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Influence of angular momentum on the mass distribution of heavy-ion-induced fission
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The deformation energy surfaces of At are calculated at high angular momenta and

temperatures using a Woods-Saxon potential and the Strutinsky prescription. By this mi-

croscopic calculation it is shown that a qualitative explanation of the increasing width of the
mass distribution of heavy-ion-induced fission with angular momentum is possible.
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NUCLEAR REACTIONS At; studied mass distribution width of
fusion-fission events; dependence on angular momentum; Strutinsky

prescription for heated rotating nuclei.

I. INTRODUCTION

In heavy-ion reactions large angular momenta
and highly excited nuclei can be produced. The
first step of these reactions is a full damping of the
initial relative motion. For the second step there ex-
ist two competing possibilities. In the case of com-
plete fusion, a compound nucleus is formed, rotat-

ing many times with high angular momentum and
subsequently undergoing fission. In the second case
of deep inelastic reactions, the contact time is com-
paratively short and only some nucleons are ex-

changed. At "low" bombarding energies of about
200 MeV for systems like Ar+ ' Au the two
reaction types are well separated' and correspond
to two well separated regions in a d old 8dM plot,
i.e., in a double differential cross section plot as a
function of the center of mass angle 0 and of the
fragment mass M (see Figs. 2 and 3 of Ref. 2). The
complete fusion events are centered around half the
mass of the compound nucleus and show no depen-
dence on 0. The deep inelastic events are peaked
around the grazing angle and the masses of the tar-

get and projectile. At higher energies the separation
between both reactions becomes more difficult be-

cause of the broadening of the mass distributions.
The aim of this article is to explain the broaden-

ing of the mass distribution for the complete fusion

events with increasing angular momentum of the
compound nucleus and to investigate its deforma-
tion energy surface. Experiments' have shown

that the width of the mass distribution increases
with increasing angular momentum. The calcula-

tions of Nix investigate the influence of tempera-
ture on mass distributions within the liquid drop
model. Moretto calculates the potential energy of
a rotating system consisting of two touching liquid

drop spheres. From the fact that the potential as a
function of mass asymmetry has a minimum at
symmetry, the second derivative of which increases
with increasing angular momentum, he concludes
that the mass distributions for large angular momen-

ta are more sharply peaked around symmetry than
the mass distributions for small angular momenta.
The Saclay-Orsay group ' explains a broadening of
the mass distribution with angular momentum by a
new mechanism which is intermediate between com-
pound nucleus formation and deep irielastic reac-
tions. They guess that this new mechanism comes
into play when the fission barrier vanishes and they

get a mass distribution width increasing abruptly at
the corresponding angular momentum.

In this article it will be shown, with the help of a
microscopic calculation of the driving force which
tends to change the shape parameters of a rotating
heated nucleus, that one should expect a smooth in-

crease of the width of the mass distribution with an-

gular momentum. Such potential energy calcula-
tions give only. qualitative results. For a full

dynamic calculation one should know the collective
mass parameters. Since there exists no good possi-
bility to calculate these collective masses, it is not
possible at the present time to calculate the full

dynamics of the system and to get quantitative
results. Section II of this article deals with the Stru-

tinsky method for heated, rotating nuclei. In Sec.
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III the results of such calculations for the nucleus
At are discussed and compared with the experi-

mental data.

II. THEORY

R; = Ro[1+ (5/kv)' Pcos(y —i2m/3)] . (1)

The parameter P describes an elongation, and y an

axial asymmetry of nuclear shapes.
In dimensionless coordinates

In principle there exist two possibilities to calcu-
late potential energy surfaces:

u = x/R„U =y/R„

w = z/R„pz = u2+ U2
(2)

(i) First there is the more microscopic treatment

by the Hartree-Pock approximation. ' Using an an-

alytic form of the effective interaction and constrain-

ing the static solutions one is able to calculate po-
tential energy curves.

(ii) Second there is the use of a shell model poten-
tial together with the shell correction approach of
Strutinsky. "

Of course, the first method is the more funda-

mental one. But it has the disadvantage that the
computations are even more involved than for the
second method. Moreover, the phenomenological
effective interactions have difficulties in reproducing
accurately the experimentally well known heights of
the fission barriers. This article describes calcula-
tions by the second method.

