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Functional integral formulation of the mean-field approximation for many-body systems

is used to study the nuclear partition function. Both static and dynamic mean-field solu-

tions with statistical occupations of the single particle wave functions are discussed. These

correspond to different physical processes in the nuclear system. In the static case the ef-

fect of mean-field fluctuations on the nuclear level density is exhibited. This effect enters

consistently along with the usual eAects of temperature and chemical potential fluctuations.

Together they account for generalized random phase approximation correlations and pro-

duce bosonlike terms in the nuclear entropy. Because of the self-consistency of the ap-

proach, no overcounting of the collective and single-particle degrees of freedom occurs.
The effects of the single particle continuum are ipcluded in the discussion. Consequences

of a possible multiplicity of static mean-field configurations are briefly discussed. Dynami-

cal mean-field solutions are considered in relation to compound nucleus fission. They pro-

vide the extension of the mean-field description of spontaneous fission given recently. A

microscopic expression for the energy dependence of the average fission width is presented.

It combines both the dynamical and statistical features of the tunneling mean-field solution

in the subbarrier region.

NUCLEAR STRUCTURE, FISSION Static and dynamic mean field

with statistical occupations, level density, RPA correlations, bosonlike

terms in the nuclear entropy, single-particle continuum, mean-field

equations for compound nucleus fission.

I. INTRODUCTION

Considerable interest has recently been focused on
investigating the capabilities of the dynamical
mean-field approximation for the description of
large scale nuclear phenomena. This interest is

mainly connected with the realization that the func-
tional integral method developed in statistical phy-
sics and quantum field theory provides an excellent
framework for the discussion of the dynamics of the
nuclear many-body system. The flexibility of the
method is reflected already in the variety of different
functional integral expressions one can select as a
suitable starting point.

The possibilities begin with the original Feynman
path integral' over coordinate trajectories, which is
appropriate for the purpose of the conventional sem-

iclassical analysis of problems with few phenomeno-
logically selected degrees of freedom. A more
general type involves path integrals over field vari-
ables, which in the fermion case are anticommuting
c numbers. This was first introduced into nuclear
physics in relation to the so-called nuclear field
theory. Yet another kind of functional integral fol-
lows the exact propagation of the many-body system
as an integral of propagations in a fluctuating one-
body field. Finally, the coherent state formulation
of path integrals has recently been extended to the
fermion many-body systems in a number of stud-
ies as a functional integral over determinantal
wave functions.

The functional integral method has proved to be a
very useful approach in the analysis of dynamical
mean-field approximations. In a previous work the
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mean-field equations for a transition amplitude were
derived. They were extended in Ref. 10, which
represents a first step toward a functional integral
mean-field theory of the nuclear S matrix, discussed
from a different point of view in Ref. 11. The time
dependent Hartree-Fock (TDHF) description of
large amplitude nuclear motions in bound states was
presented in Refs. 12—14 and finally, the mean-
field equations for tunneling and spontaneous fission
were derived in Refs. 15 and 16.

The present work is a continuation of the study of
the functional integral mean-field approximation
based on the fluctuating one-body field representa-
tion of Ref. 6. At the moment, this particular form
of the functional integral seems to provide the shor-
test way of getting mean-field results. However, it
has a disadvantage in that the exchange terms in the
self-consistent potential arise only in a more compli-
cated formulation discussed, for instance, in Ref. 13.
Another formulation in which the exchange terms

appear in a more natural way is presumably provid-
ed by determinantal functional integrals. 9 Their
understanding, however, is still not entirely clear
and further investigation of their properties is now
under way.

In these circumstances we use the simple form of
Ref. 6 and essentially work with Hartree rather
than Hartree-Fock mean fields. Our results, how-

ever, in most cases are of such a nature that there
is little doubt how they should be modified in or-
der to include the exchange terms. This amounts
to replacing the matrix elements of a two-body in-

teraction VJkI by its antisymmetrized counterpart
VfJkI VfJkI VfJIk . A complete exposition of this
aspect based on a particularly simple modification
of the fluctuating one-body field formulation will

be published elsewhere. ' Eventually, the pairing
should also be considered.

The general purpose of this work is to introduce
statistical averages in the dynamical mean-field

equations, such that the theory will sti11 retain the
one-body self-consistent potentials but will not be
limited to an evolution of Slater determinants. We
are particularly interested in the generalization of
the spontaneous fission theory .of Ref. 15 to the
description of induced fission. By the latter we
mean the fission of a compound nucleus, which is

characterized by a given excitation energy and total
angular momentum. Although it is, in principle,
possible to use the theory of Ref. 15 for the calcula-
tion of the partial fission widths of all the nuclear.
states over which the compound. nucleus is distribut-

ed, this way is not only intractable in practice but is

probably conceptually incorrect in view of the aver-

age nature of the mean-field description. One needs

instead a new type of theory with statistical averag-

ing built into the equations.
For the description of the compound nucleus it-

self such a theory has been known for some

time. ' ' It is a temperature-dependent generaliza-

tion of the static Hartree-Fock method. The con-
ventional discussion' employs the variational princi-

ple for a free energy with the result that the self-

consistent potential is determined by the one-body

density given as a sum over single-particle states

with statistical occupation numbers. The effective

temperature is determined by the requirement that
the average excitation energy is equal to a given en-

ergy of a compound nucleus.
We start in Sec. II by showing that this static

theory is contained in the functional integral formu-

lation of the mean field. We do work with the
grand-canonical partition function. However, it
should be emphasized that this does not imply that
we assume that the nuclear system is in actual con-
tact with a heat bath which has a real temperature
and chemical potential. As is well known, the par-
tition function is the natural object to study in order
to extract average information about various physi-

cal quantities from a functional integral. The tem-

perature and chemical potential will be seen as
parameters which facilitate the average over the ir-

relevant degrees of freedom. Their mean values will

be fixed by the energy and the particle number (cf.
Secs. IV and V). All this is standard and we men-

tion it only in order to avoid a possible misunder-

standing,
Discussing the static mean field in Sec. II, we

point out that there should be a multiplicity of the
mean-field configurations corresponding to different

local minima of the nuclear free energy as a func-
tion of deformation, and that the contribution of all

these minima should be included in the partition
function. In our picture these minima do not corre-
sporid to Slater determinants of the excited states
which become lower in energy than the ground state
as the deformation increases. In the mean field
with statistical occupations these are all mixed to-
gether and their effect is accounted for by the effec-
tive temperature. We expect that'the higher local
minima appearing in the free energy will correspond
to a geometry of the mean field which is very dif--
ferent from the ground state.

Already, in the discussion of the static limit, it be-
comes clear that dynamical configurations of the
mean field should also arise. In the functional in-
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tegral for the partition function the fluctuating one-
body field depends not only on space variables but
also on the time parameter. This is a' quantum
mechanical effect and as a consequence one should
expect dynamical mean-field configurations in the
situations where quantum fluctuations of the field
are important. In Sec. III we discuss the simplest
implication of such fluctuations around the static
mean-field solution. Working in harmonic limit we
calculate appropriate corrections to the zero order
partition function. These correspond to so-called
one-loop corrections in the loop expansion and in
the conventional language of nuclear physics
represent the eft'ect of the residual interaction in
terms of random-phase approximation (RPA) corre-
lations. One-loop corrections to a mean field were
already discussed in Ref. 14, a preprint of which we
received when the present work was completed.
The difFerence in our result is that the frequencies of
the eigenmodes of the harmonic fluctuations are
determined not by ordinary RPA equations but by
using a more general form' suitable for finite tem-
peratures. This difference is due to the mean-field
equations with statistical averages over all Slater
determinants as opposed to the separate treatment of
each determinant in Ref. 14. Our result is for the
averaged free energy, whereas Ref. 14 dealt with
corrections to energies of isolated bound states.

