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High energy potential scattering into back angles
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The sums in the potential scattering series are carried out by permitting only one large angle scattering. An early
result of Schiff is thus rederived and in the process the connection between it and the recent successful work of Chen
is made clear. The amplitudes are convenient to use. The results are applied to the local Laplacian optical potential
used in pion-nucleus scattering. The large angle amplitude is very sensitive to three different treatments of the
coordinate systems transformation of the m.lV amplitude that have been proposed.

NUCLEAR REACTIONS Large angle potential scattering theory; m-nucleus '

optical potentials, C{z,g) calculated 0{8).

I. INTRODUCTION

The eikonal approximation has been used suc-
cessfully and widely in calculating scattering amp-
litudes for both atomic and hadronic processes.
The approximation is usually not applicable for
backward scattering angles. This is unfortunate
since a number of factors influence the large
angle cross section more sensitively than the for-
ward one. Specifically, we are motivated here by
many recent investigations of pion-nucleus optical
potentials in which, for example, a variety of off
energy shell extensions of thy mN amplitude or
transformation from the mN system to the c.m.
frame are proposed. An eikonal-like formalism
is relatively simple to use and one specifically
appropriate to back angles should be useful for
investigating the above mentioned effects among
others. The goal is to assess and test such a
formalism.

Many studies have been carried out to examine
and account for the success of the eikonal or
Glauber approximation and to extend the region
ot validity. There has been much less done at
extreme back angles but the recent investigations
by Chen provide a stimulus. 2 3 His potential scat-
tering results compare very well with exact ones
when calculations are made for a variety of para-
meters using exponential potentials. ' Earlier
work of Schiff, ' which is well known for its cor-
rections to the eikonal, also contains a specific
expression for very large angle scattering but it
differs from that of Chen.

In Sec. II, we examine back angle scattering
theory in terms of the infinite Born series. We
use a propagator that permits only forward or
backward propagation. The nth term then rep-
resents n potential interactions with intervening

I

propagation only forward or backward. However,
a backward scattering is allowed to occur only
once within any of the terms of the series. Scat-

tering into back angles that comes from three,
five, or more reversals is discarded as negligible
due to multiple integration over rapidly oscillating
functions. %ithin the nth term, we are able to
sum over the contributions from the back scatter-
ing that occurs only once but anywhere in the
multiple interactions of that order. It is then easy
to sum the remaining infinite series. The final
expression for the amplitude is the old result of
Schiff. With these methods we can then see that
the potential scattering result of Chen is due to
back scatterings that occur either last or next to
last within the multiple interactions of a Born
term. Earlier back scatterings are not included.
The standard eikonal form includes back scatter-
ing only during the last collision. The relation-
ship between the two results is thus understood.
The results of Chen should be and are excellent
when there is weak coupling. They hold even
when it is not very weak probably because the
back scattering during the penultimate interaction
provides the important correction to the eikonal
form.

In Sec. II numerical results are discussed and
presented. First, a simple Gaussian potential is
used to demonstrate the expected relationship be-
tween the two forms of the back angle amplitude.

Then calculations are carried out for potentials
that have been used to account for data, almost
all of it at forward angles. The goal is to deter-
mine how sensitive the back angle expression is
to some of the alternatives that have been pro-
posed. Specifically, we consider pion-nucleus
scattering and carry out calculations for a local
Laplacian optical. potential. We treat three trans-
formations of the gpss parameters s,io-i2 The back
angle cross sections that result for w-' C scatter-
ing are very sensitive to the three variations.

The amplitude is convenient to use. It should
provide a useful first test when proposed treat-
ments of a variety of effects are considered. For
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example, off energy shell extensions and proton-
neutron mass density differences also affect back
angle scattering sensitively.

II. POTENTIAL SCATTERING THEORY FOR BACK
ANGLES

G+(r, r') = —.e'"'~' 5(x- x')
2ik

where

x 5(y-y)8(z-e ),

}, z&z'
e(e-e )=

0, z&z

the subscript + is used to denote propagation in
the forward direction. This propagator produces
the eikonal amplitude, "which is formally given
by

~e~~ = U+ ~r ~e~a.

In, order to treat backward angles as well as
forward ones, Chen includes both directions in
the propagator.

