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The fourth-order noniterative diagrams involving nucleon-isobar intermediate states and including m exchange are
calculated in momentum space in the framework of noncovariant perturbation theory. A potential model is

presented which includes, apart from these diagrams, suitable one-boson-exchange terms and iterative isobar
diagrams involving Nd - and dd -intermediate states, considering m. and p exchange for the transition potentials.

Finally, noniterative two-m. -exchange diagrams involving two-nucleon intermediate states are also taken into
account. Such a model is able to describe NN scattering phase shifts satisfactorily. The role of the different parts of
the potential model in NN scattering is studied.

NUCLEAR STRUCTURE Nucleon-nucleon interaction, noniterative ~ exchange,
intermediate Ng states, crossed-box diagrams, NN phase shifts.

I. INTRODUCTION

The simplest model of nuclear matter is a col-
lection of point nucleons interacting through a
realistic two-body potential that fits the two-nucle-
on data, i.e., the phase shifts for nucleon-nucleon
(NN) scattering and the deuteron. In fact, starting
from the phenomenological Heid-soft-core (RSC)
potential' and in the framework of the Brueckner-
Bethe theory, ' a reasonable description of the
empirical nuclear matter properties (binding
energy and density) could be obtained. ' A recent
reexamination of three-body and higher-order
terms' showed, however, that the predicted bind-
ing energy and saturation density are definitely
too high. This fact is also supported by new vari-
ational calculations in the Fermi-hypernetted-
chain (FHNC) approximation. '

On the other hand, the RSC potential underbinds
light nuclei, e.g. , the triton' and "O,' unless one
assumes large contributions arising from three-
body forces in finite nuclei, which seems to be
not very realistic. ' Therefore, the picture of
nuclear matter being solely a collection of nu-
cleons is obviously too simple; the resulting bind-
ing energy grows too strongl. y with the density.

Furthermore, there are meson-theoretical ar-
guments as well as empirical evidence' that the
tensor force in the RSC potential is too strong.
This is very important since the calculated bind-
ing energy of nuclear systems is very sensi-
tive to the amount of tensor force present in the
NN interaction, namely, the binding energy in-

creases with decreasing tensor force. This is
clear from the property of the tensor force con-
tributing to the binding energy mainly via second-
order contributions, which are suppressed in the
medium because of Pauli and dispersion effects.
This argument also explains why this effect is
strongly density dependent.

Thus, realistic NN potentials with reasonably
small tensor force might ultimately be able to
describe the binding energies of light nuclei in a
satisfactory way. 'They will, however, grossly
overbind nuclear matter. Obviously, in order to
get reasonable results, consistent for all densi-
ties, additional (attractive) tensor-type contribu-
tions of relatively short range are needed, which
are suppressed in the medium for higher densi-
ties only.

In a meson-theoretic framework, such contri-
butions arise naturally from an explicit descrip-
tion of the 2m exchange, which mainly supplies
the intermediate-range attraction. It can be split
up into the diagrams shown in Fig. 1. Here N
denotes an intermediate-nucleon state, whereas
4 represents an intermediate 4 isobar. The last
two terms in this figure show typical rescattering
contributions.

In one-boson-exchange (OBE) models, "the inter-
mediate-range attraction is described phenomeno-
logically by the exchange of a more or less ficti-
tious scalar isoscalar & meson. This contribution
effectively replaces the (J =O', I=a) part of the
whole 2m exchange (Fig. I) minus the twice-itera-
ted one-pion-exchange (OPE) [which is already in-
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FIG. 1. 27t-exchange diagrams.

eluded in the scattering amplitude by iterating
the one-pion-exchange potential (OPEP)]. On the
other hand, dispersion-theoretic methods obtain
this contribution by using empirical vN (and vm)

data and performing an analytic continuation. "
However, both methods treat this contribution

as part of the NN potential (of essentially scalar
type), i.e., as a lowest-order contribution. Thus,
the modifications of the diagrams in Fig. 1 in the
medium, due to Pauli and dispersion effects,
which arise in a nuclear many-body theory, are
suppressed, apart from the nucleon box diagram
which is treated as a second iteration of the OPEP.
These many-body effects should be important,
especially in dense systems like nuclear matter
or, even more, in neutron stars.

The first study of such modifications were made
for the isobar box diagrams by treating them as
second iteration of so-called transition potentials
V(NN-Nb) and V(NN- hh). In order to obtain
such potentials one starts from a suitably defined
Lagrangian-density coupling for the N4n vertex,
uses the static limit, and neglects the 6-N mass
difference. " The resulting transition potentials
are very similar to the usual OPEP, i.e., they
contain strong tensor forces. Therefore, this
procedure replaces part of the scalar potential
(provided, e.g. , by o exchange) by second itera-
tions of tensor force contributions, which are
shorter ranged than OPE tensor force due to the
higher mass of the 6 compa. red to the nucleon.
As discussed above, this just seems to be needed
in order to get consistent results for light and
heavy nuclei.

Recently, however, it was pointed out by the
Stony Brook group'~ that in the derivation of a suit-
able transition potential, the 4-N mass difference
(~300 MeV) together with relativistic effects can-
not be neglected, since they make the isobar box
diagrams shorter ranged and reduce them by a

factor of 2-3. In other words, usual transition
potentials grossly overestimate the contribution of
the isobar box diagrams to the intermediate-range
attraction of the NN interaction. Therefore, a
careful relativistic treatment is needed in order to
describe the isobar contribution in a realistic way.
This suggests that one does the whole calculation
in momentum space, which makes it possible to
keep the full structure of the N& vertex.