In Sec. IV we start the discussion of the micro-
canonical partition function, i.e., the level density.
In order to define this quantity for the compound
nucleus one should separate the appropriate mean-
field configurations. The additive nature of the sad-
dle point. approximation is very useful in this
respect. We discuss the role of the single-particle
continuum states in relation to the nucleon gas of
evaporated nucleons in equilibrium with the com-
pound nucleus. We indicate the proper subtraction
procedure which generalizes the treatment of Ref.
23 and provides a physically correct, volume in-

dependent level density of a compound nucleus with

a given excitation energy and nucleon number. The
implementation of the results obtained in Sec. III
with respect to the quantum fluctuations of the
mean field produce additional terms in the entropy
which are of boson nature and can be viewed as a
contribution from collective vibrations of the mean
field. No overcounting of single-particle and collec-
tive degrees of freedom occurs.

Another efFect leading to a possible increase of
the level density is related to the presence of several
local minima in the nuclear free energy as a func-
tion of deformation.

II. MEAN-FIELD CONTRIBUTIONS
TO THE NUCLEAR PARTITION FUNCTION

The grand canonical partition function is

Z(u,P) = Tre (2.1)

where 2 is the number operator, P is the inverse

temperature, a/P is the chemical potential, and H is

the exact Hamiltonian of the system. In a nuclear
physics application H is.usually replaced by a one
body Hamiltonian of the independent particle model
and the trace is computed in a standard way. "'

The level density p(E, A) is then given by the La-
place transform of Z (a,P) over P and a variables

which is evaluated using a saddle point approxima-
tion (SPA). The SPA conditions define the mean
temperature P ' and the mean chemical potential

a/P which are given in teims of the excitation ener-

gy and the particle number

(2.2)

where the brackets denote statistical averages. Fur-
ther approximations of the resulting expression for

p(EQ) lead to the well known Bethe formula.

In Sec. V we derive, apparently for the first time,
mean-field equations which contain both dynamical
-and statistical effects and are not confined to the
evolution of a Slater determinant. We discuss their
relevance for the problem of compound nucleus fis-

sion and show that the spontaneous fission equations
of Ref. 15 arise as their limiting case. We present
expressions for the averaged fission width given as a
function of the excitation energy of the fissioning
compound nucleus.

We will see that the presence of a timelike
parameter in our equations is related to a kind of .

dynamical averaging over the range of deformations
from the compound nucleus shape to the scission
configuration. The statistical occupations of the sin-

gle particle wave functions are independent of the
"time" parameter. However, they do depend self-

consistently on the entire dynamics of the mean
field and provide relative weights of particular de-
formations depending on how rapidly the mean field
is changing in the vicinity of these deformations.
These self-consistent statistical occupations define
the "dynamical" entropy in the expression for the
fission width which effectively counts the many nu-

cleon states available to the nuclear system in the
fission process.
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p(x) = g 5(x —x;), (2.3)

K' = K ——V(0),A

2

where j' is the kinetic energy. A more general
form is discussed in the next section together with
the corrections to the mean-field result.

Using the functional integral representation of
Ref. 6 the trace in (2.1) can be written as

We use the mean-field functional integral method
and evaluate Z (a,P}. We do not make the indepen-
dent particle assumption but rather define a one-

body potential self-consistently and calculate correc-
tions to the result. Our main purpose in this section
is to demonstrate how the well known expressions
for the temperature dependent mean field' ' can
be obtained using the functional integral formula-
tion. This will serve as a basis for our discussion in

the following sections.
For notational simplicity, in this section we con-

sider H with a two-body interaction which depends
on the relative distance only

I=K'+ —, f p(x)V(x —x')p(x')dx dx',

with similar notations for (o;Vo) and (K',p). Here
T„denotes ordering with respect to the "imaginary
time" parameter g which is chosen to vary from

1 1——, to —,. The integration measure is defined

similarly to that in Ref. 6.
As in the standard finite-temperature many-body

theories, the introduction of the time r—:Pg is ulti-

mately a consequence of quantum mechanical or-

dering eAects accounting for noncommutativity of
kinetic'and potential terms in the Hamiltonian.

We will evaluate the integral in (2.4) by the sad-

dle point approximation. The saddle point condi-
tion singles out the most significant mean-field con-
figurations. In general, one should expect that more
than one such configuration will result from the
saddle point selection. The dependence of the o.

field on g also implies that both static g-
independent and dynamical g-dependent configura-
tions should be expected. In this section, we will

concentrate on static saddle points. The role of
dynamical o. fields will be discussed in Secs. III and
V.

It is convenient to write the integrand in (2.4) in
the form exp I

—PQ[a,P,o] ] with the efFective

grand canonical free energy

Z(aP) = fDo e~ ' ' 'Tre U (P),

where cr —= o(x,rl},

(2.4) Q[ag,o] = —, (o,V—o) P'l—nTre U~(P) .

(2.6)

U (P) = T„expI P[(K',p)+ (p—,Va)] ],
(2.5a)

The saddle point condition 5Ql5o = 0 gives the fol-

lowing equation for o:

1/2

(p, Vo) = f di) f dxdx'p(x)V(x —x')o(x', rl), oo(x,rl) = (p(x, r).)), , (2.7a)

(2.5b) with the notation

Tre U (PI2,Pg)p(x) Uglar), —P/2)
p(x, r) )

Tre U~(P)
(2.7b)

The appearance of the two operators U in the right-hand side of (2.7b) is similar to Eq. (3.6) of Ref. 6 and is
due to the efFect of the time-ordering operator T„ in our definition [Eq. (2.5a)]. To cast Eq. (2.7a) in a more
transparent form we consider rl-independent o's and evaluate the trace in (2.6) in a basis of eigenfunctions of
U (P). For the purpose of this evaluation consider a single particle equation

2 ——,V(0)+ f V(x —x')a(x')dx' 1(;(x)= e;1(;(x) . (2.8)

Slater determinants built from the solutions of
(2.8) represent eigenfunctions of U with r)-

independent o; The eigenvalues are

exp $ ( Pn;e;), —
i=1

where ri; = 0 or 1 and g,.",n; = A. All the
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values of A should be included in evaluating the
trace in (2.6) and one obtains

I

aAU (p) g g Xi=i "i i

a=pIn, . I

In a standard way this is transformed as

(2.9)

Tre U (P) = g(1+ e ')
i=1

(2.10)

and the free energy of Eq. (2.6) becomes

Q[ag, cr] = , (—cr,—Vcr) P—i g In[1 + e '] .

(2.1 1)

Note that e s in the second term are functionals of
o'.

Using perturbation theory in Eq. (2.8) to calculate

5e;/50; one finds from the SPA condition 5Q/5cr
= 0 an explicit equation for cr(x) in this static case

bound states of A /2 nucleons, and so on. Obvious-

ly, these contributions are described by different
solutions of Eq. (2.8) with different spatial localiza-
tion.