The discovery of the importance of deformation
effects in the mean field has given rise to a very suc-
cessful and yet simple parametrization known as the
Nilsson model. ' It has been improved by some
corrective terms and is often referred to as the
modified harmonic oscillator potential. ' Several
other successful parametrizations are also of corn-
mon use. The two center harmonic oscillator was
developed by the Frankfurt group. ' Nix and his
co-workers' have constructed the mean field by
convoluting a square well potential with a Yukawa
form factor, thus obtaining a reasonable surface dif-

fuseness. The %oods-Saxon potential is used in this
article apd has been widely developed by the Kiev-
Basel-Kopenhagen' cooperation.

Analyses based entirely on the single-particle
model work reasonably well for moderate quadru-
pole deformations. For larger deformations, as oc-
cur in fission processes, it is essential to incorporate
properly the bulk properties of the nucleus by the
Strutinsky method"; after the parametrization of the
shape of the nucleus, the shell model Hamiltonian
and finally the Strutinsky method for heated, rotat-
ing nuclei will be discussed.

To parametrize the axes of ellipsoidal shapes it is
convenient t6 use the parameters P and y of Bohr'
for the axes of the ellipsoid:

the equation' '
IT(p, w) = p —(1 —w )(A + Bw ) = 0 (3)

defines an axial symmetric shape with a symmetric
neck. For 8 = 0 the shapes are ellipsoidal. The
nuclear volume in these coordinates is

V = 4~/3(A + 8/5)

and the neck cross section

S(w =0) =mA

(4)

(5)

V = (4n/3)(A + 8/5) = (4m/3)Rp

= (4m/3)RgR„

gives the connection between the P —r parametriza-

tion and the 3 —B parametrization. A grid of
P —r shapes in the x,y ~ system is shown in Fig. l.

Asymmetric dumbbell shapes are defined by the
surface' '

6p,w) = p —(1 —w )(A + aw + Bw2) = 0

Keeping 3 and 8 constant and varying a, one gets a
set of shapes, which we parametrize by the mass ra-
tio

M„= 2M)/(M) + M2)

of the fragments at both sides of the asymmetric
neck. In Fig. 2 a set of such shapes along the liquid

instead of the nonillustrative parameters A and 8 it
is useful to generalize' the P (and y) parameters of
Bohr. The set of shapes which have the same
volume as the ellipsoid parametrized by P, we

parametrize also by P. As an additional parameter
we introduce the neck parameter r, defined as the
ratio of the neck cross section to the cross section of
the corresponding ellipsoid (P):

r = A/Rp ——A/(R„R, )

This equation together with the volume conservation

condition
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1(r ) is here a length function, defined by' '

1(r) = II(p~)/~ VII(pp) ~, p =x +y
(12}

11(rp) = [rr(p/R, g/R, ) —n;„]' —( —ir;„)'

1(r) = 0 determines the nuclear surface. For a

spherical shape we get 1(r) = r —R c. The central

potential is defined in such a way that the thickness

of the nuclear surface is constant.
The spin-orbit potential is proportional to the

derivative of a Woods-Saxon-type potential

0.0 0.25 0.5 0.75 1.0 1.25

FIG. 1. Axially and reflection symmetric shapes in

the P —r parametrization.

tti, = a/(5R p~) (10)

In the description of a nucleus by a shell model

potential the surface of the nucleus corresponds to
the equipotential area, where the potential has half
the maximum value Vc/2. The central potential of
the nucleus is defined by the Woods-Saxon-type po-
tential

drop fission valley is shown. The neck ratio r is
plotted as an ordinate, and the elongation parameter P
(not given in Fig. 2) varies in.Fig. 2 according to the
relation P = 1.6 —r. Of course, for the definition
of the potential one has to shift the center of the
coordinate system to the center of mass

V (r) = —(a/h)V Vws[cr &( p]

iaP[V—Vws X V]

where 0. is the vector of the Pauli spin matrices.

The shell model Hamiltonian h 0 in the nonrotat-

ing coordinate system contains, besides th'e central

potential Vws ( r) and the spin-orbit potential

V (r), the kinetic energy operator t and the

Coulomb potential Ve,„i(r), approximated by the

uniformly charged drop with Z —1 protons

h =i+ Vws(&&+ V"(&&

+ —,(1+&3}ve-i(r) .

A~ = Ao —cd~ (15)

taking Coriolis and centrifugal forces into account.
The cranking frequency ~ can be interpreted as a
Lagrange multipler fixing the x component of the

angular momentum operator j. The parameters of
the single-particle Hamiltonian h „are listed in

Table I.
Solving the Schrodinger equation for protons and

The transformation to the rotating coordinate sys-

tem can be done by adding the cranking term —coj„

TABLE I. The param'eters of the Woods-Saxon poten-

tial for the actinide nuclei.