8++8'- ~

This operator is central to what follows. It per-
mits propagation in the forward or backward di-
rection, or very close to them, i.e. , any mo-
mentum transverse to z must be very much smaller
than the s component. The Green s function per-
taining to the operator g++g-, is

G++G-= . e'" ' ~'5(x- x')5(y —y') .
2ik

The scattering amplitude is given by

f(~) =-—&k'l&lk& (1)

The momentum transferred q =k' —k and the trans-
ition operator 1' satisfies the I ippman-Schwinger
equation

T = U+ UgoT,

where go is the free propagator. We are interested
in the elastic scattering case so k =

l

k'
l
=

l
k

l
.

Units of 8 =a =2m =1 are used throughout.
The propagator is an operator which includes a

continuum of propagation directions. However, at
high energies and for a smooth potential U of range
a and strength Uo such that ka»1 and U, /0'«1,
a good approximation for forward scattering is
obtained if the propagator only includes propaga-
tion in the forward direction (which is chosen to
be the z direction). Under these circumstances,
the Green's function", G+ that pertains to this for-
ward direction propagator, g+, is given by

It is clear that we are motivated by the work of
Chen. " Before proceeding, we will summarize
his potential scattering results. His ansatz is

f

T= U+ U(g +g-)T.*'.
In the case of forward scattering, the term Ug 1'„~
contains a rapidly oscillating function. This term
is neglected when the integral for the scattering
amplitude, Eq. (1), is evaluated. The result is
the usual eikonal amplitude. In the case of back-
ward scattering, k' =-k, both terms have a rapid-
ly oscillating function and both are retained. The
amplitude for back angles is then obtained by Chen
and Hoock' as

f(q) d3~ el%'r~ex I lk2ik ~g

4m'

where

F

U(x, y, s)ds.

We now begin the investigation of the transition
operator by using the propagator of Eq. (2).

T = U+ U(g, +gJT

= U+ U(g. +gJU+ U(g, +g )U(g. +g g U+

This is an extension or correction of Eq. (3)
since, in any of the terms, the propagation be-
tween any of the interactions is either in the or-
iginal ox in the reversed direction. With the
choice of k as the z direction and the specific rep-
resentations of the Green's functions given above,
the propagations are either in the forward or
backward z directions.

When the series of Eq. (5) is placed in Eq. (1),
the amplitude is given in terms of the nth order-

s ing scattering amplitudes,

For example, the triple scattering amplitude is

f3 ———(k'
l

Ug, Ug, U+ Ug, Ug U

+Ug Ug„U+Ug Ug Ulk&

In the case of back scattering, k' =-k, the first
term represents two very small forward scatter-
ings followed by. a third scattering into back ang-
les. The second term represents a scattering
into back angles, then a second scattering back
into forward angles, and finally a third scattering
into back angles, i.e. , three reversals of direc-
tion. The third term (-k Ug Ug, Ulk ) represents a
small forward scattering followed by a reversal,
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and finally a small deflection but still in the back-
ward direction. The last term represents a scat-
tering from the initial direction into back angles
followed by propagation in the backward direction
with two small rescatterings. On physical grounds
one would expect the second term, i.e. , the three
reversals, to contribute negligibly compared to
the other three terms which involve one reversal
and two small deflections.

Incidentally in the case of forward scattering
k'=k, any term which involves g results in two
reversals and should be neglected. In this case,
of course, the eikonal amplitude is obtained.

Returning to the back angle case, we conclude
that contributions from three, five, or more re-
versals should be neglected. This means that
in any multiple scattering term a g, must occur
only on the right of ag . There can be any number
of g in sequence as long as they are on the left of
any g, . Such a term means that a back scattering
has occurred when the first g appears and prop-
agation continues in the backward direction with
only very small deflections. In this way, the nth
order multiple scattering term, instead of being
made up of 2" ' terms, is made up of n terms.
The nth order amplitude at back angles now is

f„=——Q (-k~ U'"'g U 'g g U "'g,U " g, U' '~k),
m + '}

where the superscripts denote serial order, i.e. , back scattering occurs at the mth interaction.
It is clear that the above version of the large angle amplitude is an extension of that provided by Eq.

