257
0.259

0.250
0.296
0.304
0.306
0.307
0.308

TABLE XL. Contributions to D3 and D oa from individual f0 / for the full Reid potential

at kF ——1.8 fm ', as described in the text.

p, l

'Sp
'Si(l = 0)
Si(l = 2)

Pp
3p

p2(l = 1)
P (1=3)

lD

Di(l = 2)
D &(I = 0-)

D
D3(l = 2)
D3(l = 4)

Total

Dc

(MeV)

—1.483
—1.074

' —4.308
—0.033

0.372
—0.300

0.195
—0.025

0.025
0.015

—0.009
—0.026
—0.001

0.087
—6.57

DGR
(MeV)

—1.820
—1.602
—4.730
—0.086

0.310
—0.388

0.139
—0.048

0.017
0.010

—0.016
—0.036
—0.000

0.074
—8.18
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(5.25) and summing or integrating over all variables
except fol. The rapid convergence with increasing

la is clear.
The quantity

(kI
~

S2(joSOTO)
~
kolo) = Q(Pb, k)S2(fo&kko)

(8.4)

is plotted against k in Fig. 8 for the full Reid poten-
tial at kF ——1.6 fm '. All the curves have

fo = Si, ko ——0.8 fm '. The dashed curves give
the two-body approximation S2 ', and the solid
curves give the sum of the generalized ring series
S2", both in units of fm. The sharp corners at
k = 2.48 fm ' in the curves for l = 2 come from
the factor {7(Pb,k), which has a sharp corner at
k = kz+ —,Pb ——2.48 fm '. The factor Q(Pb, k)
is also present in the curves for l = 0, but its effect
is not so apparent in the figure. The effect of three-
body correlations, and of higher-order terms in the
generalized ring series, is to enhance S2(k) in the re-
gion 2—4 fm '. However, the enhancement is quite
moderate, which is consistent with the rapid conver-
gence of the generalized ring series.

Since three-body calculations are fairly complicat-
ed, and since the two-body approximation is clearly
inadequate, it is of great interest to find a simple
way to reproduce the effect of three-body correla-

tions. This is one of the motivations of nonzero
choices for U(k & k~). ' A successful choice,
when inserted into Eq. (5.45), will have the effect
that Eq. (5.47) is a good approximation to MS2 for
the exact M matrix. We can look at this from
another point of view. Putting $2 ——S2" in Eq.
(5.47), we replace MES&" by MS2", where M is
the full M matrix. Then we solve for U(k, ko) [ we
call the solution U,ir(k)]. This tells us what func-
tion U,gk) is required to reproduce the effect of M
on the function of interest, S2". The result will

depend on f0 I as well as on k,ko. Hence it cannot
be reproduced by any single-particle potential, be-
cause any such potential would give through Eq.
(5.45) a result U(k, ko) that is independent of fol.
This is not really a problem however. If we can
find any function U,a(k), depending on kof0 l or
not, that reproduces the effect of M on S2", we will
have succeeded in reproducing the effect of three-

body correlations in a simple way. There is no
reason to require that U a(k,ko fo I) be associated
with a single-particle potential.

Figure 9 shows the functions U,a(k) that are re-

quired to repr'oduce the effect of M on the function
S2". The full Reid potential is used with

k~ ——1.6 fm ' and ko ——0.8 fm '. The three chan-
nels (f&,l) shown are ( Si,l = 0), ( Si,(l = 2), and
('So, l = 0}. For a given channel (fo,l), Udr (k) is
obtained by solving Eq. (5.47) for U(k, ko) with

~S2 replaced by MS&". For comparison, the

0 0

-O.I—
-20-

-0.2—
-60-

-80—

4
k(fm}

FIG 8. Plots of S2 ' (dashed lines) and S2" (solid
lines) in fm as functions of k for the S~ —'D

I channel.
The full Reid potential is used at k~ ——1.6 fm ', with

kp = 0.8 fm

-IOO
4

k(fm}

FIG 9. Effective potentials U,~ (k) for the full Reid
potential, as discussed in the text.



24 THREE-BODY CORRELATIONS IN NUCLEAR MATTER 1265

curve labeled U~ in Fig. 9 is the single-particle ener-

gy of states in the Fermi sea, using m ~ and Eo from
Table III, and treating k as a single-particle momen-
tum.