Moreover, one should realize that corresponding
modifications occur also in the crossed diagrams
(second row in Fig. 1), which cannot be built up by
a second iteration of some transition potential.
The treatment of such modifications requires a
much more explicit dynamical scheme, which
starts from a field-theoretical Hamiltonian con-
taining as its basic ingredient not a potential, but
NN and Nn. vertices (for details see Ref. 9).

We have recently studied the isobar box dia-
grams within. this extended scheme and in momen-
tum space, including w and p exchange at the N~
vertices, in NN scattering" and in nuclear mat-
ter." We confirmed the results found by the au-
thors of Ref. 14 concerning the overestimation of
isobar contributions. In our case, the isobar box
diagrams provide roughly 30% of the intermediate-
range attraction. Without modifications, such con-
tributions would give about 36 MeV binding at em-
pirical nuclear matter density (k~ =1.4 fm ').
(The total intermediate-range attraction of the NN

potential yields about 100 MeV binding. ) Pauli and

dispersive effects, however, reduce the contribu-
tion from isobar box diagrams from 36 to 24 MeV,
i.e., by as much as =30%.

In a next step"" we have performed correspond-
ing calculations for the noniterative diagrams in-
volving NN-intermediate states and including m ex-
change (represented by the first term in the second
row of Fig. 1). It turned. out that those diagrams
contribute roughly 10% to the attraction in NN scat-
tering. Therefore, n.eglecting modifications in the
medium, they would contribute roughly 10 MeV to
the binding at empirical nuclear matter density.
In this case, the quenching of the diagrams in the
medium is, howevei, relatively small (due to their
short range), but cannot be neglected: many-body
effects reduce them by only 20% (compared to 30%
in the case of isobar box diagrams) at kz-1.4 fm '.
Nevertheless, the effect grows strongly with the
density.

The main aim of the present paper is to evaluate
the noniterative diagrams involving one intermedi-
ate b.. Although we expect the many-body modifi-
cations to be of the order of only 10% (they should
be of even shorter range than those with NN-inter-
mediate states), these diagrams are important in
order to generate the essentially isoscalar behav-
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FIG. 3. Selected stretched-box diagrams displaying
the notation as it is used in the text.

FIG. 2. Time-ordered diagrams with positive-energy
Nb, intermediate states.

II. THE SCHEME

In this section, we shortly sketch our dynamical
scheme. Details may be found in Refs. 9 and 19.
%e start from a Hamiltonian

K= Hp+ 8',
with

m =m«" &+@«&
(2.2)

where

(N)

ior of the total isobar contribution, as pointed out
in Ref.' 14.

Section II contains the basic features of our
scheme. In Sec. III, we evaluate the diagrams in
question. The results are presented and discussed
in Sec. IV. A short summary is given in Sec. V.

for nucleons, isobars, and bosons, respectively;
E'"', E'~', and e„are the corresponding relativ-
istic kinetic energies. &, &', and 0 denote all
quantum numbers which specify the state complete-
ly. W~~', ~ represents the nucleon-nucleon-meson
vertices, whereas S'„',

~ and W'",
~ describe the

nucleon-isobar -meson vertices.
Note that we neglect antiparticles from the be-

ginning. This is justified since the N& vertex is
considerably suppressed. compared to the && ver-
tex because of chiral invariance and pair suppres-
sion and also due to quark model arguments.

We treat Ni in old-fashioned, noncovariant pertur-
bation theory. Thi.s seems to be an adequate pro-
cedure because old-fashioned perturbation theory
corresponds to standard nonrelativistic many-body
theory and will, therefore, allow a direct com-
parison with the usual procedure in a many-body
theory. Then the nucleon-nucleon scattering am-
plitude T can be represented by a series expansion
defined by all diagrams containing two ingoing and
two outgoing nucleon lines. Since we use physical
masses, we have to leave out self-energy dia-
grams in order to avoid double counting. This se-
ries can be partially summed by solving an inte-
gral equation of Lippmann- Schwinger type,

kp ~ ~at & CatnCott

t = ~ (d&b&5» (2.3)

&(s) = tr„,(z)+ &„,(z), &(&) ~

1 (2.4)

S',~c,a b~+ S',~c,a„b +H.c. .(h) (N) t t
CQ 'P

Here, a~, c~,, and b~~ are the creation operators

Here, s is the (relativistic) starting energy for
free two-body scattering. The energy-dependent
.quasipotenjtial V,«(z) contains the (infinite) sum of
all diagrams with at least one meson or one ~ iso-
bar present in each intermediate state.

Considering only diagrams up to fourth order in
W, V„f(z) can be represented as

gr(N)

gr( ) + gr gr gf gf

gr(N ) 1 gr(N ) 1 gr(N )

Z kp
(N ) Z -hp(N)

Z -hp -t(N)
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The first term gives the OBE part. The second term describes the fourth-order diagrams involving &&,
AN, N~, and ~~ intermediate states, shown in Fig. 2 for ~N intermediate states only. The last term in
Eq. (2.5) eliminates the iterative diagrams with NN intermediate states, which are already included by
iterating the OBE part in Eq. (2.4).

III. NONITERATIVE ISOBAR DIAGRAMS

The first four (iterative) isobar diagrams of Fig. 2 were already evaluated in Hef. 15. Here, we present
the analogous calculations for the noniterative, i.e., stretched-box (5 and 6) and crossed-box (7-12) dia-
grams. The diagrams with NN intermediate states are treated in Ref. 17.

We start with the usual interaction Lagrangian

L, ,= M4g g,if''y'PQ,

I„~,= ~4m N ' /TED~&„$+ H. C. ,
(3.1)

where g, is the pion-nucleon coupling constant, f„~, is the coupling constant at the NL vertex, and m is
the pion mass. Here g denotes the nucleon field operator, Q denotes the pion field, $ denotes the field
operator of the b isobar, and r, T are the isospin matrices.