(3). In the current version, scattering into back angles can occur at any time; whereas Eqs. (3) and (4)
include backward scattering only during the last or second to last rescatterings. The result is that the
nth order amplitude contains ri terms rather than two.

In order to sum the series, we need the explicit integrals that represent f„.
m-1

4n 2jk

X ei2lnn 2 ~n 2 U(r ). . . U(r )ei2122-nil U(r )+i2~%1

where the 5 functions in the Green s functions have been used to put & & 1 ~ &1 Bnd

Note that k ~ r, =km, . The back angle condition k'= -k has not yet been included, nor have the scatterings
leading to multiple reversals been neglected.

The next step is to break up the z integrals into two parts so that the various absolute values ~z, -z, , ~

can be removed. When the back angle condition is included, the multiple reversals appear as multiple in-
tegrals over the rapidly oscillating function e"~" and thus there are mathematical grounds for neglecting
these terms After th.ese manipulations, the explicit form for Eq. (6), the nth order term, is obtained,

y )n-1
f =-— .

~
dx dy e'"2"n"2 "n' z

4~

where

~ nm ~ n rn ~~ n-1 n-1 n-2
«n «n-1

00 «2
x dz„e""~U(r„) dz„,U(r„,).. . dz, U(r, ) .

«m+1 ~ 00 ~ 00

We now let the operator J, dz„e"2'~U(r„) migrate to the left, changing the limits of integration ap-
propriately. Likewise, the operator f „dz„U(r„) migrates to the right so as to interchange the two oper-
ators. We then have

00 & «m «n-1 «m+1

z„„= da e '~2iU2(r„) Jl dz„,U(r„,) dz„U(r2„). . 2. dz„U(r„)
m 00 ~ 00 ~ 00 ~ 00

«m «2

x dz, U(r„,). . . dz, U(r, )
~ 00 a 00
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)(n-i-(m-i&
(&

[(n —1)—(m —1}]i '

With a similar treatment for the second set of
brackets, we obtain

z„= dz„e ' ' U(r )( 1)i( ))
.

Therefore, since

1 2n-1

i(m - 1)l(n -m)i (n —1)i '

we can carry out the sum over m to obtain, after
putting q, - 2k,

j 'tn-1 Xn-1

f = -——.
I

d'r e'~'~U(r)
4w zk~ (n - 1)i

'

The Born series can now also be summed to obtain
our final expression for the scattering amplitude

f (q) dsr eiI vU( ) rx/iek

4m
(7)

Here q= (q„q ) is understood to be the momentum
transferred in very large angle scattering, i.e. ,
8 = v —e, q~ = ka, q, = 2k+ 0 (e ').

In fact, the result Eq. (7) amounts to a rederiva-
tion of the amplitude obtained by Schiff" for very
large angle scattering.

Comparison of this result with that of Chen is
facilitated if Eq. (4) is written in an alternate
form. When the exponential in Eq. (4) is repre-
sented by its series, and then an integration by
parts is carried out [of the same kind as used in

deriving Eq. (4)], upon resumming one obtains"

f(q)=- — d'r e'~ ~U(r) 1+ . e "
4m 2ik

This form strongly suggests that Eq. (8) can be
obtained from Eq. (7) by treating the eikonal-like
phase factor in the latter as

ex/ik ex/kikex/kik ex/2ik(1+X/2ik)

Furthermore, if the g in the parentheses is dropped
then the eikonal amplitude results

f — dSr e i 5
' 1' U (r )ex/2 i k

el A 4&

'The quantities in the two sets of brackets are in-
dependent of each other, although each is a func-
tion of the last variable of integration z . To con-
sider them further, we note that

J
�de'U(x,

y, z'))(" '(z') =—X"(z) .
~ 40 m

In the first quantity in brackets, the rightmost in-
tegral is X(z „)and then the entire quantity is

Our results thus determine which formulation
for the scattering amplitude is obtained when the
backscattering is allowed to occur during different
interactions within the nth order Born term. When
the backscattering is allowed to occur only during
the last interaction, the eikonal expression is the .

result. When the backscattering occurs during
the last or next to last interaction, Eq. (8) [or
equivalently Eq. (4)] is the result. In the most
general case of allowing the backscattering to
occur during any of the interactions, the Schiff
form Eq. (7) is the result. This is the most com-
prehensive result. The Chen form, and the eikorial
at back angles, involve further approximations.