The behavior of U,a(k) at large'k is not very im-
.portant because the energy denominators are so
large that the ratio U/eb in Eq. (5.47) is very small.
Thus the region k = 2 to 4 fm ', where eb is not
too large and Sz" is large, is probably the most im-

portant. For the S~(l = 2) case, one sees from

Fig. 9 that a constant U,~ ——45 MeV will repro-
duce the effect of M quite well. In the 'So and

S&(l = 0) cases, U,ft(k) goes to —ao as
k ~ 1.6 fm ' because Sq" (k) vanishes at
k=1.6fm '(seeFig. 8). For2fm '&k &4
fm ', U,a(k, l = 0} rises sharply from —85 to
—15 MeV. This behavior is quite different from
that in the S&(l = 2) case.

Let us now use our results to calculate the bind-

ing energy of nuclear matter. To do this, we use
our three-body results to estimate the contributions
from all three- and four-hole-line contributions to
the energy. An alternative procedure is to use the
Bochum truncation of the coupled-cluster equa-
tions. " Our three-body results allow us to esti-

mate the results of coupled-cluster calculations at
the three- and four-body levels. This will be report-
ed elsewhere, but we note here that the hole-line

and coupled-cluster results are numerically very
close, "differing by only 1 —2 MeV even at the
high density corresponding to kz ——1.8 fm

All three- and four-hole-line diagrams are
enumerated, and many are numerically calculated,
in Ref. 8, which gives simple scaling formulas for
most of the terms. The quantities entering these
scaling formulas are Dp, U = 2Dp, D3, and ~p.

Also, the four-hole-line term of class 81 in Ref. 8 is

simply the second term Dq
"of the generalized ring

series in our present notation. Probably the four-
hole-line term with the largest numerical uncertainty
is the four-body cluster term D4, which was called

W4 in Ref. 8. There, a rough numerical calculation
using central forces gave a result of order ~z Dz for
Dz (see also the work of Lassey and Sprung3 ).
Here we take Dq to be zero with a numerical uncer-

tainty of + wz Dz. This is consistent with the only
available numerical calculation ' but can only be
firmly established by further numerical work.

The three-hole-line terms are D3 and the hole-

hole term D3" (called W3" in Ref. 8). The four-

hole-line terms are designated A 1, A 2, . . . , A 9,
B1, B2, . . . , B6, and D4, where we follow the no-

tation of Ref. 8 except for D4. Diagrams A 3 and

D3 +B3+B4= (1 —8ap/3)D3

there are two sources of error: the uncertainty in

D 3 and the uncertainty in the formula

(8.5)

B3+B4 = (8aq/3)D3 . (8.6)

According to Table XLI, the latter uncertainty ex-

ists even when D3 is known precisely. We assume
the error in Eq. (8.5} to be the sum of two indepen-

dent errors 5& and 5q given by

5~ ——(1 —8'/3)5D3

5g ——0.20( —8a'p/3 )D3,
(8 7)

(8.8)

A 4 are identical except for an exchange of hole
lines, ' and it is found numerically that they nearly
cancel each other. Therefore, we omit terms A 3
and A 4 here. The terms A 7 and A 9 are also omit-

ted because they nearly cancel and are individually

extremely small.
Our method of estimating the three- and four-

hole-line contributions is illustrated in Table XLI,
for the full Reid potential at k~ ——1.6 fm

Column 1 lists all the diagrams except A 3, A 4, A 7,
and A 9, whose sum is assumed to be zero. Column
2 gives the scaling formulas for the various dia-

grams, obtained from the results of Ref. 8. Scaling
formulas are not needed for D3 and B 1 = D4 be-

