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The properties of hot, dense stellar matter are investigated with a finite temperature nu-

clear Thomas-Fermi model.

NUCLEAR STRUCTURE Hot stellar matter, equation of state, finite

temperature nuclear Thomas-Fermi model.

I. INTRODUCTION

The motivation for the study of matter at densi-
ties up to nuclear (i.e., p ( 0.2 fm = 3.4 )& 10'
g/cm ) and at temperatures up to several tens of
MeV stems from the attempt to model supernova
explosions and the possible formation of neutron
star remnants. Matter under these astrophysical
conditions consists of a mixture of nucleons, some
of which may be clustered into nuclei, extreme rela-
tivistic, highly degenerate electrons, neutrinos, and
photons.

The standard supernova model' involves a spheri-
cal star of 20 solar masses which has acquired a
dense iron core of about 1.5 solar masses, surround-
ed by an onionlike mantle of successively lighter ele-

ments. Most of the mass of the star is in a relative-

ly loosely bound hydrogen envelope. The core has
exhausted all its nuclear energy and heats up upon
contraction. Finally, iron dissociation into alphas
and nucleons causes the adiabatic index
1

&
——(t)lnp/t)lnp)„ to drop below the value of —,,

necessary to maintain stable hydrostatic equilibrium.
At the onset of collapse typical conditions in the
center of the star are p, 6 X 10 g/cm and

T, = 1MeV or 10' K. During the collapse the
neutrinos are produced by electron captures, and,

'

because of the E dependence of the weak cross sec-
tions, become degenerate and are trapped
(T4 ff ).) rq„„, ';, ) a't densities in excess of about
10' g/cm, thus preventing further electron cap-
tures. As a result, the lepton pressure stays high
throughout the collapse and keeps the adiabatic in-

4
dex close to —,. Core collapse is not halted (core
bounce) until the adiabatic index gets sufficiently

large again, which occurs when the central density
exceeds nuclear matter density (pNM). There are
two reasons for this stiffening of the equation of
state: First, the stiffer nonrelativistic nucleon pres-
sure (y ——) takes over from the extreme relativis-

3
4

tic lepton pressure (y ——, ) when nuclei evanesce

near pNM. In addition, nuclear forces, which at
lower density soften the equation of state, suddenly
become very repulsive beyond pNM.

When the core bounces, a shock wave forms at
the interface between the homologously collapsed
core and the infalling mantle. The strength of this

shock, which is important if shock ejection of the
envelope is to take place, is heavily influenced by
the properties of the equation of state during col-
lapse and at bounce, as well as by the neutrino
transport out of the core. The neutrino cross sec-
tions (particularly for coherent scattering on nuclei)
are sensitive to the sizes and abundances of the nu-

clei which exist at subnuclear densities. Because of
their high density of energy levels nuclei have a
somewhat larger specific heat, C„, as compared
to the degenerate free nucleons. Electron captures
and neutrino production are much more efficient on
free protons than they are on neutron rich nuclei for
which they are blocked because of poor wave func-
tion overlap.

It has been suggested that a convectively unstable
situation develops after the core bounces because of
a negative lepton gradient. '. Whether this induces
a large scale Rayleigh-Taylor overturn of the whole
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core on a dynamic timescale with a massive release
of trapped neutrinos and concomitant explosion
depends again very sensitively on the equation of
state. ' In particular, since the negative lepton gra-
dient at the edge of the neutrino-trapped region is

counteracted by a positive entropy gradient, generat-
ed by shock heating, cooling by thermal neutrino

processes is very important. The latter process oc-
curs most efticiently by weak deexcitation of nuclei,
A* ~A + v+ v, and depends extremely sensitively

on the nuclear sizes and, of course, on the presence
of nuclei.

The nuclear sizes and abundances, as well as the
extent of the region of their existence in the (p, T)
plane, thus have an important bearing on the fate of
the core and of the whole star.

The problem we are faced with is to find the
most probable arrangement of the nucleons at a
given temperature, T, average nucleon density, p,
and average proton concentration Y„with the con-
straint of charge neutrality. Phrased differently,
how do a given number of Z protons, Z electrons,
and X neutrons in a given volume V minimize the
free energy at a given temperature T. %e do not
assume beta equilibrium, e +p ~~n + v, since it
does not prevail everywhere during the collapse.
The neutrino concentration can then be specified ar-

bitrarily, and since the neutrinos can be treated as a
noninteracting Fermi gas, they can be omitted in the
minimization and added separately to all extensive

thermodynamic quantities.
At low densities, low temperatures, and sufficient-

ly large proton concentrations all the nucleons ar-
range themselves into ironlike nuclei. Towards
higher temperatures, dissociation into alpha particles
and free nucleons occurs, whereas towards higher
densities, neutrons get squeezed out (pressure disso-

ciation). Protons tend to stay clustered as this takes
maximum advantage of the nuclear symmetry ener-

gy. It is only towards pNM that matter becomes a
homogeneous mixture of neutrons, protons, and
electrons.

