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The quasi-potential procedure of Sasakawa and Austern is generalized to obtain an improved convergence of
iteration series. The modified form of the quasi-potential method is compared with the earlier approaches and its
effectiveness tested. Extensions to treat the general coupled-channel integro-differential equations are outlined.

NUCLEAR REACTIONS Quasi-potential method, coupled integro-differential
equations.

I. INTRODUCTION

The quasi-potential (Qp) method, also called
the quasi-particle method, was proposed some-
time ago by Weinberg' and by Sasakawa' to facil-
itate the iterative solution of a complicated
scattering equation, often coupled and involving
integral operators. An extension of the Sasakawa
approach was then given by Austern, ' who em-
ployed a specific choice of certain functions
which appear in Sasakawa's QP method. A de-
tailed comparison of the various formulations
and numerical tests was carried out by Soper'"'
who noted that the Sasakawa-Austern (SA) pro-
cedure does not converge for interactions which
are too strong —those resulting in phase shifts
larger than m.

For many physical applications, this is too
stringent a limitation '"' and we propose a trivial
extension of the SA procedure to improve its
applicability. This extension is seen to be con-
sistent with the general procedure outlined by

Of special interest is the pion-nucleus scatter-
ing at medium energies around 200 MeV labor-
atory energy. When the (33) resonance on the
~N scattering is parametrized by a separable,
energy-dependent interaction, the resulting 7'
interaction becomes a complicated nonlocal, non-
separable interaction, ' which has to be treated by
an iterative procedure, and which may not often
converge. Special procedures such as developed
here and in Refs. 1-3 are needed to examine the
energy dependence of the scattering cross section
across the resonance energy.
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and where ~ is arbitary, except that it satisfies
the boundary condition at x = ~ of having purely
outgoing waves. Then

u= fX&+ fr&f,

with

fX&= fug,
0

(2.5)

II. FORMALISM

We consider the QP procedure by first reviewing
briefly the Sasakawa-Austern method. For a gen-
eral scattering equation

Du = Vu —= V (f', f")u (r ')d r ', (2.1)
where D= (E -H, ) an—d V can generally be a non-
local integral interaction potential, which is to be
treated by iterations. Of course H0 may contain
an additional local distortion potential U, which we
assume can be treated exactly. Denoting the homo-
geneous solution of (2.1) by

D fug=0, DG, =+ 1, (2 2)

wl. th the outgoing wave boundary cond', talons for Q„
we have

fu&= fu,&+G,V fu&. (2.3)

(a) The Sasakawa method is to rewrite (2.3)
into two parts as

fu& = fu, )+ f ~&f+ A,V
f u&,
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and where

&u, Ivlx&
I+(u, l v

I r&
(2.6)

is based essentially on some of the features of
(2.6), (2.7), and (2.12). That is, consider a par-
ticular form of a QP given by

I ~~& = Gov
I u~i&~ t~-i (2.7)

Therefore, the iteration series involves the expan-
sion (I -K,v) ', which gives in turn X and 1' and
thus t. The convergence of the iteration series
in the case of the Sasakawa approach has been
proved by Coester' for a local potential, but the
situation is not clear in the case of nonloca, l in-
teraction. " ' In any case, for a judicious choice
of ~, the corresponding K0V should be small
enough to have the series converge.

(b) Austern' makes a specific choice of ur of the
following form for the pgth iteration:

V, =Vlu&
I I

&y IV (2.13)

with the Wof (2.12) being zero in this case. When
this form is inserted in place of V in Eq. (2.1),
the original equation is recovered. In (2.13),
we have the exact solution lu) so that V, of (2.13)
is not possible to construct a priori. However,
for an approximate u in V„ the resulting equa-
tion for u can be solved exactly. The function
y in (2.13) is so far completely arbitrary. (That
is, Vjy& is arbitrary. } The iteraction procedure
then follows from replacing u by its successive
approximations. Thus, for the nth iteration,
we have

with

and

(u, l V I up
I + &u, 1 V I u~„&

(2.8)
Iy„&= G,v Iu„,&,

&q IV, uo&

&VIV lu &
—&VIVlx )

(2.14K)

(2.14b)

f,= —&u, lvlu, &, u, =u, . -
Equations (2.7) and (2.8) then give

Iu„&=u, + ly.&y, ,

f„=—(u, I
V lu„,&y, .

(2.15a)

(2.15b)

(G,v)p„= X„y„ (2.11)

which are the usual Sturmain functions. The po-
tential of the form (2.10) is introduced to climate
those eigenstates q„with lx„ I

larger than one in
order to make the Born series converge. When
more than one such state is involved, the form
(2.10) should be modified into a sum of similar
terms. The iteration is then directed for the
residual interaction W, =—V —V, as

(D- v, ) Iu&= wlu&, (2.12)

where the left hand side can of course be solved
exactly. Here we choose a, different approach
which leads to a set of nonlinear equations which
can be solved by iteration and which can be shown
to correspond to a generalization of the SA ap-
proach.