cause these are calculated in this paper. Column 3

gives an estimate of the percentage error in each
term. The error in D4'was discussed above, and the
error in D3 was discussed in Sec. VII I. We assume
the same relative error for D4 "as for D3. The
other error estimates are based on a careful reading
of Ref. 8. They are reasonably conservative -but are
not backed up by any firm numerical results.
Column 4 gives numerical values and uncertainties
for each term. The values of D3 and B 1 = D4
are taken from the rows n = 3 and 4, respectively,
of Table XXXVIII. The other numerical values are
obtained from the scaling formulas of column 2.
The values of Dz, U = 2Dq, and ~~ needed in the
formulas are found in Table III. The error in the
total three- or four-hole-line contribution is taken to
be the square root of the sums of the squares of the
individual errors. However, the error in the sum
D 3 + D 4 is not the square root of sums of squares
of individual errors because the error in D3 is corre-
lated with the error in B3 + B4 = —(8az/3)D 3,

and similarly for D3" and A 2. The errors for these
four terms are marked with asterisks in Table XLI,
and error estimates for them are discussed in the
next paragraph.

In the estimate
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TABLE XLI. Estimates of the three- and four-hole-line terms and numerical uncertainties for the full Reid potential
at kp ——1.6 fm ', as discussed in the text. In the formulas for A 5 + A 6+ A 8 and B6, U and D3 are to be expressed in

MeV to obtain a result in MeV.

Term
Scaling
formula Error

Numerical
Value
(Mev)

Dhh
3

Dc
Total = D3

x2U/26
+ 50%(*)
+ 15%(~)

—0.60+ 0.30
—6.58 + 0.99
—7.18+ 1.03

A1
A2
A5+A6+A8
B1
B2
B3+B4
B5
B6
D4
Total = D4

sc2 D22

—4xqD3hh

—]c2U /3270

Dhh
3

—(8a2/3)D3
a'q U/7

—UD3/2000
zero

+ 20%
+ 50%(~)
+ 50%
+ 15%

+ 100%
+20%(~)

+ 100%
+ 100%

+ ~2'D2

—1.50+ 0.30
0.46+ 0.23

—0.39 + 0.20
—1.24+ 0.19
—0.60+ 0.60

3.37+ 0.67
—0.43+ 0.43
—0.27 + 0.27

0 + 1.50
—0.60+ 1.88

where 5D3 is the uncertainty in D3 and the factor
0.20 in Eq. (8.8) comes from the 20% uncertainty
in Eq. (8.6). Then we take the error in D3 + B3
+ B4 to be (51 + 52 )'i . A similar procedure is

applied to D3 + A 2. To estimate the error in

D3 + D4 we sum the squares of the errors of all
terms not marked with asterisks in Table XLI. We
add to this the squares of the errors in

(D3 + B3 + B4) and (D3" + A 2) and take the

square root. In this way we obtain the results given

in Table XLII. In this table the rows labeled

BB(2),BB(3),and BB(4) correspond, respectively,
to T+D„T +D, +D3, and

T+ D2+D3+D4, where T = 3k+ /10 is the
average kinetic energy of the Fermi-gas state. The
uncertainties quoted in Table XLII are the numeri-

cal uncertainties discussed above. We have assumed
that the contributions from higher-order terms in

TABLE XLII. Different approximations to the energy per particle of nuclear matter for
various potentials and values of kz. All energies are in MeV and kz is in fm . Further dis-

cussion is given in the text.

kF.. 1.4 1.6 1.8

Potential u2
BB(2)
BB(3)
BB(4)

BB(2)
. BB(3)
BB(4)

BB(2)
BB(3)
BB(4)

9.5
—13.0+ 0.5
—13.4+ 0.7

4.7
0.4 + 0.6
0.8 + 0.7

Potential u 6(Reid)
—11.0
—17.8+ 1.0
—17.9+ 1.2

Potential full Reid
—10.5
—15.9+ 0.8
—16.4+ 1.1

6.1

—1.2+ 1.1
—0.2+ 1.5

—10.0
—20.5+ 1.5
—19.9+ 2.2

8.9
—16.1+ 1.0
—16.7 + 1.9

9.8
—0.5+ 1.5

0.9 + 2.9

5.4
—19.8+ 2.1

—17.8+ 3.7

3.4
—10.8+ 1.5
—12.3 + 3.2
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FIG 10. Saturation curves for the full Reid potential,

as discussed in the text.

the hole-line expansion are negligible compared to
the numerical uncertainties in the rows labled
BB(4) in Table XLII. This assumption is consistent
with the observed rapid convergence of the first
three terms D z, D3, D4 of the hole-line expansion.
The Bochum truncation of the coupled-cluster equa-
tions is found to converge as well or better.