In this paper we report on an investigation of the
microscopic properties of hot, dense stellar matter
making use of a finite temperature nuclear Thomas-
Ferrni (TF) model This work i.s based on and is a
natural extension of several past studies: (a) the nu-

clear TF model of Brueckner et a/. ' "has been
very successful in reproducing the bulk properties of
zero temperature, terrestrial nuclei; (b) the nuclear
TF model has subsequently been successfully ap-
plied to the equation of state of zero temperature
neutron star matter in beta equilibrium'; (c) a finite

temperature extension of the TF model has been
used to calculate the level density and specific heat
of known terrestrial nuclei and has shown that the
TF model accounts for the experimentally deter-
mined specific heat of spherical, nonclosed shell nu-

clei; .(d) phase properties of hot bulk matter (i.e.,
without surface, curvature, nor Coulomb effects)
have been studied with the same formalism. ' This
work has shown that bulk nuclear matter has the
properties typical of a binary mixture: a line of crit-
ical points, a line of equal concentrations, and a line
of maximum temperatures. It thus also exhibits the
phenomenon of retrograde condensation. A triple
point (coexistence of three phases), although possible
in principle, has not been found. Although the ex-
act location of these lines is somewhat force depen-
dent, these general features are not. ' ' Two-phase
bulk matter (TPBM) is a fair first approximation to
stellar matter, and its existence boundary also
roughly outlines the region of existence of nuclei
and some of their gross properties; the high density
phase corresponds to the interior of nuclei and tends
to always be proton rich, whereas the low density
phase corresponds to the internuclear fluid and is
essentially devoid of protons.

The advantage of the TF model over a mass for-
mula or liquid drop approach is that it allows the
density to vary continuously from the nuclear interi-
or to the external fluid. It also treats fully self-
consistently bulk nuclear, surface, curvature, and
Coulomb effects. Being a semiclassical approach it
is, however, unable to treat shell and pairing effects.
Attempts to extend the TF model to deformed nu-
clei have not been successful. For our purpose here
these shortcomings of the TF model are not
relevant, however. The astrophysical temperatures
of interest wash out shell efFects and prevent nuclear
deformation. In addition, the large number of de-
grees of freedom for single particle excitations dwarf
the effects of these collective excitations. Further-
more, thermal fluctuations about our typical average
nuclear cluster will be seen to be large and will

wash out whatever shell and collective effects
remain. For these reasons the TF model is ideally
suited for the study of the hot, dense matter as oc-
curs during stellar collapse.

Past investigations have used a variety of different
approaches, namely a liquid drop model, ' a finite
temperature Hartree-Pock model with a density
dependent effective interaction, ' and, finally, a
mass-formula approach together with an ad hoc
prescription for the nuclear level density.

In Sec. II we shall discuss the energy functional
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which underlies both the homogeneous matter and
the TF calculations, and we describe the TF model
approach. In Sec. III we exhibit the TF results ob-
tained with the Wigner-Seitz approximation and dis-

cuss possible improvements due to the inclusion of
alpha particles as well as due to finite temperature
Coulomb corrections (plasma effects).

II. THE FORMALISM

The nuclear Hamiltonian which we use has only
briefly been described elsewhere ':

Huucl(pn&pp&rn&+p) (rn + rp)

ones except for a slightly high value of the nuclear
symmetry energy coefficient (about 35 MeV). '

As is obvious from the expression of H„„,~, the ef-

fective mass of our Hamiltonian coincides with the
bare mass. That, far from embarrassing, seems to
be in good agreement with the most recent estimates
which give M*/M ) 1 near the Fermi surface. Re-
cent systematic calculations of the nuclear specific
heat ' point to M* = M as the best choice for
reproducing the experimental results.

We extend the formalism to finite temperature by
defining the nuclear free energy density

fnucl(Pn &Pp&rn &rp& T) ~uucl(Pn «Pp &rn &rp )

—T(s„+sp),

where

+ V(p,a), with

and

5 A 0
i —

6 MT I IIPI (12)

P=Pn+jp s

a = (p„—pp )/p = 1 —2Y, ,

and the kinetic energy is

(2)

(3)

(4)

' 5/2
1 2MT 0

2W
' 3/2

1 '2MT, p
P&

= -, I'In~rl&»

(13)

(14)

The potential energy V(p,a) is an interpolation
between Lombard's fit to zero temperature nuclear
matter calculations with variable neutron excess Vl
valid for 0 & a & 0.6, and a pure neutron gas cal-
culation' VN such that

V(p,a) = (1 —a )VI + a VU,

where

Vl. (p,a) = VI(p) + a Vp(p),

VU(p, a) = (1 —a )VI+ a V~,

Vi ——aip + a2p + a3p

V b 2 + b 7/3 + b 8/3

VN —clp + C2p + c3p2 1.7 2,8

The coefficients are

a ~
———818.25, b i

——258.57,

a 2 ——1371.06, b 2
——274.21,

(10)

c i
———70.9415,

c2 ———49.5323,

a 3
———556.55, b 3

———916.08, c3
——147.623 .

The nuclear matter characteristics of this potential
are in good agreement with the commonly accepted

where

F„(z):—
0 x —z+ 1

The chemical potentials are given by

av
pi Tgi +

ap,

We note that this formulation, which is closer to the
finite temperature Hartree-Fock formalism, is actu-
ally identical to the one used by Buchler and Ep-
stein, namely,

fuucl(pn&pp&rnrp T) fNI(pn&T) + fNI(pp&T)

+ V(p,a),
where fNI is the free energy of a noninteracting fer-
mion gas. The only difference with Refs. 14 and 17
comes from their use of a different nuclear interac-
tion (the Skyrme effective interaction which, when
used in its original form, ' is known to be too repul-
sive at high density) and, in particular, their use of
an effective mass different from the bare mass.

