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A method is proposed for solving bound-state equations in the momentum space, which are homogeneous
Fredholm integral equations of the second kind. %e rewrite such equations in the form of equivalent inhomogeneous
Fredhold integral equations of the second kind with "weaker" kernels. Then the usual techniques for solving
inhomogeneous integral equations can be used in the present case, A recently proposed method for an iterative
Neumann series solution of inhomogeneous equations appears to be natural and very suitable for our purpose. The
method is illustrated numerically in the case of the two nucleon bound state with the Yukawa and the Malfliet-Tjon
potential and in the case of the s-wave three nucleon bound state in the Mitra-Amado model.

NUCLEAR STRUCTURE Bound state equations, equivalent inhomogeneous in-
tegrals equations, iterative solution, two-nucleon system with Yukawa-type po-
tential, three-riucleon system in the Mitra-Amado model, wave function calcu-

lated in the momentum space.

I. INTRODUCTION

Calculation of the bound-state wave function in
the coordinate space for a few-body system in-
volves solving a single or a set of coupled second
order differential equations. Numerical solution
of such equations is not a simple task especially
for potentials with a soft core. ' On the other hand,
in the momentum space after partial wave projec-
tion we have a single or a set of coupled homo-
geneous I ippmann-Schwinger-type integral equa-
tions with a smooth kernel2 and the numerical solu-
tion of such equations appears to be simpler for
certain problems of physical interest. The homo-
geneous integral equation has a Fredholm kernel'
and such an equation can be uniformly approxima-
ted by a matrix equation of finite rank, which can
be solved by standard techniques. In the case of
a realistic problem the dimension of the resulting
matrix equation could be large and an eigenfunction
problem involving a large matrix is a complicated
numerical task.

Here we propose a simple method for solving
the bound-state problem in the momentum space.
We rewrite the bound-state homogeneous Fred-
holm integral equation in the form of an equivalent
inhomogeneous Fredholm integral equation. ' The
equivalence between the homogeneous and the in-
homogeneous equations is discussed. 'The equiva-
lent inhomogeneous equation has a "weaker" ker-
nel and a recently proposed method" for the
iterative solution of the inhomogeneous equation
appears to be attractive for our purpose. 'The

method is illustrated numerically in the case of
the two- and three-nucleon systems using the
iterative Neumann series solution of the equiva-
lent inhomogeneous equation. The s-wave two-
nucleon problem we solve uses the Yukawa and the

Malfliet-Tjon potentials. "The s-wave spin-
doublet three-nucleon problem we solve uses the
s-wave separable interaction with the Yamaguchi
form factor. ' This model for the three nucleon
bound-state problem was first studied by Mitra'
and is commonly known as the Mitra-Amado mo-
del.

In Sec. II we describe the present method for
single-channel and multichannel problems. In
Sec. III we present numerical results for the two-
and three-nucleon system. Finally in Sec. IV we
give a brief discussion and concluding remarks.

2
P(D;&)= ,G.(o)fdv s*&(D,sN'(q-;&1 (2.1)

with G,(p)= (E —p') ' in units S= 2p, =1, where p, q
are momentum variables and p is the reduced
mass. (Here E is negative and ~E~ is the binding
energy of the system. ) Unless otherwise specified
the integration limits in Eq. (2.1) and in the rest
of the paper are from 0 to ~.

Now we use the techniques of Ref. 9 to rewrite
Eq. (2.1) in the form of an equivalent inhomogen-
eous integral equation. It is obvious and well
known that Eq. (2.1) does not determine the nor-
malization of the unknown wave function t/r(p;E).
We normalize g(p;E) such that

~(p)4(p;E) p'dp= 1,2
(2.2)

II. THE METHOD

A. Single channel problem

A single channel one variable partial-wave
homogeneous Lippmann-Schwinger-type equation
for the bound-state wave function P can be written
as
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where k is an arbitrary chosen point in the inter-
val (0,~). With the normalization given by Eq.
(2.2) the solution p(p;E) of Eq. (2.1) satisfies the
equivalent inhomogeneous equation (2.3).