For each of the three potentials considered, the
BB(4) result in Table XLII gives our best estimate
of the energy per particle of nuclear matter as a
function of kz. The results for vz and v6(Reid) are
consistent ' with variational calculations. Varia-
tional results are not yet available for the full Reid
potential. The approximations BB(2), BB(3), and
BB(4) are plotted in Fig. 10 for the full Reid poten-
tial. The dashed curves give the estimated numeri-
cal uncertainty in the BB(4) result. The empirical
saturation point is believed to lie inside the rec-
tangular box that extends between —15 and —17
MeV and between 1.28 and 1.44 fm

The BB(4) curve saturates at E/A = 17.3 MeV,
kF ——1.52 fm ', i.e., at a reasonable energy but too
high a density. It is important to estimate the un-

certainty in this calculated saturation point. The
curves labeled L and 0 in Fig. 10 have been con-
structed for this purpose. Curve L is drawn by eye
with the requirement that it remain inside the

dashed curves but saturate at the lowest possible
value of kF, consistent with smooth and reasonable
behavior. Curve H is obtained in the same way, ex-

cept that we aim for saturation at the highest possi-
ble value of kz. The curves, L, BB(4), and H have

minima at kF ——1.43, 1.52, and 1.63 fm ', respec-
tively. - Thus the uncertainty in the calculated sa-

turation point is of the order of 0.1 fm ' in kF and
1.5 MeV in energy.

The compressibility parameter E is defined by

pd E!A
FO dkF'

where kFO is the value of kF at saturation. Fitting
the BB(4) results of Table XLII with a cubic in k~,
one finds E = 226 MeV, which is consistent with

the empirical value E = 210—230 MeV deduced

by Blaizot, Gogny, and Grammaticos, ' using a
random-phase approximation (RPA) analysis of
measured monopole excitations in nuclei.

IX. SUMMARY AND DISCUSSION

We have seen that it is'feasible to solve the three-

body equation in nuclear matter for interesting
phenomenological potentials, such as the Reid po-
tential. Two types of calculation are made possible

by solution of the three-body equation. The simpler
calculation (called d'-type) gives the three-body clus-
ter energy D3, which is the leading correction to the
lowest-order two-body Brueckner-Bethe result. The
more elaborate calculation {called M-type) gives not
only the three-hole-line term D3, but also a series
of terms involving four, five, . ..hole lines. This
series is called the generalized ring series and is the
most likely place to look for long-range correlations
in nuclear' matter.

The method is suitable for two-body potentials
that are defined independently in each two-body
channel jST. Hence there is no difficulty in treating
the complicated state dependence of the nuclear
force. Also, since we calculate the two-body reac-
tion matrix in momentum space, there is no require-
ment that the potential in a given two-body channel

by only a function of r. An arbitrary nonlocality
can be treated, and the method should therefore be
applicable to potentials such as those of the Paris
and Bonn groups. The method may be less effec-
tive for a potential with an infinitely repulsive core.
In that case, the two-body reaction matrix can of
course be calculated, but it will decrease more slow-

ly with momentum than for a potential such as
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Reid. Using a momentum cutoff of 8 fm ', which
was found to be accurate for the Reid potential,
might cause appreciable error when a hard core is
present. This question remains to be studied.

The numerical accuracy for various choices of
mesh parameters and cutoffs has been studied in de-
tail and is satisfactory. The numerical error caused

by the various angle-average approximations that
have been made is less well determined. It is plausi-
ble from the numerical results that the total numeri-
cal error in D3 is no greater than 15%%uo, but this can
only be established by better calculations. In partic-
ular, one could try to treat the difference between
the exact and angle-average Pauli operators by first-

order perturbation theory.
The calculations require substantial computer

resources. The M-type production calculations for
the Reid potential take about two hours for each
value of kF, using the very fast IBM 370-195 com-
puter, which is roughly as fast as the CDC 7600.
This time could be reduced in several ways. One
could use coarser meshes, such as reducing N(ko)
from 3 to 2, or n from 8 to 6, without seriously
affecting the accuracy. Omitting two-body states in