The Lagrangians (3.1) suggest the following form for the corresponding vertex functions:

and

W» [ ( )3]yy» 6(q q k)u (q )iy u (q ) (3.2)

(3.3)

where &u» = (k'+ m, »)'~2 and k„=—(0, —k). The Dirac spinors u„are normalized to u„u„= 1 and u" is the
Rarita-Schwinger spinor describing the isobar. W'~~" is obtained from W', ,"by changing the overall
sign and, in addition, k to —k in the 6 function.

A. Stretched-box diagrams

One of the two noniterative box (stretched-box) diagrams is shown for convenience in Fig. 3(a), including
notation. Using Eqs. (3.2) and (3.3) together with (2.5), it is written in a helicity-state basis,

d'uu», (- q')iy'u, ( k)u(-»k) i-y'u» ( —q)F»g{q' —k)']&»,[{q—k)'Jx~
M, A2 c-0 e i-k

u~, (q')i(q' —k),u»"„(k)u»Qk)i(k —q)„u„(q)F„~,[(q' —k) ]E„~g(q—k) ]

(z -Eq -E»- ~g-»)(z -+~ -+.—~~-» ~»-»)(z @»»»-»
(3.4)

where E, = (q'+ m')' ', E,*= (q + m~')'~', m is the mass of the nucleon (= 938.9 MeV)„m~ is the mass of
the & isobar (= 1236 MeV), and z is the starting energy. The summation goes over the helicities of the
particles in the intermediate states, i.e. , h, = +&, &, .and h, = +&, since the ~ isobar has spin &. The form
factors I"», and I"~~, are parametrized as

(3.5)

where A, is a parameter, the so-called cutoff mass. The spinors are normalized such that utu = 1.
The spin sum can be evaluated with the help of positive-energy nuclear projection operators

~(~)g) y0E~ —y k+ m
(3.6)

for the nucleon and
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p (k) g(Q)(k), , „2k"k" 1 y'k" —y"0"
(3.7)

for the ~ isobar. This gives

and

g u~, (- q')iy'u„(- k)u„(-k)iy'u~ (-q) = —u~, (- q')y'A'~'(- k)y'u~ (-q)"2 '2 '2 2
2

u, (-q')(y'E, + y k —m)u, (-q)
2E 2

(s.s)

g u~, (q')i(q' —k) u~~~(k)u„"~(k)i(k —q)„u~ (q)
I 1

= —(q' —k)„(k —q)„u~, (q')P;"(k)u~ (q)
l

, u„,(q')(y'E+ —y k+ m~)

Consequently,

x (q' —k) ~ (q —k)+ —', y ~ (q' —k)y ~ (q —k)
le

2 k ~ (q' —k)k . (q —k) 1 k ~ (q —k)y ~ (q' —k}—k ~ (q' —k )y ~ (q —k)
q ~ (s 9)

Z u„, (- q')iy u„(-k)u„(- k)iy u~ (- q)u~, (q')i(q' —k} u„'~ (k)u~ ~(k)i(k - q) „u„(q}= Z, + Z, + Z, + Z, ,
. h+h 2

"2 "2 . 2 1 ] 1 1
l~ 2

(s.io)
where

Z, = „(q' —k) ~ (q —k)u„, (- q')(y E~+ y k —m)u~ (- q)u~, (q')(y E~~ —y ~ k+ m~)u~ (q),
k k 2

Z, =
S „u„.,(-q )(y'E, + y k —m)u~ (- q) u~, ( q')(y'E, —y k+ m~)y ~ (q' —k)y ~ (q -k)u„(q),

1

Z, = —— — u (-q')(yoE + y k —m)u (-q)u (q')(y'E*, -y k+m~)u~ (q),
k k

"2

(s.at)

Z,=,u~, (- q') (y'E, + y k- m)u~ (- q)
2

x u„,(q')(y'E*„y ~ k+ m~—)[ k ~ (q —k)T' (q' —k) —k ~ (q' —k)y ~ (q —k)]u~ (q) .

In the following, we will describe the evaluation of ~, in some detail. Since, we want to do the integra-
tion over k using polar coordinates, we must get rid of the y 'k term. Therefore, we expand k in terms
of q, q', and q' xq,

q xq
k =aq+ bq'+ c

lq'xq~ '

with

(q q)'-q'q"
Thus, y k can be replaced

(q' q)'-q'q"
q' xqc= k.
q' xq

(s.&2)

(s.is)

~p
q Xq

y 'k = ay ' q+ by ' q'+cy '
I q' x ql

Using the Dirac equation, Z~ becomes
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~I

Z, = ~ (q'-k) '(q —k)u», (-q') Yo(E»-aE, bE,,)-m(i-a-b)+cz' u„(-q)

xu~. (q') p (E»»' aE—, bE,, )+m~+m(a+b)-cz' q u„(q).