We must note that Eq. (2.1)has a solution for cer
tain selected energies, namely, when E= -B, where
Bcorresponds to the binding energy of the system;
whereas Eq. (2.3), being an inhomogeneous equation,
has a unique solution for all energies unless the homo-
geneous version of Eq. (2.3) has a solution. An
interesting question to ask at this stage is that by
solving Eq. (2.3) how can we calculate the binding
energy B and the eigenfunction g(p;E) of the sys-
tem? By construction, all the solutions of Eq.
(2.3), which also satisfy Eq. (2.2), are solutions
of Eq. (2.1). So one should solve Eq. (2.3) for a
particular E and check whether this solution also
satisfies Eq. (2.2). If it does, then for this en-
ergy there is a bound state of the system and the
solution of Eq. (2.3}gives the exact eigenfunction.
Alternatively, if the energy eigenvalue for which
Eq. (2.1) has a solution is given, then for this en-
ergy the solution of Eq. (2.3) gives the correct
eigenfunction.

Equation (2.3), being an inhomogeneous Fred-
holm integral equation of the second kind, can be
solved by standard methods as the Fredholm al-
ternative is valid. From a glance at Eq. (2.3) we
realize that a recently proposed method. ""for
the iterative solution of such an equation is very
suitable for our purpose. In fact, the kernel of
Eq. (2.3) is very similar to the kernel of Eq. (1.2)
of Ref. 10. Hence as in Ref. 10 we use"'"

f (d(p) dp V (p, k)V (p, q)

f (u(p) dp V(p, k)V(p, k)
(2.4)

and expect that such a y will give a convergent
iterative solution of Eq. (2.3). Such a choice of y
satisfies y(k) = 1. Hence the kernel of Eq. (2.3}
will have a zero for q= k and is expected to be
small for other values of q. As in Refs. 10 and 11
we use simple analytic forms for ar(p), e.g. ,
(d(p) =p", where n is a small positive or negative
integer provided that the integrals in Eq. (2.4) re-
main finite for such a choice. Such a ~(p) sup-
presses or enhances parts of the integrals in Eq.
(2.4) and hence generates a wide class of y(q).
The only arbitrariness we now have is in the
choice of the point k and the function &u(p). As in

where y(p) is an arbitrary function to be defined
later. Using Eqs. (2.1) and (2.2) we have

('(D;&)=&.(e)(&(D &)~,f'&ss-'()'(D s)
2

-v(p, k)y(q)] p(q, E}&l,

(2.3)

Refs. 10 and 11 we shall see in our numerical
studies that this arbitrariness can be turned to
good advantage —we can vary k and &(p) in order
to obtain the best convergence of the Neumann
series of Eq. (2.3).

Q. Multichannel problems

(2.5}

where G (p )=f (p }(E p') '-, E is the energy
for channel & in fm ', and f, (p ) is some weight
function. Now we normalize g (p;E) such that,
for c(= o'.„ tj (p, ;E) satisfies

P+ a Pe ~& P~ dPa (2.6)

where, as before y, is an arbitrary function to
be defined later. Equations (2.5) and (2.6}yield

4(p. ;&)

= G.(P.) i
v. ..,(P. , k.,)

+ P fdgaWe [V s(P, rls) —F s(P, ks)

~ ys(qs)5s, -.«s(qa'&~)

(2.7)

where k, is an arbitrarily chosen point. With
the normalization (2.6) the solution p (p;E) of
Eq. (2.5) satisfies the equivalent inhomogeneous
equation (2.7).