the Fermi sea having lo ——2 would save substantial

computing time and cause only small errors. One
could also do the simpler d'-type calculation instead
of the M-type calculation. This would be sufficient
to obtain the three-hole-line approximation to the
energy, and the omitted four-hole-line contribution
is only 1 —2 MeV per particle. Finally, all our cal-
culations have been done in double precision, so
that about 14 significant figures are stored in the

computer for each variable. It seems quite likely
that a single-precision calculation (about seven signi-

ficant figures for each variable) would be sufficiently

accurate. This would save a factor of 2 in storage
requirements and thus make the calculation less ex-

pensive. So far this possibility has not been tested.
For each two-body potential to be treated, one

has to explore in each two-body channel the accura-

cy of the separable representation of the off-energy-

shell reaction matrix. The separable representation
is not used for the bubble contribution to M or D3,
but it is used for the ring and higher-order contribu-

tions. For the ring contribution, one can use as
many separable terms as required for the desired ac-
curacy. For the higher-order terms, in order to
keep the matrices to a manageable size, one has to
use a judicious choice of separable terms, based on
the results of test calculations. These test calcula-
tions ay require several man days of effort, but
this seems unavoidable in the present method.

The main conclusions that emerge from the nu-

merical calculations follow: (1) The three-body
cluster term D3 is attractive. Its magnitude is typi-
cally 4—5 MeV near the empirical saturation densi-

ty and increases with density. (2) The generalized

ring series converges rapidly for all three two-body
potentials studied, and over a wide range of density.
Conclusion (1) means that the lowest-order two-

body calculation is inadequate: the three-body clus-
ter term must be taken into account. A simple way
of doing this would be valuable. One possibility is
the use of a nonzero single-particle potential energy
for momenta above the Fermi sea. ' We have ar-

gued, however, that other methods may be simpler
and more accurate. Remarkably, the simple formu-
la D3 —ad& is usually accurate to 20%. Howev-

er, at present we have no good understanding of
why any of these prescriptions should accurately
reproduce the value of Di. Conclusion (2) that the
generalized ring series converges rapidly means that
long-range correlatiogs are not very important for
the energy of nuclear matter. Rapid convergence of
the generalized ring series is also consistent with the
validity of the hole-line expansion because each term
in the generalized ring series has one more hole line
than its predecessor. In this paper we have used the
hole-line expansion to calculate the energy per parti-
cle of nuclear matter. The Bochum truncation of
the coupled cluster equations provides an equally
plausible approximation scheme. This scheme has
been applied elsewhere and gives results consistent
with the hole-line expansion.

The hole-line expansion and the Bochum trunca-
tion are both approximation schemes for solving the
system of coupled cluster equations, which are
equivalent to the many-body Schrodinger equation.
The two schemes are based on similar physical ideas
and give similar numerical results. This paper has

been devoted to the technical matter of solving the
three-body equation, which is necessary to carry out
either scheme. The question arises of whether these
schemes lead to an accurate approximation to the
many-body Schrodinger equation. We certainly
have no proof that this is so. However, the follow-

ing results are consistent with the validity of the ap-
proximation scheme. (1) The numerical conver-

gence is good (see Table XLII). (2) The most im-

portant source of long-range correlations has been

investigated by studying the generalized ring series.
(3) The hole-line expansion and the Bochum trun-

cation give results that are consistent with each oth-
er. (4) The results are stable with respect to
small changes in the single-particle spectrum above
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the Fermi sea. (5) The results are consistent with

variational calculations. '
Assuming the hole-line expansion and Bochum

truncation to be valid approximation methods, the
accuracy attainable is limited by our ability to carry
out the calculations. For the Reid potential, the nu-

merical uncertainty in the calculated saturation

point is about 0.1 fm ' in kF and 1.5 MeV in ener-

gy. To improve on this accuracy will require com-
ing to grips with the four-body cluster term, which

requires solving a four-body equation. This is suffi-

ciently difficult that alternative schemes should be
investigated first, such as attempting to combine
the coupled cluster equations with the powerful
hypernetted-chain techniques that have been
developed for variational calculations.