If we choose q to be in the z axis and q' to be in the xz plane,

(3.16)

Y ~ ~ 7
Iq'xql

and terms linear in c disappear after angle integration. Therefore,

Z~ = + (q' —k) (q —k){-m(1-a —b)[m~+m( a+b)][u» (-q')u» (-q)uz (q')u» (q}]

+[m+»m(a+b)](E» —aE, —bE;)[u& (-q') X' u»(-q)u» (q')u» (q)j

-m(1-a —b)(E» -aE, —bE,, )[u» (-q') u» (-q)u» (q') x'u» (q)]

+(E -aE, -bE, )(E»»' aE, bE&)[u» (-q')1"u~ (-q)u~ (q')'Y u» (q)]

c'[u-»(-q') X'u~, (-q)u» (q') X'u~ (q)jj. (3.16)

In order to symmetrize this expression, we do the corresponding calculations for the diagram shown in
Pig. 3(b), which should give the same result. We get

Z~= ~(q'-k) '(q —k){-m(1-a —b)[m»+m(a+b)][u~ (-q')u» (-q)u» (q')u~ (q)]

-m(1-a-b)(Ef -aE, -bE, ,)[u„;(-q') r'u»(-q)u~ (q')u» (q)]

[+m+ (ma b+)](E»aE, - bE,, )[u» (-q')u» (-q) u» (q') You», (q')]

~ (E, aE, bE, )(E„' aE, bE,,)[u,,(-q') X'u„,(-q) u, ;(q') ~'», (q)]

c'[u~-( q') r'u-(»-q) u„(q') X'u~ (q)]). (3.17)

Symmetrization of Eqs. (3.16) and (3.1V) then finally gives

Z — (q k) ' (q k}[d&«&A&+ (d&«2+d»«&)A&+ds«3AS c AJ (3.18)

where

d =m(1-a —b), d2--(E»-aE, —bE&), (3.18)

«, =-[m~+m(a+b}], «, =-(Ef aE, -bE;) -. (s.20)

Furthermore,
I

A, =u~ (-q')u (-q)u~;(q')u» (q),

A, = &[u» (-q') 7'u~, (-q) u(q»') (uq)+ (u-»q') u», (-q) u~ (q') x'u» (q)],

A, =u„(-q') r' (u-»q) u» (q') r'u» (q), (s.si)

A4=u„( q') r'u-(-»q)u»;(q') z'u», (q).

Correspondingly, one obtains for Z2

», s [d~y~A~+ (d~y»+d»y~)A»+dmy2A3+c y3A4+2c'y4A', ],4E (3.22)

where



NONITERATIVE ISOBAR DIAGRAMS AND THEIR EFFECT IN. . . 1165

and

y, = —(m~(aq'+bq' —b')+ (1-a —b)[(E,,E,+m') m~+m(E, ,+E,) Ef]
+m[aq'-bq' -2aq' ~ (q-k)+2bq' ~ k- (a+b)k2]j,

y2= —
JEST (aq +bq'2 —b ) —(1 —a —b)[(E,,E,+m~) E~~+mm~(E, . +E,)]
+E,[2aq' (q —k}+bq'~ —(1 -a) km] -E,,[aqm+ 2bk (q' —k) - (1 —b) k~])

ys=E~¹(E,,+E,)+2mm~ E.—E +mz -2q~ .k+k~,

y, =(m, +m)(E, , E,),

(3.23)

= 2[u, (-q' ) y'u& (-q) u„(q') y'y'», (q)+u, ;(-q') y'y'u&, (-q)u~, (q')y'u, ,(q)] .
Obviously,

3 k

and, finally,

(s.24)

(s.25)

2, = ¹[d,z,A, +(d,z, +d, z,)A, +d, z,A, +c'z, A,'+2c'z, A. ',],' 3~~ 4E~E~

where

(3.26)

z, =([k (q-k)+bk (q'. -q)](E,*E,, +mm~)-2aq' qk (q-k)
+ [k ~ (q'-k) -ak (q' -q}](E~¹E,-mm~) -krak (q'- q)

—[ak (q-k)+bk (q'-k)] (E,, E+ mm)+aq mk (q'-k) —bq' k (q-k)),
z, =(-[k (q -k)+bk (q' —q)](Efm+E, ,m¹)+[K (q' —k)-ak (q'-q)j(E, m~-Efm)

+m(E, , +E )[ak (q-k)+bk (q'-k)]],
z, =$m k (q'-q)-mk (q —k)-mk' (q'-k)),
z, =fE,k' (q'-k)-E, ,k' (q-k) —E,k (q -q)}.

The difficult y'y' term A4 can be replaced by using

(3.2V)

with

=y y a'y q''y -q'-b'(y q'y q+y qy q)-.c y qy q, . (s.23)1, cose
q" sin'g ' q'q sin'g ' q'sin g

where & is the angle between q and q . Thus we obtain, using (3.28) and the Dirac equation,

A~=m (a'+2b'+c')A, -2m[E, ,a'+(E, ,+E,)b'+E,c']A, +(E Pa'+2E, ,E,b'+E, 2c')A~+A»,

where

A, =u~;(-q')yu, (-q)u~ (q') yu~ (q).

Similarly

A&= -m[a'E, ,+ b'(E& -E,) —c'E, ]A,+ [m'(a' -c'}+(a'EP c'E,')]A, -
+ m[-a'E&+ b'(E& -E,)+c'E,]A,+A, ,

where

(s.29)

(s.so)

(s.sl)

(3.32}

As=~ [&& (-q}yu, ( q)~~ (q')-yy'u~ (q)+u~. (-q')yy'u„(-q)u, (q )yu (q)]. (3.33)

The second noniterative box diagram in Fig. 2 gives essentially the same result as well as the correspond-
ing diagrams with the isobar on the right hand side. Denoting the total contribution of these four diagrams
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by M', we finally get

"d'k(Z$+Z2+Z. +Z4)F„g,[(q -k)']Fz~, [(q -k)']FN~. [(q'-k)']FNL. [(q -&)'j
X b

4 4(d &(d i &D
(3.34)

with

1 . 1 1
+D' D' D' '

1 2

Dx=(z -E. -EI -";~)«-E~-Ee-"e~-"e~)(z
D' = (z —E ,—E —&u )(z —E ,—E —~ , - &u )(z —E"—E —&u . ) .