The discussion after Eq. (2.3) of the last sub-
section is valid in the present case and without
reiterating the discussion we mention some of the
interesting points of the present case. The recipe
is to solve Eq. (2.7) for a particular energy and

verify if this solution also satisfies Eq. (2.6). If
it does, then this energy corresponds to the ener-
gy of a bound state of the system and the solution
of Eq. (2.7) gives the eigenfunction of the system.
In this case we choose y,(p, ) as in Refs. 10 and
11:

( )
Z. f~(p„)dp V, ,(p, k „)V, „(p,q „)
Q.f~(p. )dp. v. ..(p. , k.,)v. ..(p. , k.,)

(2.8)

As before, in Eq. (2.8) we take ~(p)=p", where n

'The method of the last subsection can be easily
extended to the case of multichannel problems.
In explicit notation the multichannel generalization
of Eq. (2.1) becomes'

p. (p. ; &) = ~'(p. )Efdqs qs'&. g(P. es)ls( s,s&), ,
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is a small integer and n and k will be chosenQf p
after some experimentation in order to have the
"best" convergence of the iterative Neumann
series solution of Eq. (2.7).

0.0

III. NUMERICAL CALCULATION

1+x
P '1-x (3.1)

In this section we test the method numerically
for the two commonly studied few-nucleon sys-
tems. First we study the case of the model s-wave
two-nucleon system interacting via the Yukawa
and the Malfliet-Tjon potentials. ' The parameters
for these potentials have appeared in Ref. 5 and
we do not quote them here. Next we study the in-
teresting case of the s -wave spin doublet three-
nucleon system interacting via the pairwise s -wave
potential-commonly known as the Mitra-Amado
model. ' This is the homogeneous version of the
Amado model' we studied previously. ' '" The po-
tential parameters for this case have appeared in
Ref. 11, which we use in the present work.

%'e map the momentum space integrals in

p from 0 to to integrals in x, on the range —,1
to +1, by the transformation

—I. O

—l. 5

-I.8
2 p(frn ') 3

E-p ) &™(p)
E = -0, 35003 MeV

and approximate the x integral from -1 to+1 by
Gauss-I egendre quadrature points.

First we present numerical results for the two
nucleon system. In this case we took c of Eq.
(3.1) to be 5 fm ' and we took 32 points to approxi-
mate the x integral between -1 to+1. We solve
Eq. (2.3) for various E by iteration and find after
some experimentation that the best convergence
was obtained for &u(p)= p' in both the cases with
(a) k = 0.7 fm ' in the case of the Yukawa poten-
tial; and with (b) k= 0.6 fm ' in the case of the
Malfliet-Tjon potential, for energies around the
bound-state energy of the system. If the solution
of Eq. (2.3) at a particular energy satisfies Eq.
(2.2), then this energy corresponds to the bound

state energy and the solution of Eq. (2.3) gives the
energy eigenfunction. The energy eigenvalue so
obtained is given by E= -2.23992 MeV for the Yuk-
awa potential and is given by E = -0.35003 MeV
for the Malfliet-'Tjon potential. The iterative so-
lution of Eq. (2.3) in these cases is shown graph-
ically in Figs. 1(a) and 1(b). The wave functions
after a small number of iterations (specially N= 0)
are not very good in these cases, but the final
convergence is very good. In this connection we
note that although the final converged result of
Fig. 1 satisfies the normalization condition given
by Eq. (2.2), the wave functions of Fig. 1 are not
normalized in a particular way for small number
of iterations. In order to do more justice to our

(bj

2 p (f~-i) 3

FIG. 1. The wave function g (p; E) in the momentum

space for various iterations N of Eq. (2.3) with (a) the
Yakawa and (b) the Malfliet-Tjon potential. The quanti-
ties plotted are (E —p2)g (p; E). Note that (E —p )

~(p;E)=V(p, a)

iterative solutions we prefer to normalize them
such that for every iteration N the normalized
wave function, g satisfies

(3.2)

It should be noted that g(p;E) after such normali-
zation no longer satisfies Eq. (2.3) but satisfies
only Eq. (2.1). The iterative solutions for the
wave functions after such normalization are shown
in Tables I and II for the Yukawa and the Malf�lie-
tT�jpotentials, respectively.