Although the present accuracy of the calculations
is limited, it seems to be good enough to draw in-

teresting conclusions. For example, we find that the
Reid potential predicts saturation at about the right
energy but at too high a density. It is important to
make similar calculations for other two-body poten-
tials that are fitted to nucleon-nucleon scattering
data and to deuteron properties.
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v2(r) = —10.463e "/x + 105 4.68e "/x

—3187.8e "/x + 9924.3e "/x ~

(A2)

The v6(Reid) potential is specified separately in

each of the four spin-isospin channels.

(a)(S = 0, T = 1). v6(Reid) = uc(r), where

u, (r) = —10.463e "/x —1650.6e "/x

+ 6484.2e "/x . (A3)

(b)(S = 0, T = 0). v6(Reid) = uc(r), where

u, (r) = 31.389e "/x —634.39e "/x

+ 2163.4e "/x . (A4)

(c)(S = 1, T = 0), u6(Reid) = uc(r) + vT(r)Si2,
where Si2 is the tensor operator of Eq. (4.25), and

u, (r) = —10.463e "/x + 105.468e 2"/x

—3187.8e "/x + 9924.3e "/x

uT(r) = —10.463[(1 + 3/x + 3/x 2)e "/x

(A5)

—(12/x + 3/x )e /x]

+ 351 77e /x —1673.5e "/x .

(A6)

u, (r) = (10.463/3)e "/x —933.48e "/x

+ 4152.1e "/x, (A7)

vT(r) = 10.463[( —, + 1/x + 1/x )e "/x

—(4/x + 1/x )e "/x]

(d)(S = 1, T = 1). u6(Reid) = vc(r) + vT(r)Si2,
where

APPENDIX
—34.925e "/x . (A8)

Here we define the three two-body potentials v2,

u6(Reid), and full Reid that are used in-this paper.
We use the notation

x = 0.7r, (A 1)

where r is the distance between two nucleons and is

measured in fm. All potentials are given in units of
MeV.

The potential v2 is a central potential with no
spin or isospin dependence. Its radial shape is that
of the central part of the Reid' soft-core potential
in the Si - D& channel, namely

The v6(Reid) potential defined in Eqs. (A3) —(A8)
is related to the Reid soft-core potential as follows.
In all (S = 0, T = 1) channels the Reid 'S&& poten-
tial is used. In all (S = 0, T = 0) channels the
Reid 'P, potential is used. In all (S = 1, T = 0)
channels the Reid S] - D i potential is used with

spin-orbit force omitted. In all (S = 1,T = 1) chan-
nels the Reid P2- F2 potential is used with spin-
orbit force omitted.

We now turn to the full Reid potential. In all

two-body channels with j ( 2 the Reid soft-core
potential from Reid's paper is used (we do not re-

peat these formulas here). In two-body channels
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with j ) 3 we use potentials kindly supplied by
Reid. In some cases I have made small modifica-
tions in these potentials, and any responsibility for
possible inadequacy of the potentials rests with me.
In tensor-coupled channels the potential has the
form uc(r) + vT(r) Si2+ uLs(r) 1 S, and in uncou-

pled channels it is simply vc(r). The explicit for-

mulas are

3 3D3- G3.

u, (r) = —10.463e "/x —103.4e "/x

—419.6e "/x + 9924.3e "/x,

G5 I-5 U. se us(Reid) from Eqs. (A5) and (A6),
with vt, ——0.

F3.

u, (r) = 10.463[(1 + 2/x + 2/x )e "/x

—(8/x + 2/x )e "/x]

—729.25e "/x + 219.8e "/x . (A14)

3 3F4- H4. vz and vT are the same as in Pz- Fz,3 3

which is the same as us(Reid) (S = 1, T = 1), Eqs.
(A7) and (A8).

(A9)
LS(") 1Q37 Q5 / (A15)

uT(r) = —10.463[(1 + 3/x + 3/x )e "/x

—(12/x + 3/x )e "/x]

+ 351.77e "/x —1673.5e "/x,
(A 10)

Equation (A15) for uts is exactly one half the uLs

used in the Pz- Fz channel.

1G

uts(r) = 650e '/x —5506e "/x . (Al 1)
v, (r) = —10.463e "/x —39.025e "/x

The tensor component of Eq. (A10) is identical to
that used in the S&- D

&
channel. + 6484.2e "/x . (A16)

'F3 and 'H5..

u, (r) = 31.389(e "/x —16e "/x) .