When in the spirit of the TF model we add densi-

ty gradient terms to the nuclear Hamiltonian to take
into account density imhomogeneity corrections and
we include the electrons together with the Coulomb
energy, we obtain the free energy functional
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. 1/3

+ —
(pp —p. )c'c-i«) ——— e'pp'" + f,(p. » .

I

nt of the gradient terms The constraints (19) and (20) reduce the number of
possibly temperature parameters to six. These functional forms are fairly

hem to be constants and Aexible and have been found to give a good descrip-

to give a good fit to the tion of the gross properties of terrestrial nuclei.

mber of known nuclei The constants pi; have been added here to account
.4 and 8 = —1.2). for an external nonvanishing nucleon fluid at the

egenerate electrons form cell boundary. In the case of nuclei (bubbles) the

ive neutralizing back- density at the cell center is larger (smaller) than the
ization of the free en- corresponding cell edge density.

(18)

The quantities g and 8 in fro
are, in principle, density and
dependent; we have chosen t
have determined them so as
bulk properties of a large nu
at zero temperature-(g = 11

The extreme relativistic, d
an essentially uniform negat
ground charge. In the minim

ergy density (at given average nucleon density, aver-

age proton to nucleon ratio, and temperature) the
electron free energy decouples from the equations
involving the nucleons. The contribution of the
electrons, similarly to that of the neutrinos, can sim-

ply be added at the end of the calculation.
Under the conditions of interest here the nucleons

can congregate into nuclei embedded in a lower
density nucleon fluid or into bubbles in a higher
density fluid. ' ' Both types of configuration will

be referred to as nuclear clusters. In order to keep
the computational complexity manageable we shall
assume that we can describe the systems by a typi-
cal average spherical cluster.

In the spirit of the Wigner-Seitz model we assume
that the elemental cluster occupies a spherical cell
of volume V, and radius R, in which the positive
proton charge is neutralized on the average by the
electron charge. This charge neutrality guarantees
that neighboring cells do not interact and we can
reduce the problem to that of a collection of nonin-

teracting spherical cells. The integration in Eq. (18)
is carried out over an elemental cell and the average
free energy density is f = F,/V„where F, is the to-

tal free energy [Eq. (18)] extended over a cell. The
proton and neutron content of the cell are

R

Z = f pr(r)dr = V,p, = V,pY, , (19)
R

N = f p„(r)dr = V,p(1 —1;) .

III. BULK MATTER

Bulk matter is defined as homogeneous, but mul-

tiphase matter, in which Coulomb and other finite
size effects, such as surface energy, are omitted.
Bulk matter can serve as a reasonable first approxi-
mation to real matter. In Ref. 13 (part of which is
hereafter referred to as paper I) we studied the
phase properties of nuclear matter (neutrons and

protons} as a function of T, p, and Y, . Single phase
homogeneous matter (SPHM) exhibits a wide

domain of instability and of metastability. For ex-

ample, at 4 MeV and Y, = 0.25, metastability exists
between pi ——1.28 X 10 and p2

——6.5 X 10 as
well as between p7 ——1.28 X 10 ' and

ps = 1.43 X 10 '. (Unless otherwise specified we
use nuclear units, i.e., MeV and fm, with

c = k = 1.) Instability which occurs between p2
and p7 has different causes: Between p2 and

p3 ——7.5 X 10 as well as between

p5 ——8.15 X 10 and p6
——1.075 X 10 ' diffusive

instability (8p„/8 Y, & 0) occurs; between p3 and

p5 the isothermal compressibility (8p/8 p) r is nega-

tive; finally between p4
——1.65 X 10 and p7 nu-

clear matter is mechanically unstable (p„„,i & 0).
When the contribution of the extreme relativistic,
degenerate electrons is included, the total pressure is
positive everywhere; as a result the region of
mechanical instability is removed and the high den-
sity region of metastability is increased to

ps & p & ps. (For higher values of Y, it is conceiv-

able that a negative total pressure region might sur-

vive because of the larger nuclear attraction; since at
the densities where this might arise matter of astro-

physical interest is strongly neutronized, we have not
bothered to search for this possibility. )

These density intervals are, of course, both tem-

(20)

Instead of minimizing the free energy density
through solving the Euler-Lagrange differential

equations associated with the functional (18) we
have opted for a trial function approach with a
Wood-Saxon shape

1p;(r}=p„.+pz;, „i,i=n,p. (21)

-f2
F[p„(r),pz(r}, p, (r)] =f dr3(f„„,&[p„(r),pz(r)]+ g'j [V(p„+p&)] + 8[V(p„—pz)]
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perature and Y, dependent. For example, at 8
MeV and Y, = 0.25 we find that matter is unstable
again between P2 and p7 with p~ ——2.89 X 10

P2 ——1.55 X 10,p3
——2.05 X 10

P5
——6.75 X 10,p4 ——p6

——p7 ——9.8 X 10, and

ps ——1.22 X 10 '. At this higher temperature no
region of negative pressure exists even for SPHM
without electrons. The boundary of the region of
coexistence of two separate phases is shown in Fig.
1 as a solid line. The critical point is marked by a
cross. The cross-hatched region, bounded by the
dashed-dotted-dotted line, is the unstable region for
SPHM.