Apart from this trivial multiplicity of solutions
one should also expect different solutions corre-
sponding to different shapes of the mean potential
for the same nucleus. Analogous to the ground
state energy, the free energy as a function of defor-
mation exhibits several minim. ' However, in con-
trast to the ground state where only the lowest
minimum is considered, one must in principle ac-
count for all the minima in computing the finite

temperature partition function. Formally, this fol-
lows from the prescription of the SPA by which the
contributions from all the saddle points should be
included in the evaluation of the functional integral
(2.4). The relative importance of various contribu-
tions is, of course, determined by the relative ener-

gies of the corresponding minima.
In the lowest order SPA the partition function is

thus seen to have the form
cro(x) = g f;g; (x),

i=1
. (2.12a)

where we defined the Fermi occupation numbers

(2.12b)
Op

(2.14)

cro(x) = g,.",1(; (x)e

s=1 e
(2.13)

As was indicated earlier there are, in principle,
many solutions to the mean-field Eq. (2.8). The
simplest way to see this is perhaps in realizing that a
partition function describing a nuclear system with
the average number of nucleons A should contain
contributions from a bound state of A nucleons, two

Not surprisingly, the resulting mean field is a statist-
ical average of the single particle densities and coin-
cides with the expressions obtained using a varia-
tional principle' ' or standard finite temperature
perturbation theory. Although the approximation
is formulated in terms of a one body potential and
single particle wave functions, it is clearly not con-
fined to a single Slater determinant. Rather, the
sum over determinants present in (2.9) is contained
in the mean-field expression through the occupation
numbers for single particle states.

One should observe that working in the grand
canonical representation was only a matter of con-
venience. In canonical representation, for instance,
the mean-field expression (2.12) would be replaced

by

with the single-particle free energy Qz [a,P,cro] de-

fined in (2.6) or (2.11) and 00 calculated from Eqs.
(2.8) and (2.12). The sum runs over all mean-field
solutions oo and the additional term —PQ, [a,g,cro]
in the exponent of (2.14) represents the log of the
functional integral (2.4) with the integrand expanded
around 0'p. This integral is usually evaluated in a
quadratic approximation and will be discussed in
the next section. It will be shown there that it in-
cludes the effects of collective motion and hence the
subscript in Q, [a,P,cro].

The two terms in expression (2.11) for the
single-particle part Qz [a+,cro] of the free energy
have an obvious interpretation. The second term is

simply the free energy of independent nucleons in a
self-consistent one body potential determined by O.p.

The first term is the finite temperature generaliza-
tion of the usual correction for overcounting of the
potential energy in the sum of the single-particle
energies.

The simple summation (2.14) over the saddle
point configurations may appear to involve an
"overcounting" error due to the nonorthogonality of
the many particle states built upon different confi-
gurations. This error is, however, expected to be
small when all the saddle points are well separated
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since then the states are approximately orthogonal.
The error is, in'fact, consistent with the saddle point
approximation which breaks down when some of
the saddle points are too close by an appropriate
measure. In the latter case a more complicated uni-

form expression derived in Ref. 27 should replace
the sum (2.14). We will not discuss such situations
here.

Introducing

+
pk ——a; ak

this becomes

A. AH = g+ijpij+ z . Vijklpikpj! i

(3.2)

(3 3)

III. FLUCTUATIONS AROUND THE MEAN FIELD

We will now discuss the term Q, [a,P,pro] in

(2.14). This is given by the functional integral over
the fluctuations arourid the mean-field configuration
00. It can be calculated approximately and thus

provide corrections to the mean-field result

Q~[a,P,iro]. For the purpose of this calculation it
will be more appropriate to work with the many-
body Hamiltonian in a second quantized form for
which we use the notation

/

where 1! ' includes the self-energy term ——,A V(0)
as in Eq. (2.30). Repeating the steps at the begin-
ning of Sec. II, one obtains the same representation
[Eq. (2.4)] for the partition function, with the only
difference that o is now og, (i)) and Eqs. (2.5) are
appropriately changed.

Our est~ate of the functional integral represent-
ing exp( —PQ, [a,P,oo]) is given as the Gaussian
functional integral which is obtained by expanding
Q[a,P,o] in (2.6) around oo and retaining only qua-
dratic terms. In this approximation

'I

c D e
—P/2[/ (5 0/505cr)g] 3 4

H = yI ffai aj+ —, y Vg/i, iu; &J &i&i,
+ +

ij tj k I

(3.1)

where g =
gii, (g) = oa(il) —o;i, in the general

representation defined by (3.1).
Using Eq. (2.6) we calculate the second variation

of 0 and obtain

50 = —V!! 5(n —rj') PVijinD—i., (rjr!')Vi ~
5cr;g rj 5o!

where

(3.5)

D „, (rjrj') = (p „(rj)P (rj')), —(p, (rj)&o,(P (rj')), (3 6)

and we have used the summation convention over repeated indices and the notation of Eq. (2.7b) to define
quantitites like (P(rj) }.

When difFerentiating (2.6) one should take account of the time ordering operator Tv in the definition (2.5a)
so that the densities p in (3.6) are placed between the operators U as in (2.7b).

In Eq. (3.6), D (rj,rj ) is the standard finite temperature density-density correlation function. Its explicit ex-
pression is conveniently found by differentiating both sides of (3.6) with respect to il. Using the equation of
motion for P;~(q) in the single-particle representation specified by the mean field equations (2.8) and (2.12), one
finds

—P(e~ —e„)Dp„——5„„5p,(fp —f„)5(rj—g') . (3.7)

The inhomogeneous term arises from the difference in the values of D (il,i)') when i)~ rj' above or below rj'.
A formal solution of Eq. (3.7) is

(3.8a)

with

(3.8b)
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where we have defined matrices

hap„5——~,5 (e„—ep), (3.9a)

(3.9b)Frn, ~ = 5i.5~(fn fp—} .

As is well known, D can be interpreted as the finite temperature generalization of the particle-hole propaga-
tor. It can be written in the equivalent form

D&„(r),rl') = fz(1 —f, )5&,5 e ', for il & il'
(3.10)

which can also be obtained using Wick's theorem for finite temperature in Eq. (3.6).
We now proceed to evaluate the Gaussian integral (3.4). It is expressed via the determinant of the second

variation (3.5)

—PQ
e

1/2

= [det(1+ PVD)]
det(PV+ P'VDV)

(3.11)

One should recall that the functional integral measures Do in (2.4) and Dg in (3.4) contain the determinant of

PV which is written explicitly in the numerator of (3.11). The determinants in (3.11}are taken with respect to

both space and time g.
Using the explicit form (3.8) of the correlation function D, we transform

1+PVD = 1 —PVFG = [(PG) ' —VFPG = — —« —VF — —«1

P di) P di)
(3.12)

Consider now an eigenvalue equation

(b,e + VF)P = cog" . (3.13)

As discussed in Ref. 19 this is a finite temperature generalization of the RPA equations. The main distinction

of these equations from their zero temperature counterpart is that all the single particle energy differences

c; —Ek appear lil (3.13}while the sharp particle-hole separation is replaced by the presence of the Fermi occu-

pations contained in F. Some general properties of (3.13) are reviewed in Appendix A, where we also show

how the ordinary zero temperature RPA is recovered as a limiting case.

The determinant in (3.11) can be expressed in terms of the RPA eigenfrequencies ~„Using (3..12) and the

definition [Eq. (3.9)] of «we obtain

det(1+ PVD) =
det

1 d

det — —b e1

dY/

2~iN —«ki

~&kj' = &k —&J' (3.14)

1 1

Note that the operators here are diagonalized in the interval ——, ( g ( —,.
The ratio of products (3.14) can be evaluated by using Euler's formula. Thus we obtain (see Appendix A

for details)

„2 i h(Pb „/2)
2 sinh(Pco, /2)

' (3.15)

This expression has a clear physical meaning. The
Gaussian contribution to the free energy amounts to

, accounting for the small quantum fluctuations of
the system around its stationary configuration de-

fined by the temperature dependent mean-field Eq.
(2.8) and (2.12). The eigenmodes of these fluctua-

tions are determined by the solutions of the tern-

perature dependent RPA equation (3.13). In this
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approximation each eigenmode is essentially an in-

dependent quantum oscillator, the partition of which
is

lim Q, [a,p o'o] = g co /2 Q (ep —&s )/2
p-+

(3.17)

—Pcy (n+1/2)V

n=0

1

2 sinh(Pco„/2)

(3.16)