(3.35)

B. Crossed-box diagrams

The contribution of diagram 7 in Fig. 2 [for convenience redrawn in Fig. 4(a)] is given by

(q'A,'A,'~M;(z)
~

qA, A, )

(4w) fNg

d ku~ -q' sy'uh, k-q-q' uh, k-q -q' iy'u~ -q I"», q' -k ' », q -k '
hl~ h2 q* q'-k'

u; (q')i(q' -k), ups(k) u „"g(k)i(k -q)„ug, (q)F„.[(q' -k)']F„.[(q -k)']
(z —E, -Ea —~g-a)(z —EI-q-e- I* —"q~-a- ~a~)(z —Ee -Ea -"e-a)

The form factors F», and F„~, are parametrized in the same way as before [see Eq. (3.5)j.
The spin sum involving an intermediate nucleon is now given by

gu~, (-q')iy'u„(k -q —q')u„(k —q -q')iy'u~ (-q)
h2

= -u ~ (-q')y'A (k —q —q')y'u~ (-q)

(3.36)

u~. (-q')[y E, , z+ y ~ (k -q -q')-m]u„(-q)
)we mq~

u~, (-q')[y'(E. ..-(1-a)E,—(1-b)E&)+ (1-a-b)m+ cy'juz (-q), (3.37)
h-e-e' 2

h-q-q q q A2

where use has been made of Eq. (3.14) and the Dirac equation. Comparison with Eq. (3.15) shows that Eq.
(3.37) differs from the corresponding spin sum occurring in the stretched-box diagrams essentially by an
overall sign and in the y factor. Since the spin sum involving the & isobar is the same as before, we ob-
tain

(q A,A;~M;( )~qA, A, )= ), g, ' "", (2--'. . .)
t

d'b(Zi+ Z2+ Zs+ Z4)F~~. [(q' —k)']F~N. [(q —k)']F~~.[(q' -k)']F~~.[(q —k)']
4~ -a~a-hDi

(3.38)
'

where

(3.39)Ea ~a -a)(z -Ea-a-e —
a ~a* ~a~)(z -Ee -Ea -~e-a)

and the Z,' can be obtained from the Z,. [Eqs. (3.18), (3.22), (3.25), and (3.26)] by (i) changing the overall
sign, (ii) replacing E~ by E~, &, (iii) replacing d, [Eq. (3.19)] by

d, =E. . ., -(1-a)E, -(1-b)E,, (3.40)

Again, the expressions have been symmetrized by using the fact that Fig. 4(b) should give a result identi-
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cal to Fig. 4(a).
The other five crossed-box diagrams of Fig. 2 give the same result apart from the energy denomiriators.

In the order of Fig. 2, D; in Eq. (3.38) has to be replaced by

D4 (~ E!! !!' ~q'-a)(~ E! E!-q q' +-0-l! ~!!'-!)(~ E!! E!-0-I' +!!'-!!)!
D' = (z —E —E ' —+ )(z E ——E —u& —e , )(z —E*—E —&u )

8=(& -E~ -Ea-"~~)(' -Ee -E.-",-a-~"-a)(& -Ea-.-~ -E, -"~*)~

(3.41)

Thus the total sum of the crossed-box diagrams of Fig. 2 plus those in which the isobar appears on the
right hand side (giving an additional factor of 2) can be written as

(q'A,'A,'lM'(z)lqA, A, )=2 ), g,' ', (2- ', 7, v, )-

&'&(~(+&a+ ~3+2'4)&~~.Hq' -k)'W~~. f(q -k)'jF~~.l(q' - k)'~ &~~.l(q -»'~
4~,,~co, ~D'

(3.42)

where

1 1 (3.43)

For the actual numerical calculations, we need the partial wave amplitudes

+1

(A,'AalM' (q', ql~)lA, A,)= v d(cos8)d„~. (8)(q'A', A,'lM'(z)lqA„A, ) (3.44)

(3.45)
+1

(AlAllM" (e' el')IA A.&=2m d(cos8)d „,(8)(q'A', A,'lM (g)lq A, A),

where d~~~ (8) are the usual reduced rotation matrices, A =A, -A, and A'=A,'-A,'. The expressions (3.44)
and (3.45) are evaluated numerically.

q' ~ ~

q -q

q'- k

ir~ k-q'-q

q —k

q+q-k

r

0'

(0) (b)

FIG. 4. Selected crossed-box diagrams displaying
the notation as it is used in the text.

IV. RESULTS AND DISCUSSIONS

A. Noniterative isobar diagrams

In this section, we will first present numerical
results of stretched-box and crossed-box &g dia-
grams, evaluated analytically in the last chapter,

I

and compare them with the results of the cor-
responding iterative diagrams, described already
in Ref. 15. The evaluation of the noniterative
diagrams is much more involved since meson
energies occur in all propagators. This makes
the use of suitable transition potentials as in Ref.
15 impossible. Therefore it is not surprising
that people have looked for reasonable approxima-
tions, in which the exact evaluation of nonitera-
tive diagrams can be avoided. The existence of
such approximations is suggested by the special
isospin structure of box and crossed-box dia-
grams. " Namely, the sum of all time orderings
of Fig. 2 is given by

w„,= (2+-', ~, ~ ~,)a„,+ (2--', 7, ~ ~,)c„,. (4.1)

Here, (2+ —', 7, ~ 7,)B„~denotes the contribution of
all box diagrams (1-6 of Fig. 3), whereas (2

,)C „~ stan. ds for the contribution of all
crossed-box diagrams. (7-12 of Fig. 2). Equation
(4.1) can be rewritten as
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FIG. 6. Matrix elements (q I Mz'a (z) I
q') in the tSO

channel are displayed as a function of q. The value of
q' has been fixed to q' = 100 MeV/c and the starting
energy z =2~. For this figure the isospin factors have
been dropped. The parameters of M&& are given in
Table I using, however, a cutoff mass A,'=800 MeV.
The dashed line displays the contributions of stretched-
box diagrams multiplied by a factor of &. The dashed-
dotted curve shows the contributions of crossed-box
diagrams multiplied by a factor of &. For comparison
the solid line gives the contribution of the corresponding
iterative diagrams.