In paper I we ignored the possible presence of al-

pha particles. In this work we include the alphas,
treating them as separate, noninteracting (elementa-

ry) pointlike particles with a binding energy

B~ = 28.30 MeV. The concentration of alpha parti-
cles will be found to be always such that we can re-

gard them as a classical gas
(M~kT/2W) ~ && p~, where p~ is the number

density of alphas.
The concentration X = 4p /p of alphas in

SPHM at a given total nucleon density p, total pro-
ton concentration Y„and temperature T is found

by minimizing the free energy with the constraints
of baryon conservation and charge conservation:

p~+X~ = p,
1

Y~p~ + 2X~P = Y~p

(22)

(23)

where pN and Yz are the density and proton con-
centration, respectively, in the nucleon component,
which leads to the equation

l4-

T
(Mev)

10-

6-

4-

l og, o p(~mS)

FIG. 1. Phase diagram of nuclear matter and alpha

, particles in the T-p plane. The 1% and 10 jo alpha-

particle concentration lines for (SPHM) are shown

dashed. In the region below the two-phase coexistence

boundary (solid line) SPHM is unstable and the actual

1% a-concentration line (dashed-dotted) corresponding to
two phase matter gets shifted to lower densities.

p = —kTln
M~kT

27rfi2
—B~ . (25)

The a concentration X~ must necessarily lie

between 0 and 2Y„where in the latter case all the

protons would be absorbed into alpha particles.
The search for alpha particles in TPBM is more

complicated. Defining Y, i and Y,2 to be the proton
concentration in the two phases of the nucleon fluid

and p& and p2 to be the two corresponding nucleon

densities, X to be the mass fraction of the alphas, .

and g to be the total mass fraction of phase 1 [so
that (1 —g —X ) is the total mass fraction of phase

2] we have the relationships

Y, = gY, ) + (1 —g —X~)Y,p+ —,X~,

1 1 1—=g—+(1 —g —X )—,
p pi P2

(26)

(27)

together with the equilibrium conditions

p„(pi, Y, i, T}= p„(p2, Y,2,T},

Pp(P1~ el~ } Pp(P2~~e2&T) ~

p (pi, Y, i,T) =p (p2, Y,i,T),

(28a)

(28b)

(28c)

and equation

Pa(XO P T) = 2(Pn + Pp } . (29)

It is also clear that p must be the same in both
phases. From our neglect of the alpha-nucleon in-

teraction energy it follows that p~ is also the same.
The numerical solution of these equations

proceeds as follows: We solve Eqs. (28) for pz,
Y, i, and Y,2 in terms of pi at a fixed temperature.
Equation (29) is then solved for p~ using relation

(25). Then we fix Y, and obtain p, g, and X from
the remaining equations, which completes the solu-
tion. The solutions for g = 1 and g = 1 —X~ de-

fine the boundary of the region of the coexistence
of two phases. The inclusion of alpha particles
causes an inward shift of the existence boundary of
TPBM which, however, in Fig. 1 is within the
thickness of the line (e.g. , at T = 4, the left hand
boundary gets shifted from p = 1.28 X 10 to

p =. 1.26 X 10 ).
In Fig. 1 we also show (dashed lines) the

X~ = l%%uo and 10% concentration lines for SPHM.
Obviously SPHM + a is unstable inside the two

P~(P~ T) 2P„(P»Y„)+ 2'(P„,Y„) ~ (24)

where
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phase coexistence region (e.g., all of the 10% line).
When breakup into two phases is allowed (TPBM
+ a) the right hand branch of the X = 1% line

shifts to much lower density (dashed-dotted line).
We therefore conclude that TPBM + a has a very

low a concentration (X~ & 10%), at least for Y, in

the vicinity of Y, = 0.25. Finite size effects of the
a's are negligible and hardly affect X~. The varia-
tion of X with Y, is difficult to predict in general
since

dX~

dY,
2 Bp

1 —X BY~

kT 9p+ 2p
X~ a p„

(1 —2Yiv)

(1 —x) (30)

where p = p„+pz, depends on the derivatives of p
which do not have a definite sign.

The results of paper I which omit alphas are thus
essentially unchanged. Whether the inclusion of a
nuclear interaction between the alpha particles and
the nucleons has an appreciable effect on their con-
centration is under investigation.

IU. THOMAS-FERMI MODEL RESULTS

Preliminary results of the TF model have been
summarized elsewhere. ' We present here a more
complete description of the model and more de-
tailed results, as well as an analysis of the sensitivity
of the results to the input physics. In the following
we first treat the system in the Wigner-Seitz approx-
imation and omit alpha particles. Then successively
we introduce finite temperature plasma effects and
include alpha particles in our treatment.