The product of these expressions enters the

denominator of (3.15). If alone, it would contain at
least two incorrect features. First, the number of
RPA eigenmodes is infinite and the product
diverges. Second, the bosonlike RPA modes are

not independent but are built of the fermion

particle-hole excitations already accounted for in the
single-particle free energy Qz[a,P,oo] in Eq. (2.14).
Clearly, the numerator of (3.15) not only renders

the ratio finite but also handles the overcounting of
the degrees of freedom by canceling out the effects
of those modes m„which are not significantly shifted

from the unperturbed energies he;k as, for example,
in the high frequency continuum. In other words,
collective modes produce the largest effect, being

mostly influenced and shifted by the residual in-

teraction.
The result of Eq. (3.15) represents a correction to

the mean field expression (2.14) for the nuclear free

energy. A similar correction has been discussed in
condensed matter physics by summing the ring di-

agrams of the temperature dependent perturbation
theory ' around a translationally invariant mean
field with plane wave basis. This summation

presumably can also be carried out for finite nu-

clear systems. We regard the relative simplicity of
our derivation, the transparent physical interpreta-
tion of our result (3.15), and the natural relation to
the temperature dependent RPA equation (3.13) as

advantages of the functional integral approach.
The single-particle free energy Qz [a,P,oo] in ex-

pression (2.14) has an obvious zero temperature lim-

it

and the quantity in brackets is the RPA correlation

energy correction to the Hartree-Fock result. As is

explained in Appendix A the particle-hole com-
ponents in Eq. (3.13) become decoupled from the

particle-particle and hole-hole subspace in the limit

of zero temperature. Moreover, the eigenfrequencies

co„corresponding to this subspace cancel the terms

he&~ and hei, i, in. the numerator of (3.15), and only

the usual zero temperature RPA frequencies and
particle-hole energy differences are left in the ex-

pression (3.17).
We now comment on the zero eigenfrequencies of

the RPA equation (3.13). They arise because vari-

ous symmetries of the exact Hamiltonian are broken

by the mean field solution. The simplest such sym-

metry is translational invariance. The correspond-
ing zero eigenfrequency can in principle be treated

by the general methods of Ref. 28. We simply ob-
serve that for Gaussian corrections this treatment
will amount to the inclusion in the partition func-
tion of a contribution from the translational motion
of a nucleus. Since this motion is decoupled from
the internal excitations and we are interested only in

the latter, 'we should simply omit the corresponding
modes in the Gaussian corrections. Therefore, only
nonzero frequencies are included in expression
(3.15).

More interesting is the breaking of the rotational
invariance which occurs when the mean field poten-
tial is deformed. For the case of axial symmetry
around the z axis, a more suitable partition function
to use is

The level density at fixed A, E, and J„will then
arise by appropriate Laplace integration over a, P,
and 0„. In the next section we discuss the projec-
tions for A and E. Treatment of angular momen-
tum is deferred to a future work.

where the fixed Fermi energy ef = a/P defines the
particle number A. The Oo in the second term is
given by Eq. (2.12a) with the occupations f; re-
placed by step functions 8(e; —ef ). Apart from
the Fermi energy term, expression (3.16) is the
Hartree-Fock energy of the A particle ground state.
The Gaussian correction becomes in this limit

IV. COMPOUND NUCLEUS LEVEL DENSITY

p(E, A) = Tr5(E —H)5(A —A) . (4.1)

Introduction of a physical temperature and chem-
ical potential in nuclear physics problems is prob-
ably relevant only for applications in astrophysics.
A more appropriate quantity is the level density
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This is related to the partition function Z (a,p) by
the standard Laplace transform.

1 l oo

p(E A) =
2 ff,dadpe ~+i' Z(a,p) .

(2n.i)'
(4.2)

In the mean-field approximation, Z(a,p) is given by
the sum (2.14), where each term corresponds to a
diAerent mean-field configuration. In the present
section we are interested in the part of the total level

density (4.2) which corresponds to an A particle
compound nucleus. Accordingly, we use in (4.2)
only contributions to Z(apt) with mean-field confi-
gurations in which all the nucleons move in one lo-
calized self-consistent potential well.

The single-particle continuum states in this poten-
tial require special attention. The population of
these states at finite temperature leads to a constant
particle density (2.12a) at distances that are large
compared to the extent of the potential well. This
reQects the fact that the finite temperature partition
function does not describe a definite number of par-
ticles. On the contrary, it necessarily describes a
self-bound nuclear system in equilibrium with an ex-
terior nucleon gas consisting of evaporated riucleons.
As usual the average particle number and energy of
this system are proportional to the volume of the
system. This implies that in order to use a relation
such as (4.2) for the definition of the level density of
a compound nucleus with a given finite nu'mber of
nucleons and finite energy, it is not sufficient to
separate the relevant terms in expression (2.14). In
addition, one must subtract the contribution of the
exterior nucleon gas present in the grand canonical
free energy Q[a,p,cro] = Qz[a,p,oo] + Q, [a,p,cro]

S = —aA + pE —pQ(a, p) (4.3a)

and as defined above

Q(a,P) —= Q[a,P,oo] —Q[a,P,cJ„]

= Qp[a P oo]+ Q, [a,p,pro] (4.3b)

is given in terms of the subtracted single-particle
and collective parts of the free energy,

This procedure is analogous to that used in Ref.
25, where the contribution of a noninteracting nu-
cleon gas was subtracted when the nuclear free en-

ergy was calculated in the framework of the in-

dependent particle model. In our case, the free en-

ergy of the nucleon gas should be taken as
Q[a,P,o„]= Q~ [apt,o„]+ Q, [a,P,o „],where o„
is a constant mean-field solution which coincides
with the mean-field oo of Eq. (2;12a} at large dis-

tances.
The explicit expressions for Qz [a,P,cr ] and

Q, [a,P,o.„]are given by Eqs. (2.11) and (3.15) cal-
culated for a constant o. = 0. . We discuss these
expressions in some detail in Appendix B and show
that their subtraction from the free energy
Qz[a,p,oo] + Q, [a,p,oo] renders the difference
Q(a,p) independent of the volume of the system
and thus leads to a finite average energy and particle
number. This subtraction procedure is necessary
for the appropriate definition of the volume in-
dependent compound nucleus level density. In or-
der to avoid unnecessary repetition we will always
denote subtracted quantities like Q(a,p) with a bar.

Thus we use Z(a,P) =—exp[ —PQ(a,P)] in rela-
tion (4.2). The integrand then has the form expS,
where the entropy S is

1
1" a—Pe;

Q&[ap,o'o] = ——,(OO, Vo&) ——g ln(1+ e ') —[ ca J,
i=i

(4.3c)

Q, [a,P,oo] = . g —1nsinh(Pc0„/2) —g —lnsinh(Pheik/2) . —( ~ ),1 . 1..Op ";.kp
(4.3d)

where ( 00 j denotes the subtraction of the same expression corresponding to cr„. This is to be calculated as
the infinite nucleon gas quantity at the same a and p. We note that expression (4.3d) does not explicitly

depend on u as is usual with phononlike excitations.
In a standard way we evaluate the Laplace transform (4.2} over a and p by the saddle-point approximation.

The saddle-point conditions i) S/8 p = 0 and i) S/i) a = 0 yield the following equations:

E = r)/dp(pQ) = ~ g f;e; — (iro, Voo) ' —j

&(Pcs„) d(P&e; ) 1

+ —, g coth(F0„/2) —g coth(pb, e;k/2) ——, [ oo [,' .,0 ~p ";,k dP
(4.4a)
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A= —&a/aayn=. gy, —
I }

i=1

a 8 he;k
+ P/2 ' g coth(Pro„/2) —g coth(Pheg, /2) —P/2I Do J,

0 Ba g&k
(4.4b)

where, as in Eq. (4.3), the notation I Oo j always stands for the subtracted quantity. The solutions ap and Pp of
Eqs. (4.4) fix the mean temperature and chemical potential so that the level density is given at the correct exci-
tation energy and particle number

A =Ap+A, .