The normalization condition given by Eq. (2.2)
is satisfied only with the converged wave func-
tion. The integrals in Eq. (2.2) calculated numer-
ically using the solution of Eq. (2.3) after eight
iterations, for the Yukawa and Malfiet-Tjon po-
tentials, were 1.000 00 and 1.00010, respectively.
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TABLE I. The wave function P+~(p; E}for the Yukawa potential for various iterations N of
Eq. (2.3) and normalized according to Eq. (3.2). The quantities in the last column labeled ( )
have been calculated, as explained in the text,'

by evaluating the right hand side of Eq. (2.1)
directly using the converged solution of Eq. (2.3).

5p 6j ~ ~ ~

0.00
0.05
0.10
0.20
0.40
0.60
0.80
1.00
2.00
3.00

1
0.955 05
0.841 23
0.567 39
0.238 57
0.11257
0.057 71
0.03102
0.002 76
0.000 57

1
0.953 64
0.836 35
0.554 87
0.221 49
0.100 03
0.05130
0.028 95
0.003 52
0.000 83

1
0.953 91
0.837 29
0.557 31
0.224 98
0.102 89
0.053 15
0.030 02
0.003 69
0.000 89

1
0.953 97
0.837 49
0.555 83
0.225 72
0.10347
0.053 52
0,030 22
0.003 71
0.000 90

1
0.953 98
0.837 51
0.557 89
0.225 80
0.103 54
0.053 56
0.030 24
0.003 71
0.000 90

1
0.953 98
0.837 52
0.557 89
0.225 81
0.103 54
0.053 56
0.030 24
0.003 71
0.000 90

1
0.953 98
0.837 52
0.557 89
0.225 81
0.10354
0.053 56
0.030 24
0.003 71
0.000 90

'The agreement between the numerical value of the
integral in Eq. (2.2) and unity gives a, good measure
of the precision of the method. 'This was easily
verified by substituting the converged solution of
Eq. (2.3) in the integral in Eq. (2.1), by evaluating
this integral numerically and by comparing the re-
sult with the solution of Eq. (2.3). In Tables I and

II, in the last column we show $(P;E) so calculated
by using Eq. (2.1) and normalized according to
(3.2), and as expected it agrees very well with
the converged result of Eq. (2.3). When the solu-
tion g(p;E) of Eq. (2.3}satisfied Eq. (2.2) accu-
rately it also satisfied Eq. (2.1) accurately. It
was verified that the percentage of numerical er-
ror in the solution g(p;E) of Eq. (2.3) is less than
the percentage of error in the numerical evalua-
tion of the integral in Eq. (2.2) using the solution
of Eq. (2.3).

In the case of the s-wave spin doublet three nu-
cleon Mitra-Amado model' there are two channels
defined by n = 0, 1." In order to be consistent
with the definitions given in Ref. 11 we had to re-
define here the function G (p } that appears in

Sec. II B. In Eqs. (2.5)-(2.7) we define

(3.3)

where F is defined by Eq. (3.15) of Ref. 11,.
other parameters and variables are defined in
Ref. 11, except that here we use the variable V
instead of the variable Z of Ref. 11. In this case
we take , =0, where the channels 0 and 1 have
the same meaning as in Ref. 11. In Eq. (3.1) we
use c = 0.1 fm ' and 32 points were used to repre-
sent the integral in x as a discrete sum. We solve
(2.7) by iteration and the best convergence was
obtained for ~(p) =p' and k, = 0.7 fm ' in Eqs.
(2.6)-(2.8). The energy eigenvalue in this case
was given by E= -11.0047 MeV and at this energy
the solution of Eq. (2.7), after eight iterations,
was used to calculate the integral in Eq. (2.6),
which yielded the value 1.000000. As before, the
close agreement between this value and unity gives
a good idea of the precision of the method. In
Table III we show the iterative solution P,(p;E}of
Eq. (2.7), normalized as in Eq. (3.2), for E

TABLE II. Same as in Table I for the Malfliet-Tjon potential.