FIG. 7. Matrix elements (q I M~&z(z) I q') in the St
channel. For further details, see Fig. 5.

g» = 2(Bz~+C»)+, r~ Tz(BNn —C «) . (4.2)

If Q» is comparable to BN~, the following ap-
proximation is suggested, which consists of two
steps:

(i) Replace (B„~+Czn) by the second iteration
of pion-range transition potentials, denoted by
B'„n. (The use of B„'n overestimates B» alone
by roughly a factor of 2, as mentioned already
in the Introduction).

(ii) Neglect the (B« —C») term compared to
the first term. This leads to

Nb N&& (4.3)

) -0.5
Ql

C)
X

- 1.0

I

500

q [MeV/c]

I

1000

N g all diagrams

iterated tt range

FIG. 6. Matrix elements (q IM&z(z) I q ) in the SD

channel. The dashed curve represents the result for
the sum of all crossed and uncrossed diagrams with
intermediate N& states. The dashed-dotted curve dis-
plays the result for the iterated pion-range transition
potential. While for these two curves the isospin factors
are neglected, they are taken into account in calculating
the sum of all diagrams, as shown in the solid curve.
The solid curve has been renormalized by multiplying
with 2, in order to allow a comparison with the dashed-
dotted curve. For further details, see Fig. 5.

500

q IMeV/cJ

r

1000

FIG. 8. Mytrix elements (qI M~&a(z) I q') in the 3Si
channel. The solid curve shows the total result for all
N& diagrams including isospin factors. Since the isospin
factors for uncrossed diagrams vanish for this channel,
this result originates from crossed-box terms only.
The dashed-dotted curve displays the result for the
isoscalar part (factor of 2) of the iterated pion-range
potential. For further details, see Fig. 5.
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i.e., the exact contribution is replaced by the iso-
scalar part of (twice-iterated) pion-range transi-
tion potentials. The main aim of this section is
to test this approximation. We first investigate
the basic assumption that B» is comparable to

Consequently, isospin factors are dropped
in the following discussion. It has been pointed
out in Ref. 14 that, if all particles are considered
to be at rest (i.e. , energies are replaced by cor-
responding masses), the stretched-box (crossed-
box) diagrams of Fig. 2 are —', (—', ) of the iterative
ones. This implies that Q» is only about -', of

B„~. It is not surprising, however, that the cor-
rect result (for which the restriction to particles
at rest has to be given up) is typically different,
as demonstrated in Fig. 5 for the 'S, channel.
First, the stretched-box diagrams are smaller.
Obviously, recoil effects suppress the nonitera-
tive contributions more strongly than the iterative
ones. Furthermore, the simple estimate under-
estimates the exact crossed-box result for higher
values of q. (This shows that the crossed-box
terms are of shorter range than the iterative
terms and should be more suppressed in higher
partial waves). In fact, for q= 500 MeV, C~~
roughly agrees with B». Thus, in contrast to
the simple estimate, our exact calculations justify
the above assumption in the '5, state.

We now investigate the replacement of (B„~
+C~~) by B„'~ in the same channel. Figure 6 dem-
onstrates that the overall strength of (B„~+C„~)
(dashed curve) can be fairly well reproduced by
iterated pion-range potentials (dash-dot curve),
which, however, yields a contribution of longer
range, as expected. From the above discussion
it is then not surprising that —,'A„~ (solid line) is
well approximated by B„'~ (dash-dot line) [see Eq.
(4.3)].

Unfortunately, the situation is not so nice in the
other partial waves. In 'S„(B~~+C„~)is again
fairly well approximated by B„'~ (compare Fig. 7

with Fig. 8). However, C~~ is now only —,
' of B„~.

Moreover, 7, ~ 7, now has the eigenvalue -3 (com-
pared to 1 in 'S,). Consequently, the (B„~-C~~)
term in Eq. (4.2) cannot be neglected in this partial
wave. This is confirmed in Fig. 8, which com-
pares A.» with 2B„'~. Obviously, the isoscalar
part of the twice-iterated pion-range transition
potentials grossly overestimates the exact result.

Our calculations have shown that the same is
true for nearly all higher partial waves (L~ 1).
The main reason is that the realistic contribu-
tions, being of shorter range due to the inclusion
of recoil terms, are much more suppressed in
these partial waves than contributions with pion
range.

In a simple coupled-channel treatment (see Ref.

13) (B„z,-C„~) is also replaced by B„'~, leading to

Apf~ —(2 + 3 7, . T,)Bgg~ (4.4)

(9 9 1 9)BEE (9 9~1 9)Cdk

A regrouping of terms yields

A = (- 27, .7,)(B~~+C„~) + 47, w9C„„

1 ~9) ( gk CPA) 3 1 9CNB

(4.5)

+ (- 7' ' 'T )(B-gg+Cgg)+ g7 ' T C~& ~ (4.6)
I

The authors of Ref. 22 have demonstrated that the
replacement of B+C by B', i.e. , by (twice-itera-
ted) pion-range potentials is, in fact, a reasonable
approximation not only for N&, but also for NN
and ~g. Therefore

A=(3 — ~1 79»~~+('+9~1 ~9) ~~

(9 9 7'1 V9)Bgg (C~~ 9C~g 9C~~)f1 V9

(4.7)

Now, again following Ref. 22, the C terms (being
separately appreciable) cancel to a remarkable
degree leading to

A = (3 —271 ~ V9)B„'„+(2+ -', v, ~ 79)B„'~

+(p —,'7, r,)B~~.- (4.8)

(This corresponds precisely to the procedure of
the usual coupled-channel treatment; see Ref.
13.) If we finally make the (reasonable) assump-
tion that there is a similar cancellation for the
B terms, we arrive at

= 3B~„+2B~+ 3B~~, (4.9)

which implies that the total isovector term is
quite small.