We denote by E~ and Az the single particle part given by the first two terms of (4.4a) and (4.4b), respix:tively.
The remaining terms denoted as E, and 3, represent contributions from the collective degrees of freedom in
the sense defined in the preceding section.

In Eqs. (4.4) we have accounted for the fact that co„and Aeik have implicit dependence on P and a through
the mean-field potential. This appears only in the collective terms since the single particle part of S, Eq. (4.3),
is already stationary with respect to the changes of the mean field.

It is expected that for heavy enough nuclei and not too high excitation energies, the implicit dependence of
co„and he;k on the variables a and P is slow and can be neglected. In this case one can replace the derivatives
8 (Pro„)/8 P and 8 (Phe;k)/B P in (4.4a) by co„and b,e;k, respectively, and completely neglect the last two terms
in (4.4b). In this approximation the entropy (4.3a) can be written in a transparent form

(4.5)

where

S = — g [Jlnf; + (1 —f;)ln(1 —f;)] + I ],
i=1

(4.6)

S, = g [(1+b„)ln(1+ b, ) b„lnb, ]——g [(1+b;k)ln(1+ b;k) —b;klnbk] —
I 0p [ . (4.7)

v&0 i&k

Here, in analogy with fermion occupations f;, we have introduced "boson" occupation numbers

b =(e "—1) (4.8)

ik 1)—i (4.9)

The entropy S is thus given in terms of the usual expressions for fermion and boson entropies. The collective
part consists of the difference between the entropy associated with the RPA bosons and the "particle-hole" bo-
sons.

Evaluation of (4.2} by the saddle-point approximation yields

S(E+,o())

p(EQ) = g 2~v'D
~o

(4.10)

where S(E+,op} is given by Eq. (4.5) and D is the usual determinant of second derivatives of S with respect to
a and P. Using Eq. (4.4) it is written as

BA/Ba BA/BP= aE/aa aE/aP (4.11)

and accounts for the fluctuations of a and P around their mean values ap aild Pp.
The sum in (4.10) is of the same origin as the sum in Eq. (2.14) and runs over all mean-field configurations
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cro, which consist of a single potential well at the given energy E and particle number A. As was discussed in

the Introduction and in Sec. II, mean-field configurations with geometrical shapes very difFerent from the
ground state may produce local minima in the nuclear free energy, as can be seen from the numerical exam-
ples of Ref. 21. When the excitation energy E becomes higher than these minima, additional terms appear in

expression (4.10) and should lead to the increase of the level density over the value given by the ground state
configuration of the mean-field potential. If this effect is significant one should also expect to observe a kink-
like structure in the energy dependence of p(EQ.} appearing at the energies of higher minima. It is obvious
that for given values of E and A the mean temperature Po 'and chemical potential a+PO associated with dif-
ferent terms in (4.10) are, in general, diA'erent. This is not surprising in the present context, where the con-
cepts of temperature and chemical potential play only an auxiliary role.

V. COMPOUND NUCLEUS FISSION

As was discussed earlier the saddle-point equa-
tions for the functional integral (2.4) will, in general,
have many mean-field solutions. Let us qualitatively
discuss various possible solutions in a system of A

nucleons with A large enough to contain a fissioning
nucleus. Consider a microcanonica1 partition func-
tion Tr5(E —H)5(A —A }. For a given energy E
above the ground state this function contains a con-
tribution from an ensemble of excited states with a
given energy E, i.e., the compound nucleus. Clear-

ly, this ensemble is not the only contribution to the
partition function. Various possible groups of fis-
sion fragments with different internal and kinetic en-

ergy, consistent with the given total energy, also
contribute to the partition function. Owing to
volume efFects these contributions are actually
overwhelmingly large in comparison to the com-
pound state.

In order to define a separate compound state con-
tribution in the exact partition function one should,
in principle, use appropriate projection operators
which isolate difFerent parts of the many-nucleon
Hilbert space. However, in the mean-field approach
a separation is performed automatically by means of
difFerent configurations of the mean field. The par-
tition function is then approximated by a sum over
contributions of these configurations. A configura-
tion of the mean field in which all the nucleons are
bound together should be identified with the corn-
pound state of the fissioning nucleus. Mean-field
configurations which consist of widely separated

I

parts with the nucleons divided between the parts
produce contributions in the partition function
which should be attributed to various fission frag-
ments and so on. This projection property of the
mean-field description is a considerable advantage
which allows us to separate difFerent physical
processes in an A nucleon system without the neces-

sity to construct explicit projection operators.
The existence of static or uniformly moving

mean-field configurations associated with excited fis-

sion fragments is clear. In this section we will show
that in addition there exists a mean-field solution

with nontrivial dynamical behavior which should be
attributed to the fission process from the compound
nucleus. Such a process contains both statistical

and quantum mechanical elements. The former ar-

ises because of the averaging over the many nucleon
states in a compound system. The latter arises be-

cause of the quantum-mechanical tunneling which is

essential in subbarrier fission.
In Sec. II it was seen how the statistical averaging

is performed in the mean-field expression with sta-

tistical occupations of single particle states. On the
other hand, the mean-field description of quantum

tunneling in many-nucleon systems was introduced
in Refs. 15 and 16. There, however, it was limited

to spontaneous fission from a single well defined

state —the ground state of the fissioning nucleus.
Our purpose in this section will be to generalize this

description to energies above the ground state with

appropriate averaging over compound nuclear
states.

We start again with Eqs. (4.2) and (2.4):

(5.1)

where the "action" P' is defined as

W = —aA + PE + P/2(o; Vcr) + ln Tre U~(P} . (5.2)

The saddle-point condition for the e integral is given by the general equation (2.7). We consider 0 solutions of
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this equation with dynamical dependence on the imaginary time parameter g. For this purpose we introduce
an i)-dependent single-particle equation

[BlBrl+ ph (il)]uk(»rt) = %uk(x&'9) &

where

h ~(rl) =p /2m ——,V(0)

+ I V(x —x')o(x', il)dx', (5.3b)

with the periodic boundary conditions on the g in-
terval

uk(x&r)= —, ) = u k( x7&1 = ——, ) . (5.3c)

0'p(x, il) = g fkuk(x, r))uk(x, —r)),
k=1

with the "occupation" numbers defined as

(5.3d)

(5.3e)

The mean values of P and a are fixed by the en-

The solutions of (5.3) represent a convenient basis
for the evaluation of the trace in (5.2) and subse-

quent application of the condition 5P'/5o = 0, be-
cause the corresponding Slater determinants diago-
nalize U (p). The procedure is similar to the static
case discussed in Sec. II with the appropriate re-
placement of the dimensionless single particle ener-

gies Pek by the eigenvalues A,k of Eq. (5.3a). We
defer the details to Appendix C and quote the
result.