The effect of being more exact, of using the
Schiff form, is to include higher order terms of
X/2k in the factor that multiplies the eikonal inte-
grand. The contributions from earlier backscat-
terings become more negligible as X/2k decreases,
i.e., the Chen expression and even the eikonal, ap-
proximate the Schiff result in this limit.

A rough measure of X/2k is U, a/2k. As this
parameter decreases the calculations of Chen and
Hoock' appear to verify for the exponential poten-
tial the trends mentioned above. The most ex-
treme case presented in Ref. 3 is for U,a/2k
-0.8. Even for this large value the results due to
Eq. (8) are not bad. We can go some way towards
explaining this somewhat surprising accuracy by
noting that the ratio of the first term neglected
in the series to the last one included, i.e. , the
ratio of third to second is U, a/4k-0. 4. Evidently
this is small enough to obtain good results with

Eq. (8). It is important to include the second term;
the first term alone —the eikonal amplitude —does
not yield good results.

III. NUMERICAL RESULTS: PION-NUCLEUS
OPTICAL POTENTIALS

A. Sample calculations

Some earlier work indicates that the Schiff re-
sult works reasonably well for a spherically sym-
metric parabolic we11" and for a, square well. "
Berriman and Castillejo' test an exponential well
in a variety of eikonal like amplitudes, including
one due to Schiff which should reduce to Eq. (7) at
back angles. However, they do not calculate with
the explicit form of Eq. (7) nor do they indicate
results at extreme back angles. Their largest
angle results are in the vicinity of 125 and are at
least as good for the Schiff form as for any of the
other variants.

At any rate, we can consider that Eq. (7} has
been numerically verified for exponential poten-
tials, at least for Uoa/2k not too large, since Eq.
(4) is more approximate than Eq. (7) and the form-
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where b' = x'+ y', and in calculations a rational
approximation is used for the error function. "
The scattering amplitude from Eq. (7) then is

f= — ' db b J (q b)e ~ '
4m 0

0

dzexp i q, z —X 0 —z' a' .
woO

An analogous expression can readily be obtained
from Eq. (4) or Eq. (8). Although the expressions
hold only for q &&q, =2k, in the calculations there
is no need to put in this restriction.

In Fig. 1 we show the real and imaginary parts
of the amplitude given both by Eq. (7) and Eq. (8).
The figure also shows exact results obtained from
a partial wave solution. With the parameters used

lO IO

—= IO

er has been found to work well by Chen.
We now try

U(r)= U, e

in order to investigate the Gaussian form" and to
further compare Eqs. (4) and (7).

We then have

Uoe ' ~' [l+ erf(z/a)J,&wa

2

the partial wave solution has converged very well
after 31 terms. In the case shown in Fig. 1, i.e.,
Uoa/2k = 0.44, the imaginary part of the amplitude
obtained from the Schiff result is much more ac-
curate than that from Chen. The real part of the
amplitude is ambiguous but it is dominated in the
cross section by the imaginary amplitude. Our
other calculations show that as the combination
Uoa/2k decreases the results from Eq. (7) and Eq.
(8) approach each other for both the real and im-
aginary amplitudes. As U,a/2k increases, the
real amplitudes obtained from the Schiff arid Chen
forms cross at larger angles. The effect is that
they do not seem to differ significantly at back
angles. However, these other calculations do
show that as U,a/2k increases, the imaginary part
of the amplitude, and the cross sections, obtained
from the Schiff and Chen forms become more dis-
crepant for the Gaussian potential.

B. Application to m-nucleus optical potentials

We now apply the back angle amplitudes to po-
tentials that have been used in the literature to
account for experimental results. It is known that
back angles are sensitive to a number of factors.
The back angle amplitudes, Eqs. (7), (4), or (8)
are easier to use than ones obtained from more
fundamenta1 microscopic theories. The goal then
is to determine to what extent the back angle amp-
litude is sensitive to various cases that have been
proposed.