Summarizing, we have shown that the Ng con-
tribution cannot be described in a realistic way

i.e., a transition potential of pion range is used
also for the isovector piece. From the above
discussion it should be clear that Eq. (4.4) is a
bad approximation, leading, in fact, to a vanish-
ing contribution in isospin-zero states. Conse-
quently, in '5„ the true results lies between the
prescriptions of (a) including and (b) neglecting
the isovector part in the iterated transition po-
tentials of pion range.

However, according to the work of Smith and

Pandharipande, ' the isovector part might ulti-
mately become quite small if not only N~ but also
NN and g~ contributions'are considered. The
argument goes as follows: The total contribution
A =A~,g+c4gg+Agg is given by

A =(3-2~, 7,)B„~+(3+ 27, ~ 7,)C~„

+ (2+ -', ~, ~ ~,) B„~ +( 2- -', ~ ~,)C„~
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FIG. 9. Diagrams included in the model of Eq. (4.10).
The solid lines denote nucleons, the double-solid line
denotes a ~ isobar. The n stands for x, g, 0, 6, p, and
u mesons, while p only for 7t and p mesons. Correspond-
ing diagrams where the & appears on the right-hand
side are not shown explicitly but are included in the
calculations.
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FIG. 11. &0 phase shifts. For further details, see
Fig. 10.

for all partial waves by using pion-range transi-
tion potentials and dropping the isovector part.
First, the longer range of such transition po-
tentials leads to an overestimate of the true result
in (I, ) l) partial waves. Second, it is only through
the consideration of NN, N~, and ~~ contributions
at the same time that the total isovector term is
possibly small.

B. Effects in NN scattering

In order to show the effect of these noniterative
diagrams on nucleon-nucleon scattering phase
shifts, we use as effective potential

V~n(z) = Vpgp(z) + Mug(z) + Mug(z)

+ M„"„(z)+ M„",(~) . (4.1G)

u)
Q

CL

-0.5
0

I I'

100 200

Lab Energy I MeV ]

300 1.0
U

FIG. 10. So nucleon-nucleon phase shifts (in rad) as
a function of the nucleon lab energy (in MeV). The ex-
perimental values are taken from the energy-independent
Livermore analysis (Ref. 24). Results for the full Veff
of Eq. {4.10) are denoted by the solid curve. For the
dashed curve, M&z~ has been omitted, while in calculat-
ing the dotted curve M~& + Mz~ has been omitted. The
dashed-dotted curve contains the OBE part of Eq. (4.10)
(Vz~z) only, whereas the dashed-double-dotted curve
is obtained when, in addition, even the contribution from
0 exchange is omitted.

tA

0.5
CA

e
U 0.

CL

I

3000 100 200

Lab Energy f MeV]

FIG. 12. $~ phase shifts. For further details, see
FIG. 10.
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FIG. 13. Pg phase shifts. For further details, see
Fig. 10.

FIG. 14. P2 phase shifts. For further details, see
Fig. 10,

Here, VD~E is the one-bason-exchange potential of
Kotthoff et af.'s (using now F„=(A

' ——m„')/
[A„'+ (q' -q) ] at all vertices). M„~, M~~ denotes
the sum of iterative diagrams with Nb, (ah) inter-
mediate states including g and p exchange. "MNN

denotes the sum of noniterative diagrams with NN
intermediate states including only g-exchange, "
whereas MN& denotes the sum of noniterativedia-
grams with Ng intermediate states discussed ex-
plicitly in the foregoing chapter. The correspond-

ing diagrams of V,«(z) [Eq. (4.10)] are shown in
Fig. 9.

The p matrix is then obtained from

(4.11)

where P denotes the principal value. Explicitly,
we obtain, in partial waves and helicity-state
basis, ,

(4.12)

Here z = 2F,. The NN scattering phase shifts can
be obtained from g~ in the usual way; see, e.g. ,
Ref. 11.

The meson parameters are shown in Table I.
They are partly adjusted in order to obtain a rea-
sonable description of the NN scattering phase
shifts. In the explicit higher-order diagrams,

we use throughout A„=1 GeV, whereas the fit re-
quires A =1.4 GeV in po~E. We feel justified to
use different values for A„at the present stage.
In our model, the form factors still have to be
considered to be essentially phenomenological
quantities, which effectively replace contribu-
tions still- not included in the present model. For

TABLE I. Parameters for V,ff(z) [Eq. (4.1)]. m~ and A~ are given in MeV. The number in
parentheses denotes the ratio of coupling constants fNNp/&NNp ~ denotes the cutoff mass in
the OBE vertices, whereas ~~ denotes the cutoff mass at all other vertices. All form factors
are parametrized according to Eq. (3.5).

2
fNhe

14.4

1400

1000

0.23

8.4
548.5

1400

15.902

1400

0.451

960

1400

30

782.8

1400

763

1400

1500

15.08
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TABLE II. Low energy 'scattering and deuteron data.