The expression for the g-dependent mean field is

(5.3a)

I

ergy E and particle number 3 when the integral
over a and p in (5.1) is evaluated by the saddle-

point approximation, using the same exterior nu-

cleon gas subtraction procedure as defined in Sec.
IV. In the static case discussed in the previous sec-
tion we have included the contribution from the
Gaussian integral around the mean-field configura-
tion oo. This gives rise to collective terms in the

Eqs. (4.4). Using the general method of Sec. III it is

possible, in principle, to evaluate the Gaussian
correction for the r14ependent op of Eq. (5.3d).
The result will be of the form (3.15) with pb elk re-

placed by A&
—A,k and the RPA frequericies co„

determined from the appropriate generalization of
(3.13) defining the eigeninodes of small oscillations
around op. The i)-dependent solution op(x, rl)
breaks the invariance of the exact partition function
with respect to translations of the imaginary time

parameter g. As usual, this leads to the existence of
a corresponding zero eigenfrequency. The standard,

treatment of this problem should be applicable in

the present case.
We will not discuss the Gaussian correction fac-

tor for g-dependent 0.0 in detail. We apply the
saddle-point conditions for the a and p integrals
only to the single-particle part of the action given by
Eq. (5.2) with o = op. Using the results of Appen-
dix C, the equations BP'/Bp= 0 and 8W/Ba = 0
yield

E = g fk(h )g ——,(op, Vop) —
I ao I,

k=1
(5.4a)

(5.4b)

where
1/2

(h )k = I dr) f dxuk(x, —v])h (i))uk(x, r1) (5.4c)

and h is defined in (5.3b). The solutions of (5.4) are denoted in the following as ap and pp. Their values are,
of course, generally different from ap and pp of the static solution of the previous section. We now show that
the set of Eqs. (5.3) and (5.4) represent the proposed generalization of the spontaneous fission equations and

describe in a statistically averaged way the fission of an equilibrated compound state with energy E.
In our notation the spontaneous fission equations of Ref. 15 are written as

2 A

a/ar/+ p ——V(0)+ J' V(x —x ) y (uxor) (u'x, —g)dx' u„(x,g) =X u„(x,y),~a) 2m i=1
(5.5)



24 MEAN-FIELD STUDY OF THE NUCLEAR PARTITION. . . 1041

with the boundary conditions of (5.3c). They
describe the tunneling as propagation in imaginary
time, which is reflected by the absence of imaginary
i in the time derivative and the presence of the com-
bination u;(i})u;(—tj) in the expression of the mean
field. As usual, the self-consistency involves 3
single-particle wave functions. As discussed in Ref.
15 the limit p~ 0o leads to the behavior of u;(x,i})

such that they start and end at the corresponding
single-particle wave functions composing the Slater
determinant of the ground state of the fissioning nu-

cleus.
The relation of the sets (5.5) and (5.3) is very

similar to the relation between the static zero-
temperature mean-field equations for the ground
state and the finite-temperature static mean-field

equations with occupations discussed in Sec. II. In
both (5.5) and (5.3) the i} dependence of the mean-
field 0.0 enters through the combination

uk(g)uk( —i}) and there is no i multiplying the time
derivative. As was established in Ref. 15, this is the
correct way to account for the quantum-mechanical
tunneling in the dynamical mean-field description.
The statistical averaging enters through the occupa-
tions fj, in (5.3d), which are determined. by the
eigenvalues A,k. Owing to the boundary conditions

of (5.3c) the mean-field potential I V(x —x')
X 0'p(x', i})dx' is periodic and the eigenvalues A,k are
dimensionless quasienergies such as Bloch quasimo-
menta in space-periodic potentials. In the spontane-
ous fission Eq. (5.5} these quasienergies are similar

to the single-particle energies in the static zero-
temperature mean-field equations for the ground
state. The mean-field potential in'(5. 5) does not
depend explicitly on A,k and is defined self-
consistently by the A lowest single-particle wave
functions uk(x, q). For finite excitation energies the

potential I V(x —x')op(x', rj)dx' becomes depen-

dent on all uk(x, i}) with occupations fk determined

by the quasienergies A,k, again in close analogy with
the static case.

The spontaneous fission limit (5.5) is obtained
from (5.3) when the energy E tends to the ground
state energy. Then the mean temperature Pp
tends to zero with ap/Pp remaining fixed by the
value of A. In this limit the eigenvalues of Ak be-
come very large, the occupations Ik tend to a step
function over the lowest single-particle states
uk(x, rI), and the interval over which the iinaginary
time variable r = pi} varies increases to infinity. As
a result the wave functions uk(x, i}) start and end at
the corresponding ground-state functions and the
conserved excitation energy in Eq. (5.4a) decreases
to the mean-field energy of the ground state. Since
we do not include the Gaussian correction in our
discussion this is the Hartree energy without the
RPA correlations.

We now examine the expression for the action
P'[a,P,cr] in (5.1) when calculated at the saddle
point a = ap, P = Pp, cr = op defined by Eqs. (5.3}
and (5.4). Using these equations we transform (5.2)
into

5 (E,A) = S(E,A) —W(E,A), (5.6a)

S(E,A) = — g g lnf; + (1 —f; ) ln(1 —f;)] + ( Oo I,
l =1

(5.6b)

(5.6c)

The occupations f; are defined in (5.3e) and we used the notation of (5.4c).
The effective action is thus composed of two parts. The first part, defined by (5.6b), has a form of the entro-

py corresponding to the statistical population of the single-particle states u;(x,t}) which describe the nucleons
as the nucleus penetrates the fission barrier. The quasienergies A,; determining f; depend functionally on the
whole range of mean-field configurations through which the system passes on its way to scission. Accordingly,
the entropy S(E,A), which is expressed through f;, can be interpreted as representing an effective counting of
the dynamically averaged many-nucleon states available to the system during the fission process. We will dis-
cuss the nature of this averaging in more detail after expression (5.10}for the fission width.

Whereas the first part S(E,A ) in the effective action (5.6a) represents the statistical effects, the second part
W(E, A) is a quantum penetrability factor. In order to clarify this interpretation let us recall the expression
for such a factor in the limiting case of spontaneous fission, which was derived in Ref. 15:

A g A 1/2

W(Eg, A) = g ( ); =—Q J dil f dxu;(x, —il} u;(x,i}) . (5.7)
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Here, u; are solutions of Eqs. (5.5) and (5.3c). As
explained in Ref. 15 the functions u;(x, i)) and

u;(x, —il) play the role of canonically conjugate
variables and Eq. (5.7) is a mean-field analog of the

tunneling action Ipq dr in the one-dimensional

WKB treatment.
Comparing (5.7) with (5.6c) we see that W(E, A)

in the induced fission case is a statistically averaged
penetrability in which every single particle wave

function is weighted according to its occupation.
The action P' of (5.6) thus consists of a statistical
contribution with dynamical averaging and a
dynamical contribution with statistical averaging.
Clearly, when the mean temperature Po

' is de-

creased to zero, the entropy S(E,A) vanishes and
the penetrability W(E,A) coincides with the spon-
taneous fission expression (5.7).

The contribution of the fission solution (5.3d) to
the microcanonical partition function is

(E g) (0) P'(EP) (5.8)

p(E,A) = p&N(E, A) + py(E, A) + (5.9)

Here pcN is the density of compound states (where

CN represents the compound nucleus) correspond-

ing to the static mean field discussed in the previous
sections. The term p~(E, A) is the fission contribu-

tion (5.8}. The rest of the sum represents contribu-

tions from mean-field configurations of various fis-

sion fragments, their motion, etc., as was indicated
in the beginning of this section.

Given the sum (5.9), it is reasonable to employ
the usual phase space considerations and to argue
that the relative fission probability is determined by
the ratio of the contributions from fission p~(E, A)
and the initial compound nucleus pcN(E, A). Fol-
lowing our discussion of the action W, we identify

the exponential in (5.8) as an effective penetrability

factor which combines both statistical effects and

quantum mechanical tunneling. On this basis we

where P'(E, A) is given by (5.6) while the factor p~
'

arises from the Gaussian integral around the saddle
point of the expression (5.1) at o = oo, a = ao,
P = Po. One should also consider mean-field solu-
tions with multiple reflections. These are important
in the vicinity of the fission barrier energy and we
comment on them later on.