G 4'.

v, (r) = —31.389[(1 + 2/x + 2/x )e "/x

(A12)

H 5'.

v, (r) = 10.463[(1 + 2/x + 2/x )e "/x

—(8/x + 2/x )e "/x].

(A17)

+ 3133.04e "/x . (A13)

—(16+ 8/x + 2/x )e "/x]
In all channels not explicitly specified, the vs(Reid)
potential is used.

B. H. Brandow, Phys. Rev. 152, S63 (1966).
zB. D. Day, Rev. Mod. Phys. 39, 719 (1967).
3B. D. Day, Rev. Mod. Phys. 50, 495 (1978).
4K. H. Liihrmann, Ann. Phys. (N. Y. ) 103, 253 (1977).
5K. H. Liihrmann and H. Kummel, Nucl. Phys. A194,

225 (1972).
H. Kiimmel, K. H. Luhrmann, and J. G. Zabolitzky,

Phys. Rep. 36C, 1 (1978).
7F. Coester, in Lectures in Theoretical Physics: Quantum

Fluids and Nuclear Matter, edited by K. T.
, Mahanthappa and W. E. Brittin (Gordon and Breach,
New York, 1969), Vol. XIB.

SB. D. Day, Phys. Rev. 187, 1269 (1969).
B. D. Day, Nucl. Phys. A328, 1 (1979).

i B. D. Day, in The Meson Theory nf Nucleal Forces and

Nuclear Matter, edited by D. Schutte, K. Holinde, and
K. Bleuler (Bibliographisches Institut, Zurich, 1980), p.
1.

'B. D. Day, in Proceedings of the International School
of Physics "Enrico Fermi, "Varenna, 1980.
R. V. Reid, Ann. Phys. (N.Y.) 50, 411 (1968);

' T. K. Dahlblom, Proceedings of the Abo Academy,
Ser. B, Vol. 29, No. 6. Available from NORDITA,
Blegdamsvej 17, Copenhagen, Denmark.

'4P. Grange, Phys. Lett. 56B, 439 (1975).
' P. Grange and M. A. Preston, Nucl. Phys. A204, 1

(1973).
' J. G. Depp, Ph; D. thesis, Carnegie-Mellon University,

1969 (unpublished), available from University Micro-
films, Inc. , order No. 70-17139.



24 THREE-BODY CORRELATIONS IN NUCLEAR MATTER

' B. D. Day, F. Coester and A. Goodman, Phys. Rev. C
6, 1992 (1972).
M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106,
364 (1957).
K. A. Brueckner and K. Sawada, Phys. Rev. 106,
1117 (1957).

J. Goldstone, Proc. R. Soc. London, Ser. A 239, 267
(1957).
R. Rajaraman and H. A. Bethe, Rev. Mod. Phys. 39,
745 (1967).
N. M. Hugenholtz, Physica (Utrecht) 23, 481 (1957).
K. A. Brueckner and J. L. Gammel, Phys. Rev. 109,
1023 (1958).

~4W, Legindgaard, Nucl. Phys. A297, 429 {1978).
~5R. Balian and E. Brezin, Nuovo Cimento 61B, 403

(1969).
A. H. Stroud and D. Secrest, Gaussian Quadrature For

mulas (Prentice-Hall, Englewood Cliffs, 1966).
B. D. Day and J. G. Zabolitzky Nucl. Phys. {tobe
published)
H. S. Kohler, Nucl. Phys. A204, 65 (1973).
A. Lejeune and C. Mahaux, Nucl. Phys. A295, 189
(1978).
K. R. Lassey and D. W. Sprung, Nucl. Phys. A177,
125 (1971).

J. P. Blaizot, D. Gogny and B. Grammaticos, Nucl.
Phys. A265, 315 (1976).
M. Lacombe, B. Loiseau, J. M. Richard, R, Vinh Mau,
J. Cotd, P. Pires, and R. de Tourreil, Phys. Rev. C 21,
861 (1980).
K. Holinde and R. Machleidt, Nucl. Phys. A247, 495
(1975).
E. Krotscheck, H. Kummel and J. G. Zabolitzky,
Phys. Rev. A 22, 1243 (1980).