240p Neutrons

~ms «ms
Protons

Vws «w's

0.4 0.7 1.0 1.3 1.6
flRSS RSYflf1ETRY

FIG. 2. Mass asymmetric and axially symmetric

shapes along the fission valley. The elongation parameter

P varies together with the neck ratio r according to

P = 1.6 —r.

depth (MeV)
radius (fm)
diffuseness (fm)
radius of Vc,„~

(fm)

—47.460 —12.000 —62.540 —12.000
7.730 7.060 7.790 7.060
0.660 0.550 0.660 0.550
7.017
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neutrons separately one gets the single-particle ener-

gies e ' in the rotating coordinate system. It is
convenient to do this by a diagonalization of h in a
three dimensional harmonic oscillator basis. Only
those basis states are taken into account which satis-

fy

Ed,r ——(n» + , )Rc—o» + (n~ + —, )fico~ + (n, + —, )iruo,

( (Np+ —, )i(trop,

N p
——10 and flop ——SS MeV/A '~ . Since the rota-

tional and the time reversal symmetry are broken
by the Hamiltonian h there remains only

n„
g» =- ( —1) "X» as a good quantum number. X„ is
the spin quantum number along the x axis. The
dimension of the matrices which have to be diago-
nalized is of the order 250.

It is very well known" that by a simple summa-
tion of single-particle energies e; [or e "'] one gets a
wrong deformation dependence of the total energy.
The total energy has to be renormalized according
to the Strutinsky prescription.

We use three kinds of Routhians 8, of energies in
the rotating system:

(i) First, the independent particle energy

R ip(q, co) = g g Er nr.

T 2

where q represents the set of deformation parame-
ters q = (13,r Pf„},r denotes proton or neutron
states, and n "' are the Hartree-Pock occupation
probabilities of the single-particle states.

(ii) Second, the smooth independent particle ener-

gy

X.
R ( q,co) = g I eg, (F)d e = g g e "'n; "

(18}

where g,(e) is the smoothed single-particle density
obtained by a Strutinsky smearing ' of single-
particle levels and A, denotes the corresponding Fer-
mi energy.

(iii) Third, the classical energy

The same procedure can be done for the angular
momentum I:

) (mi (m)

(21)

Irlg = 6)X~g

Since for the Woods-Saxon potential I„.
g and I agree

very well, the substitution

Iip~ I = Iris + 5I = I s+ (Iip —I )'

is possible but not necessary.
The energy in the nonrotating system is then

given by

+ I E-RLDM + &E

1

ERLDM ELDM + 2 ~rig

5E = 6R + co5I

(22)

The influence of a thermal excitation of the nu-
cleus can be investigated within the framework of
the grand canonical ensemble, which is defined by
the statistical operator g = exp[ —(H —IJN)/TJ.
Since the many-particle Hamiltonian
H = g,. e "'a; a; is a one-particle operator, the for-
mulas of the independent particle model can be
used to calculate the particle number 2V, the energy
E, and the entropy S

N = gn;, n; = 1/I 1 + exp[(e "' —p}/'I] ]

E = g(e,("'+co(j„);;)n;,

S = —g [n;inn; + (1 —n; )ln( 1 —n; )]

and q = (I3,r,M„) is a vector in the space of defor-
mation parameters. 8,(q) and Bc(q) are the sur-
face and Coulomb energies in units of the corre-
sponding energies E, and Ec for the spherical nu-
cleus. In this article the liquid drop parameters of
Pauli and Ledergerber are used. The Strutinsky
prescription renormalizes the Routhian R (Ref. 23):

R = R,i+ M = R,i+ (R,p —R )

R,i(q,co) = ELDM(q) ——,W„s(q)co (19) Using the definition of the free energy F = E —TS,
one obtains from the well known differentials

where W„~ denotes the rigid moment of inertia and
ELDM(q ) the energy of the nonrotating liquid drop

ELDM( q ) E~ [B,( q ) —1]+ Ec[8c(q }—1]

(20}

dE = T dS —p d q + pdN

dF = —SdT —pdq+ pdN

(25)
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the Maxwell relations E(1=105) E(I=60h)

p = aE/—aquas, N p —ar/aq~, N (26)

p is the driving force, necessary to change the set of
deformation parameters q = (P,r,M„).