. 0 4s 5)

0.00
0.05
0.10
0.20
0.40
0.60
0.80
1.00
2.00
3.00

1
0.770 02
0.45423
0.168 98
0.044 25
0.01720
0.007 67
0.003 47

-0.000 51
-0.000 39

1
0.770 24
0.454 75
0.16977
0.045 14
0.01807
0.008 49
0.004 23

-0.000 11
—0.000 19

1
0.770 29
0.454 87
0.16995
0.045 35
0.01829
0.008 71
p.pp4 44

-0.000 01
-0.000 16

1
0.770 29
0.454 88
0.169 97
0.045 37
0.01833
0.008 75
0.004 48

-0.000 01
—0.000 17

1
0.770 29
0.454 88
0.16997
0.045 37
0.01832
0.008 74
0.00447

-0.000 01
-0.000 17

1
0.770 29
0.454 88
0.16997
0.045 37
0.018 32
0.008 74
0.00447

—0.000 01
—0.000 17
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TABLE III. The wave function $0 (p; E) for the s-wave Mitra-Amado model for
various iterations N of Eq. (2.7) and normalized according to Eq. (3.2). The quan-
tities in the last column labeled (*), as explained in the text have been calculated
by evaluating the right hand side of Kq. (2.5) directly using the converged solution
of Eq. (2.7).

7, 8. ..

0.00
0.05
0.10
0.20
0.40
0.60
0.80
1.00
2.00
3.00
4.00

1
Q.99170
0.967 55
0.880 71
0.638 05
0.417 38
0.26121
0.16142
0.017 64

' 0.002 99
0.000 71

1
0.990 74
0.963 87
0.868 39
0.61195
0.393 13
0.246 11
0.15444
0.01944
0.003 75
0.000 98

1
0.990 46
0,962 81
0.864 90
o.6o488
0.387 19
0.243 25
0.154 07
0.020 72
0.00421
O.OO114

1
0.990 46
0.962 80
0.864 89
0.605 24
0.388 30
0.244 94
0.155 99
0.021 64
0.004 51
0.001 24

1
0.990 47
0.962 83
0.865 00
0.605 51
0.388 60
0.245 22
Q.15621
0.021 70
0.004 52
0.001 25

1
0.990 47
0.962 83
0.865 01
0.605 52
0.388 62
0.245 22
0.156 21
0.021 70
Q.QQ4 52
0.001 25

1
0.990 47
0.962 83
0.865 01
0.605 52
0.388 62
0.245 22
0.156 21
0.021 70
0.004 52
Q.Q01 25

= -11.0047 MeV. In the last column of Table III
we exhibit g, (p;E) calculated by using Eq. (2.5),
which uses in its integrand the converged itera-
tive solution of g, (p;E) and y, (p;E). The entries
in this last column are also normalized as in
Eq. (3.2).

IV. DISCUSSION

Here we propose a method for solving the par-
tial wave momentum space Schrodinger equation
for the bound state of few nucleon systems. Such
equations have the form of homogeneous Fredholm
integral equations and are written in the form of
equivalent inhomogeneous Fredholm integral equa-
tions which are solved by iteration. 'The present
method is expected to be simple and accurate nu-
merically, This is because the only numerical
work needed in this method is the evaluation of a
small number of integrals and there is no loss of
accuracy as in complicated numerical processes

such as diagonalization and/or calculation of the
determinant of large matrices as required by
other methods for solving such equations.

Even with the ideal choice of y and k the equiva-
lent inhomogeneous equation may not have a ra-
pidly convergent iterative Neumann series solution
if the kernel of Eq. (2.3) is not weak. But in such
cases following Refs. 4 and 10 we can introduce an
auxiliary equation with a reduced kernel, which
has a rapidly convergent iterative solution. Then
the solution of the equivalent inhomogeneous equa-
tion can be expressed in terms of some simple
integrals involving the solution of the auxiliary
equation.

The final result —Tables I-III and Fig. 1—dem-
onstrate that the present method is a simple, ac-
curate, and efficient alternative for solving the
bound state problem for the few nucleon system.
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