Expt. Present model I,Eq. (4.1)]

E (MeV)
Q (fm )

PL) (%%uo)

a (fm)
y~ (fm)

~ (fm)
~, (fm)

2.224 62 + 0.000 06
0.2860 + 0.001 5
5 +2

-23.715 + 0.015
2.73 + 0.03
5.423 ~ 0.005
1.748 + 0.014

2.2238
0.2871
3.78

-23.86
2.68
5.39
1.74

example, the inclusion of explicit Sp-exchange
diagrams, which are expected to influence the
inner part of the tensor force, might ultimately
make it possible to use A„= 1 GeV (which is sug-
gested by independent information) throughout.
Note that, due to their short range, a reliable
theoretical description of form factors might re-
quire taking into account quark-theoretical view-
points, which is only in its infancy at present.

The resulting low-energy parameters are shown
in Table II, while some important partial wave
phase shifts are presented in Figs. 10-16. The

solid lines are obtained when P„~ [Eg. (4.10)j is
used in Eg. (4.12). The dashed lines result when

M„'„ is omitted; for the dotted line (M„'"„+M„'"„)is
omitted; the dashed-dotted curve is obtained
through the use of PO~E only; and finally the
dashed-double-dotted curve is obtained when
omitting, in addition, the g contribution in &0~.
This part is supposed to take into account the rest
of the 2z exchange which is not yet described ex-
plicitly in our model. The experimental values
are taken from the Livermore analysis. '

Obviously, a good agreement with empirical

TABLE III. Nuclear bare phase shifts (in rad) obtained with V,ff (z) [Eq. (4.10)].

E& b (MeV)

i$

3P
0

i

3P
i

3$

Ei

3D
i

D

3D

3p
2
I

E'2

3F
2

iF
3F

3

SD

E'3

3G

iG

G4

3F

3H4

E4

0.837

0.164

-0.110

-0.094

1.420

0.023

-0.051

0.013

0.067

0.040

-0.015

0.002

-0.008

—0.004

-0.001

0.010

—0.001

0.001

0.003

0.000

0.000

-0.001

50

0.667

0.219

-0.154

-0.154

1.112

0.019

-0.119

0.029

0.160

0.096

-0.031

0.005

-0.021

-0.013

—0.002

0.030

—0.005

0.003

0.013

0.002

0.000

—0.003

0.430

0.192

-0.185

-0.227

0.795

0.009

-0.220

0.059

0.290

0.179

-0.047

0.009

-0.040

-0.028

0.002

0.062

-0.017

0.007

0.037

0.005

0.002

—0.004

142

0.238

0.112

-0.199

-0.287

0.576

-0.001

-0.299

0.089

0.374

0.232

-0.050

0.010

-0.053

-0.042

0.010

0.087

-0.033

0.010

0.061

0.011

0.003

—0.015

210

0.017

-0.019

—0.210

-0.362

0.348

-0.013

-0.380

0.127

0.431

0.268

—0.043

0.003

—0.066

—0.059

0'.023

0.112

-0.058

0.015

0.092

0.021

0.005

—0.021

330

-0.279

-0.233

-0.221

-0.485

0.075

-0.030

-0.470

0.163

0.429

0.276

-0.021

-0.028

-0.089

-0.084

0.034

0.136

-0.101

0.024

0.134

0.039

0.006

—.0.029
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FIG. 15. D2 phase shifts. For further details, see
Fig. 10.
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FIG. 16. D2 phase shifts. For further details, see
Fig. 10.

phase shifts is obtained. Compared to QBE mod-
els, the 'D, phase shifts are lowered considerably,
i.e., there is a strong improvement. The main
reason can be traced back to the behavior of
M~~: it is sizably attractive in '$, ; however, be-
cause of its short range, it is negligible in 'D, .
Consequently, the attraction in 'D, is now reduced
compared to '$„ i.e., the '0, phase shifts are
lowered. Our model replaces part of the exactly
isoscalar o exchange by explicit diagrams which
are only roughly isoscalar. Namely, . the isospin-
zero contribution is slightly shorter ranged (be-
cause of the dominance of crossed-box diagrams
in this channel) and is thus more suppressed in

higher partial waves.
Concerning the noniterative isobar diagrams

(M„"'), the figures clearly demonstrate that they
are as important as isobar box diagrams (M„'
+M&,'). (We believe that p exchange will not
drastically reduce the importance of ~„'"~). Es-
pecially in isospin-zero states (where M„~ does
not contribute), the isobar contribution is dras-
tically enlarged; see, e.g. , 'D, . Consequently,
the inclusion of jV„'~~ in the evaluation of the ~
probability of the deuteron, which has not been
done so far, should lead to a considerable en-
hancement, too. For convenience, we present in
Table III the numerical values of the nuclear bare
phase shifts obtained with p,«[Eq. (4.10)] for
J&4

V. SUMMARY

We have explicitly evaluated the formalism for
the calculation of the noniterative diagrams in-
volving pf~ intermediate states. It is shown that
such diagrams can only crudely be taken into
account by using a transition potential of pion
range and dropping the isovector part. For ex-
ample, it grossly overestimates the isobar con-
tribution in the '$, channel. Furthermore, we
demonstrate explicitly that the noniterative dia-
grams are as important as isobar box diagrams.

In our model, the explicit 2p-exchange diagrams
(M„'+M" +M„"„+M„"') replace roughly 59(' of
the 0 exchange providing the intermediate-range
attraction in OBE models. 'The other part is
mainly given by rescattering contributions (in-
volving diagrams in which the two exchanged pions
interact). They must be included before a realis-
tic and explicit model for the total 2p-exchange
contribution is obtained, which in two-body scat-
tering agrees satisfactorily with the result of
dispersion-theoretic models. In the present
model, the rescattering part is still effectively
described by o exchange. We expect, however,
that the main modification of the 2p-exchange con-
tribution in the nuclear medium occurs in those
diagrams already described explicitly.

Numerous enlightening discussions with Prof.
K. Bleuler are gratefully acknowledged.
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