It is not suAicient to do the Strutinsky renormali-
zation for T = 0. To get a reduction of shell ef-

fects with temperature which is uniform in the
whole parameter space, one has to renormalize the
level density g,p(e) = g,. 5(e —e "') to a liquid

drop model density

D
4J
Z

N

0.0 0.7
F(I=10h,T=1.6MeV)

D
I-
K ~

D
D
LLI
K

N

1.4 0.0 0.7 1.4
F(I=60h,T=1.6 MeV)

gsp~g gLDM + ~g gLDM + (gsp

(27)

I-
K~lk

g D
CJ
4J
K

D

lk
K ~
rD
D
LLI
K

This can be done by a simple scaling function s(E)
fulfilling

f (e) = gsp[s(e)] = gLDM(e) . (28)

The scaled single-particle energies e ' = s(e "') can
be substituted in the above-formulas for E and F to
get the driving force p, which determines together
with the collective mass parameters the collective

path of the nucleus.

N

0.0 0.7
p

Al

1.4 0.0 0.2

FIG. 3. Deformation energy surfaces of At for
mass-symmetric and axially symmetric shapes in the

P —r space: upper left: total energy for I = 10h and
T = 0; upper right: total energy for I = 6(Hi and T = 0;
lower left: free energy for I = 1($ and T = 1.6 MeV;
lower right: free energy for I = 6(Hi and T = 1.6 MeV.

III. RESULTS

By heavy-ion reactions it is possible to form a nu-

cleus with different angular momentum populations
and difFerent excitation energies (temperatures). The
influence of angular rnornentum on the mass distri-

bution width of heavy-ion induced fission of At
has been studied by experiments of Lebrun et al. '

To make a comparison with these experiments this
article shows calculations of potential energy sur-
faces of At.

Calculations in the P —r parameter space give a
first insight in the behavior of this nucleus. Figure
1 shows a grid of shapes. The elongation parameter

P is drawn as the abscissa, the neck ratio r as the
ordinate. For (P = 0/r = 1) one gets the spherical
shape, for r = 1 the ellipsoidal shape, for r & 1 the
dumbbell shape, and for r g 1 the set of bulged dia-
mondlike shapes. All shapes in the P —r space are
axially symmetric around the z axis and mirror

symmetric to the x —y plane. In Fig. 3 four defor-
mation energy surfaces in the P —r space are
drawn. Pairing is not included. The energies are in
MeV. The distance between the equienergy lines is
2 MeV. The zero point of energy is defined by the
energy of the spherical nonrotating liquid drop.
The minima of the deformation energy surfaces are

hatched. The upper left part of Fig. 3 shows that
the ground state of the slowly rotating nucleus is
spherical. The second minimum

(P 0 4/r =0.95. ) is higher in energy than the first
minimum, the second (symmetric) barrier is higher
than the first barrier. At the second saddle

(P 0.85/r 0.95) the fission valley starts running
through some small "lakes" towards the scission
point (r = 0). For I =60tri (upper right part of
Fig. 3) the second (fission isomeric) minimum is al-

ready lower in energy than the first one. The
heights of both barriers decrease and the slope of
the fission valley increases with angular momentum
(see also Figs. 14—16 of Ref. 19).

The influence of an excitation of the nucleus is
shown in the lower part of Fig. 3, where the free en-

ergy surface for a temperature of 1.6 MeV and a
low angular momentum (I = 10tri) is drawn. An
increase of the nuclear temperature enhances the
number of statistical particle-hole excitations and de-
creases the shell structure. At T = 1.6 MeV there
exist still shell effects giving some wiggles in the
equienergy lines. The fission barrier moved now to-
wards a smaller neck (P 1.0/r 0.6). Because
of the term —TS in the definition of the free energy
F = E —TS the values of the free energy get more
negative with increasing T. Only differences of the
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FIG. 4. Free energy surfaces of 'At for mass asym-
metric shapes along the fission valley at a temperature of
1.6 MeV. The elongation p varies together with the neck
ratio r according to p = 1.6 —r The angular mom. enta
I = 10, 40, 70, and 1%Hi are shown.

free energy are important, since in the framework of
the grand canonical ensemble the driving force p
which tends to change the set of deformation
parameters q is given by p = —t) F/8 q ~ T ~, the
gradient of the free energy for constant temperature.
The lower right part of Fig. 3 shows the deforma-
tion energy surface for a heated ( T = 1.6 MeV) and
fast-rotating (I = 60A') nucleus.

For the investigation of fusion-fission events of
heavy-ion collisions we follow the picture of a
damping of the initial relative motion by an excita-
tion of many nucleons. A mononuclear system is
formed. As soon as in the state of slow collective
motion thermal equilibrium is reached the potential
energy description is possible. The potential energy
in the p —r —M„space influences the mass distri-
bution of fusion-fission events. High up in the fis-
sion valley the two fragments can still exchange
masses. During the fission process this exchange is
increasingly inhibited, as the neck between the two
fragments narrows and the corresponding collective
mass tends to infinity. The important parameter
space region for the mass distribution is therefore
the region before the mass exchange starts to be
frozen.