As we have mentioned in Sec. II we assume a
Wigner-Seitz (WS) model for the configuration of
the nucleons with a spherically symmetric cell, and
a spherically symmetric arrangement of the nu-
cleons around the cell center. With that constraint
it turns out that at low density one obtains a bulge
of nucleons in the cell center (nuclei}, whereas at
higher density a nucleon deficiency (bubble} occurs,
as was noted previously. Both configurations will
be referred to as clusters. We find that for
Y, = 0.25 this transition from nuclei to bubbles oc-
curs at p = 6.3 &( 10 at 4 MeV and at

p = 5.2 )& 10 at 8 MeV. As the density is in-
creased the size of the nuclei increases to about
A,~» ——770 at the nucleus-bubble transition, from
which point on the bubble size A,I„,———1340
shrinks until the transition to homogeneous matter.
When a smoothly varying nucleon distribution is
taken into account, as with the TF model, the bub-
ble size is quite naturally defined as the deficiency
of nucleons with respect to the outside (background)

nucleon density, i.e., the density at the cell radius:
the same way that the size of the nuclei is defined as
the nucleon bulge above the background. (This
definition differs from that of Lamb et al. ' who
consider step-function densities and then define the
bubble size as the number of nucleons inside the
low density part. )

The results of our calculations at T = 4 and 8
-MeV are exhibited in Tables I and II, respectively.
The nuclei are seen to always be rather large, which
is in agreement with both the liquid drop' and the
finite temperature Hartree-Fock results. '

The first two columns show the nuclear part of
the internal 'energy and entropy per nucleon (which
we define to be the total minus the electrons' contri-
bution). Also shown are the cells' central and
boundary densities. The asterisks indicate that the
density was so small that we did not deem it worth
the effort to pinpoint it. The parameter I is indica-
tive of the nature of the plasma and will presently
be discussed. The nuclear part of chemical poten-
tials (p„}for the neutrons and protons, respective-

ly, have been estimated as follows:
R

J p;(r)r p;(r)dr

I r p;(r)dr

where

p,; =.- —2g V p+ eg(r)5p, i = n,p .
~fnucl

Bp&

A more accurate evaluation as a numerical derivative
of the free energy, p„= dfld p„, pz ——d fld pz,
would have been too costly. We note that in con-
trast, the entropy which is the temperature deriva-
tive off could be obtained directly at a given tem-
perature because of the form of Eq. (17). For refer-
ence we also give the chemical potential of the elec-
trons in the last column. The pressure p has been
obtained by differentiation with respect to p of a
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TABLE I. Thomas-Fermi results for nuclear clusters (nuclei or bubbles) at T = 4 MeV and Y, = 0.25 using- the
Wigner-Seitz approximation (see text for explanation). Asterisks mean that the missing quantity was not calculated with
meaningful accuracy.

p E/A S/kA R, p„(0) p (0) p„(R, ) p (R, ) A A„„, Z„„, I (p„) (p ) p,,

0.005 —3.32
0.010 —4.00
0.020 —4.60
0.025 —4.79
0.030 —4.93
0.040 —5.18
0.050 —5.37
0.060 —5.53
0.070 —5.70
0.080 —5.90
0.090 —6.07
0.100 —6.20
0.105 —6.28
0.107 —6.30

1.65
1.32
1.06
0.99
0.94
0.86
0.81
0.76
0.73

- 0.70
0.68
0.65
0.65
0.65

20. 1

17.0
16.9
14.4
14.2
14.1

14.3
14.9
16.0
14.8
13.9
13.6
14.5
15.5

8.64( —2)
8.93(—2)
9.18(—2)
9.24( —2)
9.28( —2)
9.31(—2)
9.30(—2)
9.29(—2)
9.64(—3)
1.08(—2)
1.19(—2)
1.43(—2)
1.44( —2)
1.50(—2)

5.47( —2)
5.10(—2)
4.72(—2)
4.56(—2)
4.44(—2)
4.23(—2)
4.03{—2)
3.88(—2)

1.64( —3)
2.75(—3)
4.47( —3)
5, 15(—3)
5.83(—3)
7.11(—3)
8.30(—3)
9.98(—3)
8.73(—2)
8.82( —2)
8.91(—2)
8.81(—2)
8.65(—2)
8.44{—2)

3.48(—2)
3.39(—2)
3.30(—2)
3.14(—2)
3.00(—2)
2.88(—2)

170 114
206 149
276 214
313 248
359 290
468 385
617 576
840 703

1192 —892
1078 —577
1014 —365
1058 —207
1331 —146
1669 —97

42 32
51 56
69 115
78 153
90 205

117 350
154 598
210 1061

—250 1963
—188 865
—119 367
—68 123
—47 55
—31 23

—3.90
—1.93
—.05

.56
1.01
1.76
2.34
2.84
4.48
4.60
4.67
4.74

—22.0 65.0
26.2 82.2

—30.8 103.9
—32.5 112.0
—33.8 119.0
—36.0 131.1
—37.9 141.3
—39.4 150.2
—49.9 158.2
—50.6 165.4
—S1.3 172.0
—51.9 178.2

181.1
182.3

spline function fitted to the free energy per baryon
at constant T and F„p =p [d(F/A)/ dp]r T. The

ionic radius R, is found to vary very little. Its odd
behavior in the vicinity of the nucleon-bubble phase
transition is probably not physical, but an artifact of
our constraint of sphericity in the basic cell which
breaks down when the cluster radius becomes a siz-

able fraction of the cell radius. This problem is ger-
mane to any approach based on the Wigner-Seitz
model.