There has been much work recently in developing
pion-nucleus optical potentials. A variety of ef-
fects and treatments have been considered. Our
intent is to carry out some trial calculations of
cases that are relatively easy to apply. Accord-
ingly, we focus on the local Laplacian form of the
optical potential. ' """

U(r) = —(b, + b, )k'p(~) ——' V'p(r),

—10

where b, -and b, are the complex parameters that
come from the s and P wave parts of the mK amp-
litude and p(r) is the matter density of the target
nucleus. We choose for the density the modified
Gaussian appropriate to sP shell nuclei,

ar2gs 1+
0

I

12o
I

140
I

160 180

FIG. 1. Real and imaginary parts of the amplitude ob-
tained from exact calculation, solid curves; from Eq.
P), dashed curves; and from Eq. (8), dotted curves.
The Gaussian potential is used vvithU0=1. 0 fm 2, a
=1.75 fm, and A =2 fm

which we shall apply to carbon, A = 12.
More particularly we will investigate some of

the ways of treating the bo and b, parameters when
they appear in the optica. l potentia. 1. Dedonder"
and Faldt' were the first to note that, when these
parameters are used to describe w-nucleus scat-
tering, the transformation from the mN to the m-
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nucleus system must not neglect the mixing of
partial waves since the P wave plays such a dom-
inant role. Accordingly, they suggest that a more
exact procedure is to multiply the coefficient of the
Laplacian by (k, /k, )' where k, is the pion-nucleon
laboratory momentum and k, the corresponding
pion-nucleon c.m. momentum. (Both parameters
b, and b, are changed under this procedure but
only the coefficient of the Laplacian changes since
the sum b, + b, is not altered )W. e shall be doing
calculations for pion laboratory energies ranging
from 180 to 280 MeV. In this region the (k, /k, )'
factor varies. from 1.7 to 1.9.

Subsequently Miller'-' has suggested another mod-
ification which includes the so called P wave
threshold kinematics in the angle transformation.
His result is that the coefficient of the Laplacian
should be multipled by the factor (1+ ar, /m) where

~, is the total pion laboratory energy and m is the

l2(

nucleon mass. In the energy region under consid-
eration this produces a factor ranging from 1.34
to 1.45.

To sum up, we have applied the back scattering
amplitude to elastic scattering of pions from "C
at energies from 180 to 280 MeV. This has been
done for the local Laplacian optical potential with
untransformed or original parameters, with the
Laplacian modified by the Faldt or Dedonder fac-
tor and then with the Miller factor. The upshot
is that three different potential strengths —com-
plex ones —are used in each case.

It is worth reiterating that we do not intend to
resolve here the question of how one must treat
the transformation of the mN amplitude or what

coefficient must be used with the Laplacian part
of the potential. 'These are rather trial calcula-
tions of the back angle amplitude in order to see
how it behaves with specific potentials that are
considered to be reasonable.

The Fermi averaged parameters of Sternheim
and Auerbach" are used as the starting values of
b, and b, . %hen they are used directly in the opt-
ical potential Eq. (9) the solid curves shown in

10
2

103= g-"c
200 NleV

10 1 p
2

10'
CIII

E

I

I

120
I

]30
I

140

I

150
c.m,

I

170

10 3

~ ~e»~~~ ~

FIG. 2. Angular distributions for back angle elastic
scattering of g from C at 180 MeV (upper curves) and

at 280 MeV gower curves). The solid curves result
when no mixing of partial waves is included in trans-
forming the xN parameters. The dashed curve results
when the modification of Faldt (Ref. 8) or Dedonder (Ref.
16) is used. The dot-dashed curve results when the
modification of Miller (Ref. 18) is used (see text). The
data point is from Binon et al. {Ref.20).

10
120 130 140

C.%.
150 160

I

170

FIG. 3. The same as Fig. 2 but atT =200 MeV.
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Figs. 2 and 3 are obtained. The range para-
meter a is taken to be 1.67 fm for "C. Some
typical cross sections are shown in the figures.
The data points of Binon et al."are included for
reference.