An investigation of the dependence of the total
energy along the fission valley on the mass asym-
metry should show the influence of angular momen-
tum on the mass distribution of complete fusion
events. In Fig. 4 four free energy surfaces for the
temperature T = 1.6 MeV are shown. The corre-

FREE ENERGY (T=1.6MeV)

sponding shapes are depicted in Fig. 2. The neck
ratio r is drawn as the ordinate; r varies from 0.6 to
0.2. The elongation p is changed together with r ac-

cording to p = 1.6 —r, as suggested by the direction
of the fission valley in the p —r plot (Fig. 3). The
mass asymmetry M„= 2M i/(M i + Mi) is plotted
as the abscissa. The distance of the equienergy lines

is again 2 MeV. For low angular momenta the

equienergy lines are narrow parabolas. The driving
force acting on a mass asymmetric nucleus (e.g.,
r = 0.6/M„= 0.9) has a strong component towards

symmetry and a very small component along the
fission valley. The width of the equipotential para-
bolas increases slowly for low angular momenta and
faster for high angular momenta I. Therefore, the
component of the driving force towards symmetric
fission decreases. Simultaneously the bottom of the
valley descends steeper. The neck narrows faster,
since the componerit of the driving force in the
direction of the fission valley increases. An asym-
metric quasicompound nucleus at high angular mo-
menta has less tendency and less time to develop to-
wards symmetric fission. The dependence of the
driving force p on the angular momentum I ex-

plains in a simple way the increase of the full width
half maximum of the fission mass distribution mea-

sured by Lebrun et al. '

The width of the parabolic equienergy lines

changes only slightly for small angular momenta
and considerably for high angular momenta, in

agreement with the experimental results. The
reason for this behavior is the difference in the mo-
ments of inertia for symmetric and asymmetric
compound nuclei. Since asymmetric configurations
have larger moments of inertia, their rotational ener-

gies do not increase as fast with increasing I as those
of symmetric configurations.

Moretto and Schmitt calculate the dependence of
the total energy of two touching liquid drop spheres
on mass asymmetry and angular momentum within

the liquid drop model. They find in agreement with
the above calculations that (at the scission point) for
suAiciently heavy systems, the potential as a func-
tion of mass asymmetry has a minimum at sym-
metry. The second derivative of this minimum in-

creases with increasing angular momentum. From
this fact they conclude that the mass distributions
for large angular momenta are more sharply peaked
about symmetry than the mass distributions for
small angular momenta. But the above discussion
shows that it is not suAicient to investigate the po-
tential at the scission point where the mass splitting
is already frozen. One has to take into account the
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evolution of the system along the fission valley

determined by the driving force p and the collective
masses. If this is done, one arrives at the opposite
conclusion from that of Ref. 7.

Gregoire et al. ' guess that a new'mechanism
which is intermediate between deep inelastic reac-
tions and compound nucleus formation is responsi-
ble for the increase of the mass distribution width
with angular momentum. They guess that this
mechanism comes into play when the fission barrier
vanishes and get a sudden increase of the width at
the corresponding critical angular momentum. The
above discussion shows that one can explain the in-

crease of the mass distribution width without assum-

ing a new mechanism, only by investigating the po-
tential energy surface, and that one should expect a
smooth increase with angular momentum. This in-

crease is expected to be "quadratic" since the angu-
lar momentum enters quadratically in the rotational

energy. Of course, the vanishing of the barrier coin-
cides with the increase of the width since the vanish-

ing of the barrier is also connected with a difference
between moments of inertia and the dependence of

the rotational energy on angular momentum.
For cold actinide nuclei there exist two distinct

fission channels, a mass asymmetric channel and a
mass symmetric but axially asymmetric channel. A
temperature of 1 MeV is sufficient to get rid of the
asymmetric mass component, At temperatures of
1.6 MeV the behavior of the nucleus is mainly
determined by the liquid drop energy, but as can be
seen from Figs. 3 and 4, shell effects may still have
some disturbing influence. Since the rotational part
of the rotating liquid drop energy is influenced by
the moment of inertia the equienergy lines change
their shape with increasing angular momentum I.
Therefore, the force which tends to press an asym-
metric "quasicompound" nucleus versus symmetry
decreases with increasing I.
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