We have assumed here that we can replace the
actual nuclear cell distribution by a typical average

cell as is also done elsewhere. ' ' Near the critical
point (p = 5.62 X 10 fm and T = 13.30 MeV
for 1; = 0.25) fluctuations are expmted to be very

large. Actually, even far away from the critical

P(R ) = P(R )
9( cI +(~c)l/kT

(31)

where R, is the most probable cell radius for a
given p = 0.04 and Y, = 0.25 at 4 and 8 MeV tem-
perature.

IP nucleon density distributions have been exhi-
bited in Ref. 16 (hereafter referred to as paper II)
for various nucleon densities and for the favored ar-
rangement (nucleus or bubble) at 4 MeV and

Y, = 0.25. Here we show in Fig. 2 the variations
of the nucleon distributions with temperature, for a
nucleus case (p = 0.03) and for a bubble case

point such cell fluctuations are surprisingly large; as
a measure of the fluctuations we exhibit in Table III
the quantity

TABLE II. Thomas-Fermi results for nuclear clusters (nuclei or bubbles) at T = 4 MeV and Y, = 0.25 using the
Wigner-Seitz approximation (see text for explanation). Asterisks mean that the missing quantity was not calculated with
meaningful accuracy.

p E/A S/kA R, p„(0) p~(0) p„(R, ) p~(R, ) A A,l„, Z,|„, I (p,„) (p~) p,

0.025
0.03
0.04
0.05
0.06
0.08

0.99 1.94
0.46 1.83

—0.31 1.67
—0.82 1.56
—1.15 1.49
—1.96 1.36

13.1 7.78{—2) 4.25(—2) 8.89{—3)
12.9 7.84(—2) 4.09(—2) 9.91(—3)
12.8 7.89(—2) 3.79(—2) 1.17(—2)
13.3 7.91(—2) 3.55(—2) 1.41(—2)
14.9 1.44( —2) * 6.97(—2)
12.7 1.71(—2) * 7.24( —2)

2.87(—2)
2.67(—2)

236 143
269 172
355 245
487 344
836 —546
690 —167

50 35 —4.59
59 49 —3.77
82 93 —2.48

1.13 175 —1.48
194 313 1.06

—58 33 1.13

—33.6 110.6
—35.3 117.7
—38.2 129.9
—40.6 140.2
—50.4 149.1

—51.4 164.4
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Rc
T =4 MeV

P (R, )/P (R,~) R,
T=8 MeV

P (R, )/P (R,'")

TABLE III. Relative probability of cell fluctuations at
a density of 0.04 fm, temperature of 4 MeV and

Y, = 0.25.

O. I 0-

0.05-
p(fm ~)

O. I 0-

0.05-

8
14
14.08
15
16
17
18
19
25

0.8940
0.9978
1.0000
0.9984
0.9937
0.9866
0.9775
0.9668
0.8873

11
12
12.84
13
14
15

0.9974
0.9995
1.0000
0.9999
0.9991
0.9970

0. IO-

0.05-

O. IO—

0.05
~ ~

IO' 20 30 40 50
r (fm)

FIG. 3. Variation with proton concentration of the
nucleon distributions at a temperature of 4 MeV (see also
Fig. 2).

O. IO-

0.05-
p(frrr~)

O. IO-

0.05 =

s4
sO

s8
0.0

O. IO-

0.05-

0 IO- T 8
0.05-

IO 20 30 40
r(fm)

50

FIG. 2. Variation with temperature of the spatial neu-

tron (upper) and proton (lower curve) distribution in the
case of nucleus configuration (upper two figures) agd a
bubble configuration (bottom two figures). The dots on
the axis correspond to cell centers.

(p = 0.08). Essentially all the protons are associated
with the denser phase, i.e., with the nuclei at low
density and with the "shell" surrounding the bubble
at higher density. This arrangement takes max-
imum advantage of the isospin zero nuclear attrac-
tion and was already noted for TPBM. Thermal ef-

fects cause the nucleons to spread out more as is

evidenced in Fig. 2, which shows both a nucleus
and a bubble configuration at a temperature of 4
and 8 MeV.

In Fig. 3 we show the variation of the shape of
the nucleon distributions with Y, . It is not astonish-

ing that the central neutron density increases and
the central proton density decreases with increasing

I I I

T=4MeV
Y, = 0.25

r (vo

SPHM /y~
20- t.