With all the saddle points included, the mean-
field approximation for the microcanonical partition
function of the fissioning nuclear system is given by
the sum

suggest the following expression for the averaged fis-

sion width:

I (E g) D(E~~) &s(EP)—w(EQ)
2~

(5.10)

where the compound level spacing D (E,A}

=pcN '(E,A) and S(E,A), W(E, A) given by Eqs.
(5.6).

The quantities D, S, and W in (5.10) are deter-

mined by the microscopic mean-field equations. At
the same time our derivation of the expression for
the fission width is only heuristic and follows con-

siderations similar to the usual phenomenological

discussions ' of the compound nucleus fission. In
this respect it is different from the mean-field

theory' of spontaneous fission, where it was possi-

ble to determine the fission width more rigorously

using the complex poles of the many-nucleon
Green's function. At the moment it is not clear to
us how to generalize this approach to finite excita-

tion energies with the proper statistical averaging of
the fission width. More work in this direction is re-

quired together with a detailed treatment of the

Gaussian correction factor pI
' in (5.8).

The description of the compound nucleus fission

given by the set of Eqs. (5.3), (5.4), and (5.10) is

adequate for the energies between the ground state

and the fission barrier. As was already indicated

earlier, the entropy S is dynamically averaged over

many-nucleon states available during the fission pro-
cess. These states correspond to a range of defor-

mations encountered in the collective motion of the

mean field. The relative weight of a particular. de-

formation depends on how rapidly the mean field is

changing in the vicinity of this deformation. It can
be seen from Eqs. (5.3)—(5.5) that when the excita-

tion energy is small (and accordingly the inverse

mean temperature Po is large) the system is heavily

weighted near the compound nucleus shape with a
smaller weight on the fast transition to the scission

configuration. In this situation the quasienergies A,;
are nearly equal to the dimensionless static energies

Poe;. Thus the dynamical entropy S of Eq. (5.6b),
which is determined by A,; via the occupations f;, is

also nearly equal to the entropy S~, Eq. (4.6), of the

compound nucleus. Since D —e ~, this simply
means that expression (5.10) for the fission width is

mainly determined by the quantum penetrability

W(EP) as expected for the energies near the
ground state.

When the excitation energy increases, the mean
field starts farther from the compound nucleus
shape and the contributions in the entropy S of the
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deformations close to the scission configuration be-
come more significant. When the fission barrier is

approached, the barrier deformation becomes dom-
inant.

In the region close to the barrier the dynamics of
the mean field is expected to concentrate in one
mode. This is the unstable mode of haimonic vibra-

tions around the static mean-field which represents
the barrier saddle point configuration. In this ener-

gy region, multiple reflectioris of the tunneling solu-

tion become important, which leads to the replace-
ment ' of the penetrability factor exp( —W) in Eq.
(5.10) by the more appropriate expression
(1 + exp W) '. For energies above the barrier the
quantum eAects should gradually disappear and

only the statistical phase space contributions should

remain. These can be calculated on the basis of the
static mean-field solution representing the barrier
saddle point shape in the same way the compound
nucleus level density was calculated in the preceding
chapters. The foregoing discussion of the energy re-

- gion close to the fission bamer is based on argu-
ments which seem to be physically plausible. It is

not clear to us at the present time how to make
these arguments more rigorous or precise.

Finally, we comment on the practical solution of
the induced fission Eqs. (5.3). They represent a set
of coupled nonlinear equations. and, of course, we
cannot supply a general proof of the existence of
solutions. Numerically, hdwever, they are very
similar to the static mean-field equations with tem-

perature discussed in Sec. II. The standard iteration
procedure can be used, the added complication be-

ing one more dimension, the imaginary time vari-

able g. In Ref. 15 the limiting case of spontaneous

fission was discussed in the framework of a model
many-fermion system and the tunneling solutions
were demonstrated. Work is now in progress to ex-
tend these calculations to energies above the ground
state. Preliminary results show the existence of
solutions for these energies. A full account of the
calculations will be reported in a separate publica-
tion.

APPENDIX A:
TEMPERATURE DEPENDENT RPA EQUATIONS

Equation (3.13) represents a natural generalization
of the ordinary RPA to finite temperature. ' It is
easy to show that if g;k is a solution of (3.13) with

an eigenvalue co„, then g»"' = g»," is also a solution
with an eigenvalue ( —co„). This fact and the Euler
formula

sin hz " z

are used in evaluating the ratio of products in (3.14).
Consider first the terms with N Q 0:

(A 1)
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l CO~II. 1+, ~
(A2)

iv+0 iPhe~k
j,k 1+

2mN

Together with the terms with X = 0 this gives for
(3.14)

g„sinh(Pco„/2)
det(1+ PVD) =

k smh b,e»/2.
Using the symmetry property of the eigenvalues co„
discussed in the beginning of this appendix and Eq.
(3.11), one obtains the final result (3.15).

The terms with j = k are not included in the
product of (3.15) since there is a corresponding

F,. =—&j,.&~(fn fj)—
[f„(1—f~ ) —fp ( I —I„)],

becomes a projector on the particle-hole subspace.

(A4)

P c„oisnh( Pc+o2)n. rr. .. 1+,„„", rr.
pig~ 2 . sinh(PER»/2)

IIj, II o + g IIj Pg,„/2
I

number of zero eigenvalues co„ in Eq. (3.13). This is
due to the presence of the matrix F in (3.13) which
decouples the nondiagonal components g,"k"' from
the diagonal ones. The latter have all eigenvalues
co~ = 0.

In the zero temperature limit the matrix F,
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The corresponding components of g;~" in (3.13) be-

,come decoupled from the particle-particle and hole-

hole components. The former satisfy the ordinary
zero temperature RPA equations while the latter
have eigenvalues co equal to the differences of parti-
cles or holes energies, respectively. These cancel
against the corresponding terms in the numerator of
(3.15) and only particle-hole differences are left in

the zero-temperature expression (3.19). Further dis-

cussion of the finite temperature RPA can be found

in Ref. 19.
APPENDIX B:

SINGLE-PARTICLE CONTINUUM STATES
IN THE NUCLEAR FREE ENERGY

In the saddle-point approximation (2.14) the free
energy of a particular mean-field configuration is
represented as a sum of two terms: Qr [a,P,crp]

+ Q, [ag,harp]. In this Appendix we discuss the
volume dependence of this expression arising from
the single-particle continuum states in the self-
consistent potential, which are populated at finite
temperatures.

Consider first the single-particle term Qr [a,P,op]
given by the expression (2.11). The sums over con-
tinuum states present in this expression should be
replaced by integrals

g~ f deg(e),

where g (e} is the single-particle density of states

g (e) in the mean-field potential generated by crp.

In the continuum the density g (e) is a sum

Gp(e, e') = g(e)g(e'), (84)

with g(e) of (82). This obviously has a leading qua-
dratic dependence of the volume when both e and e'
belong to the continuum.

The corresponding level density in the sum over
the eigenfrequencies co„ in Eq. (4.3b) is of the form

G(e,e') = Gp(e, e') + EG(e,e'), (85)

The terms containing R in (83) are associated with

gp ill (82) while the rest depend on the scattering
phase shifts and represent b,g in (82).

The free part go is proportional to the volume of
the system, whereas the scattering part hg is in-
dependent of the volume. Obviously, in the corre-
sponding free energy Qr [a,P,o„]of the exterior nu-
cleon gas with the constant density o„, the integrals
over the single-particle states contain only the free
density of states gp. Thus the subtraction of
Qr [aP,o ] removes the volume dependence of
Q&[ag,op] in such a way that the remaining,
volume-independent part accounts for the continu-
um states only as far as they are modified by the
self-consistent potential well, as seems appropriate
for the definition of the compound nucleus.