The 180 and 280 MeV cross sections are shown
in Fig. 2 and the 200 MeV'cross section is shown. ,
in greater detail, in Fig. 3. The solid curves
are the ones obtained using the original, untrans-
formed parameters of Ref. 19. The dashed curve
is obtained when b„as it appears in the Laplacian
term only, is increased by the factor (k, /k, )', i.e.,
this is the Faldt or Dedonder suggestion. The dot-
dashed curve is obtained using the (1+ &u, /m) fac-
tor in the coefficient of the Laplacian, i.e., the
Miller suggestion. Results at other energies up
to 280 MeV show the same sort of variation with
the three cases. It is clear that back angles are
very sensitive to the b, parameter. We have also
used a range parameter of a=1.5 fm. The cross
sections again are very sensitive. Overall the
sensitivity is such that it is likely that, as the
range parameter varies between 1.5 and 1.67 fm
and the Laplacian coefficient varies between the
untransformed case and the Faldt case, one could
completely fill in the bottom half of Fig. 3, for
example.

IV. CONCLUDING REMA RKS

In this work we have elucidated the relationship
between the back angle amplitudes of Chen and
Schiff. The Schiff result is obtained from summing
the Born series in which the one backward scat-
tering occurs anywhere within the rescatterings.
It is evident that including a back scattering dur-
ing the next to last interaction, as Chen does, is
a significant improvement over the back angle
eikonal amplitude. In the latter, back scattering
occurs during the last interaction only.

These back angle amplitudes are sensitive to
mN amplitude transformations that have been pro-
posed. Since the expression is convenient to use,
it should provide a useful first test when proposed
treatments of a variety of effects are considered.
This will become increasingly the case when the
difficulties of obtaining large angle data are over-
come.

One caveat is that contributions to scattering
into back angles that come about from many small
deflections or a few intermediate ones have not
been included in this theory. They may be signif-
icant.

We are grateful to Tim Seaver for a great deal
of help with the computations.

Present address: Lincoln Laboratory, MIT, Lex-
ington, Mass. 02173.

R. J. Glauber, in High-Energy Collision Theory, edited
by W, E. Brittin (Interscience, New York, 1959).

T. %. Chen and D. W. Hoock, Phys. Rev. D 12, 1765
(1975).

T. %. Chen, Phys. Rev. C 13, 1974 (1976).
D. S. Saxon and L. I. Schiff, Nuovo Cimento 6, 614
(1957); L. I. Schiff, Phys. Rev. 103, 443 (1956).

R. L. Sugar and R. Blankenbecler, Phys. Rev. 183,
1387 (1969).

See for example, Y. Hahn, Phys. Rev. C 10, 585 (1974);
F. W. Byron, Jr. , C. J. Joachain, and E. H. Mund,
ibid. 20, 2325 (1979); R. D. Amado, J. P. Dedonder,
and F. Lenz, ibid. 21, 647 (1980) and references
therein.

~I. Dadic, M. Martinis, and K. Pisk, Ann. Phys. (N.Y.)
64, 647 (1971), see Eq. (2.47).

Q. Faldt, Phys. Rev. C 5, 400 (1972).
B.J. Berriman and L. Castillejo, Phys. Rev. D 8, 4647
(1973).
J. P. Dedonder, Nucl. Phys. A174, 251 (1971).
J. H. Koch and M. M. Sterheim, Phys. Rev. C 6, 1118
(1971);L. S. Kisslinger and F. Tabakin, ibid. 9, 118

{1974).
~26. A. Miller, Phys. Rev. C 10, 1242 (1974); see also,

D. J. Ernst and G. A. Miller, ibid. 21, 1472 (1980).
~3This result [Eq. (8)J can also be obtained if one starts

with Eq. (3) and uses the manipulations that lead to
Eq. (7).

~4J. J. Tiemann, Phys. Rev. 109, 183 (1958).
~J. F. Reading and %. H. Bassichis, Phys. Rev. D 5,
2031 (1972).

~ In their discussion, Sugar and Blankenbeckler, Ref. 5,
indicate that the Gaussian potential may not be as well
suited to the multiple scattering considerations carried
on here as potentials that are less smooth. However,
since the potential is so frequently used, it is thought
worthwhile to do some trial calculations.
Handbook of Mathematical Eunctions, edited by
M. Abramowitz and R. A. Stegun {Dover, New York,
1968).

~ K. H. Lee and H. McManus, Nucl. Phys. A167, 257
(1971).

~9M. M. Sternheim and E. H. Auerbach, Phys. Rev. Lett.
25, 1500 (1970).
F. Binon et al. , Nucl. Phys. B17, 168 (1970).