/
/

/ ~//~NB
/

/ TP8M

' a/
, /

/

10Qtr ~ 170
I I I I I I

0.02 0.06 0.10 0.14
/ (fm~)

TsSMeV
Ye=0 25 —20

rr

r r
%pr r'')

r (vo

0 SPHM //

//ft NB

r. (vo/
U /

/
/

/ '/' TPBM
/

-/g /
//
-/ -4

0.02
I I I I

0.04 5 0.06 0.08
ptfm')

FIG. 4. Free energy (inclusive of electrons) per nu-
cleon as a function of density. The dashed line corre-
sponds to single phase homogeneous matter and its stabil-
ity is indicated. The dashed-dotted line refers to two-
phase bulk matter. The triangles correspond to the TF
nucleus solutions and the circles correspond to the TF
bubble solutions. The nucleus bubble (NB) transition is
indicated by an arrow. The Coulomb phase transitions
are indicated by I = 170.

neutron excess, while at the same time the outside
neutron density increases. While the cell radius

stays more or less constant down to Y, = 0.25,
below that value the nuclei begin to shrink, as is evi-

denced by the Y, = 0.2 case.
Figure 4 shows the free energy per nucleon (in-

clusive of the electron contribution) as a function of
density at two temperatures, 4 and 8 MeV, and a
proton concentration of Y, = 0.25. The dashed line
corresponds to SPHM and the arrow denotes the
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stability boundary. The dashed-dotted line, which

necessarily lies below, corresponds to TPBM. The
TF-nucleus solutions are indicated by triangles and
the TF-bubble solutions by full circles. The transi-
tion from nuclei to bubbles (NB) is marked with an

arrow.
The precise location of the (physical) phase transi-

tion from clustered matter (bubbles) to SPHM
presents numerical diAiculties. The reason is that in

the evaluation of the free energy of a cell [Eq. (18)]
the bubble region contributes less and less as the

transition is approached because of the 4m weigh-

ing factor. However, since the combined effects of
surface, curvature, and Coulomb energy are always

positive, the free energy of clustered matter always
lies above that of TPBM and thus disappears before

p = pq, which is the maximum density at which
TPBM can exist. (We have seen that a particles
hardly affect this density). On the other hand,
SPHM becomes unstable below p = p6 and can be
metastable above. The transition from clustered
matter to SPHM must therefore occur for

p6 & p & ps. A similar argument shows that at
lower density the nuclei must disappear (dissociate)
for p~ & p & p2. This conclusion is at variance with

the results of Ref. 14, which finds no such boun-

dary for the disappearance of the nuclei towards
lower density. The discrepancy could be due to the

effects of the translational free energy of the clus-

ters. ' Our energy functional gives rise to a TPBM
coexistence boundary which lies at considerably
lower temperatures' than that of Ref. 14, e.g., with

Y, = 0.5, our Tm» ——15.5 MeV, versus their

T,„=20.2 MeV. Since the existence boundary of
nuclei or bubbles lies below the corresponding
boundary for TPBM, it is to be expected that our
clusters also dissociate at correspondingly lower

temperatures.
Two Coulomb phase transitions can exist in stel-

lar matter. One occurs for the nucleus configura-

tion from a Coulomb liquid to a Coulomb crystal.
To the extent that we can approximate the nuclei by
point charges in a neutrahzing background of elec-

trons and "external" protons, a phase transition oc-
curs when I =—Z,tr e / kTR, exceeds about 170,
where Z,~ ——Z,~„,. Similarly, a phase transition

can occur from a Coulomb solid of bubbles to a
bubble liquid again when I decreases through 170
with increasing density. Now Z,~ is negative since
the bubbles are a charge deficiency as compared to
the external (high density) proton charge minus the

uniform negative electron background. The loca-
tions of the two transitions are marked with an ar-

row in Fig. 4.
Figure 5 exhibits the equations of state at two

temperatures, 4 and 8 MeV, for a proton concentra-

2,0- 2.0-

1.8- 1.8-

1.6.

1.4-

1.2-

1.0-

1.2-

P(
1.0-

0.8- 0.8-

0.4-

0.6-
UA

0.4-

0.2-

0.02 0.06 0.10 0.14

0.2-

0.02
e(fm')

0.06 0.10 0.14

FIG. 5. Equations of state at temperatures of 4 and 8 MeV for strongly phase homogeneous matter (SPHM, solid

line), two phase bulk matter (TPBM, dashed line). The TF pressure, shown as a thick solid line, merges into SPHM

above a certain transition density (the dotted line is an extrapolation). The thick line thus corresponds to the physical

equation of state. For reference the electron pressure is also shown (dashed-dotted).
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TABLE IV. Same as Table I but including plasma effects. The last entry is the plasma free energy divided by the nu-

clear free energy.

S/kA R, p„(0) p, (0) p„(R,) pp(R, )

0.005
0.02
0.03
0.04

—3.08
—4.53
—4.90
—5.16

1.67
1.07
0.95
0.86

15.8
13.2
13.0
13.3

8.42( —2)
9.22(—2)
9.33(—2)
9.39(—2)

5.46(—2)
4.81(—2)
4.53(—2)
4.31(—2)

1.61(—3)
4.37(—3)
5.74(—3)
6.97(—3)

Fpi = Fo(p„T) + (F,„—0.89I'p, kT), (32)

where p, = I/V, is the number density of cells and

where we have subtracted the Wigner-Seitz term for

pont particles since the latter energy is already in-

cluded in Eq. (18) and actually takes some finite

size effects into account. For the so-called

Coulomb-excess free energy F,„we have used a fit-

ting formula to Monte Carlo results both for the

liquid and for the solid. The noninteracting free

energy Fo, which is defined to be the classical parti-

cle translational energy for point particles for the

liquid phase, is given by

Fo ———p, kT ln
A,gMkT

2M2 pc
(33)

tion F, = 0.25. The line marked SPHM corre-
sponds to single phase homogeneous matter and its

region of instability is indicated. The dashed line
corresponds to TPBM and the transition from
TPBM to SPBM is indicated by an arrow (2-1).
For reference we also indicate the pressure of the
electron component. The actual equation of state,
obtained with the 'I'2' model, is shown as a thick
solid line. As mentioned above, numerical difficul-

ties preclude the exact delineation of the phase tran-
sition to SPHM (the dotted line is an ad hoc extra-
polation). We can now quantify the earlier state-
ment that TPBM is a reasonable approximation to
actual matter; the difference is seen to be of the or-
der of or less than a factor of 2.