We now turn to the discussion of the volume
dependence of the RPA correlation term
Q, [a,P,op], which is given by the first term in ex-
pression (4.3). The double sum over single-particle
states appearing in this term is converted into an in-
tegral using the level density

g (e) = gp(e) + &g(e), (82)

00 R I d5,g ~ g (2l + 1) f dk —+-
i l=p ~ dk

(83)

where gp(e) corresponds to a state density of free
nucleons and bg (e) reflects the effect of the scatter-
ing from the mean-field potential. For instance, in
the spherically symmetric potential the continuum
wave functions at large distances
r ' sin(kr —ml/2 + 5&) with the quantization
kR —irl i2 + 5i = mn, at large radius R, imply for
(81) in the k space

with co = e —e'. This follows from Eq. (3.13)
determining co which shows that G reduces to Gp
when the interaction term VI" is turned oK A, use-
ful interpretation of EG in (85) is therefore similar
to EG in (82). For e and e' in the continuum the
generalized RPA Eq. (3.13) written in coordinate
space can be regarded as a scattering of a particle
and an "antiparticle, " i.e., a hole in the. presence of
the potential well generated by Op.

The corresponding part of the first term in ex-
pression (4.3d} can be written as

f dE f de[G(E e') —Gp(e~e')] lilsinh[P(e — )/e2]0 0 (86)

so that the volume dependence of Q, [a,P,o.p] is
determined by hG (e,e'). It should be obvious from
the interpretation of b, G (e,e') given above that it has
only one power of the volume. This can be easily

I

understood if one recognizes that the scattering via
the interaction VE in Eq. (3.13), which determines
EG (E,e'), can occur anywhere in space including re-
gions far outside the potential well.
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Again in this case the subtraction of the term

Q, [a+,o ], corresponding to a constant density o„
of the exterior nucleon gas, removes the remaining
linear volume dependence from Q, [a,P,oo] so that
the difference Q, [a,P,oo] —Q, [a,P,o„]is indePen-
dent of the volume of the system and is appropriate
for use in the definition of the compound nucleus
level density.

APPENDIX C: DYNAMICAL cr FIELD

Slater determinants built of solutions of (5.3)
represent eigenfunctions of the operator U in (5.2)
for a given o(x,g). The eigenvalues are

exp $ ( n;A—;}, ,

i=1
(C 1)

with n; = 0 or 1 and g,.",n; = A. Similar to Eq.
(2.9) we can write the last term of (5.2) in the form

00 00

Tre U~(p) = g g exp g n;(a —A;) .
A=a( n,. I i=1

(C2)

In this expression for a general g-dependent u, A,;
plays the same role as the single particle energy Pe;
for a static 0..

As in Sec. II we transform the o. dependent terms
of (5.2) and obtain

W = —aA + PE + P/2(o; Vo)

+ g ln(1+ e ') . (C3)

In order to apply the saddle-point condition
5P'/5o = 0 we need to evaluate 5A,;/5o, i.e., to
determine how the eigenvalues A,; of Eq. (5.3)
change with cr. As will be seen shortly the self-

consistent o obeys o(r)) = o( —r)). Under this con-
dition it is easy to verify' that the operator

t)/Br) + ph is Hermitian in the space of (5.3c} pro-
vided the inner product is defined as

1/2

(U, u) = f dr/ f dx U(x, —r/) u (x&'g) ~

—1/2
(C4)

Differentiating (C3) we obtain from the condition
5%/5o = 0 the expression (5.3d) for the ri-
dependent mean field. The conditions r)P'/Bp = 0
and 85 /r)a = 0 are evaluated in a similar way and

lead to Eqs. (5.4).

Using this information we apply perturbation theory
to Eq. (5.3) and find

5A,; = P f dx'V(x —x')u;(x', —r)) u;(x', ri) .
5o(x, r) )

'R. Feynmann and A. R. Hibbs, Quantum Mechanics
and Path Integrals (McGraw-Hill, New York, 1965).

S. Levit, U. Smilansky, and D. Pelte, Phys. Lett. 53B,
39 (1974).

3S. Levit and U. Smilansky, Nucl. Phys. A315, 205
(1979).

4K. Mohring and U. Smilansky, Nucl. Phys. A338, 227
(1980) and the references therein.

5H. Kleinert, Phys. Lett. 69B, 9 (1977); H. Reinhardt,
Nucl. Phys. A298, 77 (1978).

S. Levit, Phys. Rev. C 21, 1594 (1980) and the refer-
ences therein.

7J.-P. Blaizot and M. Grland, J. Phys. (Paris) Lett. 41,
L53 (1980); Phys. Rev. C {to be published).

D. M. Feng and R. Gilmore, Phys. Lett. 90B, 327
(1980).

M. Kuratsuji and T. Suzuki, Phys. Lett. 92B, 19 (1980).
OY. Alhassid and S. E. Koonin, Phys. Rev. C 23, 1590

(1981).
J. J. Griffin, P. C. Lichtner, and M. Dworzecka, Phys.
Rev. C 21, 1351 (1980).
H. Reinhardt, Nucl. Phys. A331, 353 (1979); H.
Kleinert and H. Reinhardt, Nucl. Phys. A332, 331

(1979).
S. Levit, J. Negele, and Z. Paltiel, Phys. Rev. C 21,
1603 (1980), a different method with similar results

was presented in K.-K. Kan, J. J. Griffin, P. C.
Lichtner, and M. Dworzecka, Nucl. Phys. A332, 109
(1979).

H. Reinhardt, Nucl. Phys. A 346, 1 (1980).
S. Levit, J. W. Negele, and Z. Paltiel, Phys. Rev. C 22,
1979 (1980).

H. Reinhardt (unpublished); and in the Proceedings of
the International Summer School on Critical Phenome-
na in Heavy Ion Collisions, Brashov, Romania, 1980,
edited by M. Petrascu (unpublished).
A. K. Kerman, S. Levit, and T. Troudet {unpublished).

isP. Quentin and M. Flocard, Annu. Rev. Nucl. Sci. 28,
523 (1978).
J. Des Cloizeaux, in Many Body Physi'cs, edited by C.
de Witt and R. Balian (Gordon 4 Breach, New York,
1968),- pp. 5 —36.

U. Mosel, P.-G. Zint, and K. H. Passler, Nucl. Phys.
A236, 252 (1974); G. Sauer, M. Chanda, and U.
Mosel, ibid. A264, 221 (1976).

2iM. Brack and P. Quentin; Phys. Lett. 852, 159 (1974);



A. K. KERMAN AND S. LEVIT 24

M. Brack and P. Quentin, Phys. Scr. A10, 163 (19741.
G. Bertsch, Phys. Lett. 95B, 157 (1980).

23D. L. Tubbs and S. E. Koonin, Astrophys. J. 232, L59
(1979).
J. R. Huizenga and L. G. Moretto, Annu. Rev. Nucl.
Sci. 22, 427 (1972).
A. Bohr and B. Mottelson, in Nuclear Structure (Benja-
min, New York, 1969), Vol. I.

26A. L Fetter and J. D. Walecka, in Quantum Theory of
Many-Particle Systems (McGraw-Hill, New York,
1971).

27S. Levit and U. Smilansky, Ann. Phys. (N.Y.) 108, 165

(1977).
G. C. Branco, B. Sakita, and P. Senjanovich, Phys.
Rev. D 10, 2573 (1974); 10, 2582 (1974); J. L. Gervais
and B. Sakita, ibid. 11, 2943 (1975).
H. A. Bethe, G. E. Brown, J. Applegate, and J. M.
Lattimer, Nucl. Phys. A324, 487 (1979).

S. Coleman, .in The Uses of Instantons, Proceedings of
the 1977 International School of Subnuclear Physics,
"Ettore Majorana", Erice, Italy, 1977.
D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102
(1953).