Our formalism so far has included plasma effects

only in the strongly coupled limit (Wigner-Seitz ap-

proximation) which corresponds to a dense, cold

plasma, although we have included thermal dilata-

tion of the nucleon distributions in our free energy

[Eq. (18)]. We discuss now an attempt to improve

upon this approximation and include other finite

temperature effects in the following way: We in-

clude a plasma energy term of the form

and the Debye oscillator expression in the case of a
solid. We have approximated A,~ by A,~„„i.e., we

assume that the nucleon bulge behaves like a free
classical particle. F,„(l,g) customarily is defined to
depend on the packing fraction g = (R,i„/R, ) and

thus to include finite size effects, i.e., both the ex-

cluded volume and the reduced Coulomb repulsion.
In principle, Fz~ has to be included, in the full

minimization in order to treat it self-consistently.

However, in practice we have found that the results

of Fws(R, ) with the Wigner-Seitz model can be
used to evaluate F&i(R, ) and that the minimum of
R ws(R, ) + F~i(R, } is very close to the self-

consistent one.
We have tested the sensitivity of the results to the

packing fraction g' by including only the excluded

volume part of the translational free energy. This

has caused a very small shift towards smaller nuclei.
In Table IV we show the results of our inclusion

of Fp] at 4 MeV for the nucleus configuration

where, however, we have neglected the packing frac-

tion (g = 0). Comparison with Table II shows a
marked decrease of the cluster sizes, by a factor of 2
or more at low density, although the additional plas-

ma energy Fz~ is a small fraction of the total free

energy (excluding the electron contribution). At
higher temperatures we have encountered difficulties

with F~i. The TF solution (cluster} disappears, i.e.,
one can obtain the homogeneous SPHM solution in

a density region where the latter is unstable. We be-

lieve that this difficulty arises from an inconsistency

in the physical description: On the one hand, the

nuclear energy is treated in a Wigner-Seitz cell

method without allowing for size and shape fluctua-

tions, and on the other hand, one superposes on this

a finite temperature plasma description of a classical

system of mobile charged spheres. However, it is

difficult to see how one could improve upon this

physical description. We should point out that our

TF model is not the only one encountering this dif-
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TABLE IV. (Continued).

Zclus Fpv'Ft".t"

83
191
278
395

56
149
225
326

20
48
69
99

10
62

133
264

—3.87
—5.47

0.99
1.75

—23.1

—31.4
—34.1

—36.2

65.0
103.9
119.0
131.1

4.3(—2)
1.6(—2)
9.7(—3)
6.4( —3)

ficulty; the latter must also arise overtly or covertly
in any approach based on a Wigner-Seitz cell
description.

Since the disappearance of the TF cluster solution

occurs through a shrinking of the cluster size we

have also included alpha particles in. the TF model

iq an attempt to resolve the diAiculty of not finding

a solution other than the SPHM solution, where the

latter is unstable. We have treated the Coulomb en-

ergy of the mixture of nuclear clusters and alphas in

a lmear combination approximation as suggested by

Hansen et a/. ' The inclusion of alphas increases

the numerical expense of obtaining a solution of the

TF equation. We find, however, that the concentra-

tion of alphas is again very small, similar to that in

the case of TPBM + a (e.g. , at p = 0.005, T = 4

MeV, Y, = 0.25 one obtains X~ = 0.016). For
comparison purposes, at p = 0.005, Y, = 0.25,

T = 4 MeV the total free energies (inclusive of the

electrons} are Fws/A = 2.13 MeV,

I'ws+~~/A = 1.85 MeV, and I' ws+ pl+a/A = 1.83

MeV. The inclusion of alphas does not seem to

resolve the above mentioned difficulty. A consistent

treatment of the nuclear and plasma physics at high

temperatures requires further attention.

V. CONCLUSIONS

The nuclear Thomas-Fermi model with a
Wigner-Seitz approximation has-been shown to lend

itself naturally to the study of the clustering of nu-

cleons in hot, dense matter. Together with the finite

temperature Hartree-Fock approach, ' most useful

at low temperatures, it is the only model which

treats nuclear bulk, surface, curvature, and
(Wigner-Seitz} Coulomb effects fully selfconsistently.

Our study of the equation of state of dense, hot
rnatter shows that the thermodynamic variables, like

energy and pressure, are fairly insensitive to the ex-

act arrangement of the nucleons. The sizes of the
nuclear clusters (nuclei or bubbles}, on the other

hand, are found to exhibit an uncomfortable sensi-

tivity to relatively small effects, like the temperature
dependence of the Coulomb energy and the kinetic

energy associated with the motion of the clusters.
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