(d) The quasi-potential procedure outlined below

Iu„& = Iu, &+ I ~„&t„. (2.9)

Note that the choice
I
~& = G,V I u&t

' makes K,v I u&

=0 in (2.4)
(c) On the other hand, the Weinberg procedure

is to choose a quasi-potential of the form

v- v, =-
I r&&r I, (2.10)

where F—Vy„-=F„and where (y„) are, for ex-
ample, solutions of the strength eigenvalue prob-
lem defined by '

The form (2.13) in (2.1) provides the dynamics
which is equivalent to a generalization of the
Sasakawa-Austern theory. The Appendix con-
tains the explicit proof of this equivalence for a
specific choice of cp, y = u0. Here we write for
u

u = u0+ v C+ KVu,

where

lf=G. + I~&&~l, C=-&~ IVlu&,

(2.16)

(2.17)

V;=Vlu„&
& IVI )&u, lV (n=0, 1, 2, . . . ),

1

0 n (2.18)

which reduces immediately to the Austern proce-
dure of (2.7), (2.8), and (2.9). The proof is

and where both ~ and y are arbitrary, except
for the specified boundary conditions. In this
general form (2.16), q =u, gives the Sasakawa
expression (2.4), while y = u, and Cd = G,vu/f
result in the Austern procedure. %hat we
have shown here is that both forms are probably
too restructive. Obviously, the choice &u= G,vu/C
gives back the result with (2.13); note that this
choice of &u makes the last term in (2.16) vanish,
i.e., EVu =0 for an arbitrary y.

We now consider the various special cases which
depend on the choice of y:

(i) q=u, (or uf). This gives



straightforward.
(ii) y =u„(oru„*). This choice is attractive from

a theoretical point of view because it makes the
connection between the form (2.13) and Weinberg's
choice (2.10) more explicit, with

This is the improvement we propose of the SA
approach, where f is always taken to be f= 1,
while, in the einberg's approach, V, is taken
as a slightly different form, i.e., cp =u, of (ii).

III. EXTENSIONS OF THE QUASI-POTENTIAL
METHOD

We consider several extensions of the QP pro-
cmiure of (2.19) in (2.13). Since a simple one-
component equation with a local interaction can
be solved trivially numerically, the QP method
is useful when either V is a nonlocal, integral
operator, or Eq. (2.1) represents a set of compli-
cated coupled equations of integro-differential
form.

A. Distortion potential

Consider (2.1) in which one has some prior
know1edge about the general features of the solu-
tion g, Then we can add a local pseudopotential
U to both sides of (2.1) so that

(& —U)u= (V —U)u=-Wu . (3.1)

The left hand side can of course be handled ex-
actly, while W should be small enough to be
treated by a form similar to (2.13), i.e., W, =

Wlu&(y l Wlu) '(yW. Construction of a suitable
U is more difficult, but several useful proce-
dures' are available. A simple guess based
on physical argument often suffices, however.

8. Variational procedure for p„and y

The discussion of V, in Sec. II assumed that a
suitable form of y can always be found. A more
systematic way is to generate a small set of y„
defined by (2.11), but this may be as complicated
as the original scattering problem. A more
practical procedure is to simultaneously diagon-
alize' a matrix (y„'lG,V lp ') and the normalization

rp ')). This will give a set of pseudo-Sturmian
functions cp„and A„, which represent variational1y
the entire spectrum of GoV, and the resulting V,
will be a sum of several terms of the form (2.13).

lr.&- v lu„&/&u„lvlu„&'" .
On the other hand, when u„changes appreciably
during the iteration, the procedure itself may
become very unstable. This'has been borne out
by extensive numerical studies.

(iii) Now consider the choice

(2.19)

V."=wl"& -lw l~&&mlw (3.2)

where u„ is a column vector of the pgth iterated
solution and &p~ is a column vector and its transpose
(Ppr l. The rearrangement and inelastic collisions
can be treated along the line described by Aus-
tern'.

D. Iterations on s =u-uo

From (2.1) and (2.3) we have

Dg = Vuo+ Vg, (3.3)

Since the Vz term is to be iterated on, we may
set

1
v, =viz&

( l l

(|p lv,
which is to be inserted into V of the Vz term in
(3.3), not in Vuo. For the gath iteration, we then
obtain

(3.4)

lz„& = la,&+ G,v l~,&h, ,

(w lvi~. &

(q /v Jz„&-(q lvc, vl~„)

Q„= Q + 8„

t„=ts + to+ (uo l VGOV l z,&h

ts = —(u, lv lug,

t, = —&u, lvl~, &, ~,=c,vu,

IV. NUMERICAL EXAMPLES

For ready comparison of the various proce-
dures discussed above, we consider the same
example studied by Soper. ' Take the operator
D to be the l =0 free Hamilton and the energy
E= 15 MeV nucleon on an oxygen target. V is
chosen here to be a. real Woods-Saxon potential,

C. Coupled equations

In the case of coupled equations, V in (2.1)
necessarily represents the coupling matrix
potential, with or without the diagonal elements.
On the other hand, U in (3.1) will introduce addi-
tional diagonal terms in 8". In any case, we can
still construct, either with 5' or V,
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d=0.5 fm.

The potential strength V, is increased slowly to
study the convergence property of each iteration
series.

As shown by Soper, ' The Austern series con-
verges remarkably well in the case of V, = 10
MeV, as compared with the usual Born series.
Instead of more than 15 iterations of the Born
type, the Austern method converged in approxi-
mately three iterations.

The case with Vp 50 MeV was more question-
able, and the Austern series starts to diverge
for Vp~ 55 MeV. In Table I, we show the phase
shift 5„at nth iterations and for V,=16.6 MeV.
Apparently, the form (2.13) with y =u, or its
variations with f(r) all seem to produce the cor-
rect phase shift 5=1.141. However, f (r) = e '"
with a = 0.2, 0.4, and 0.8 al, l improved the con-
vergence. We especially note the overshot of
5„at n = 2-3 in the case of a= 0.4 and 0.8, which
seems to guarantee that the cases a =0.0 and 0.2
had converged to the correct phase.

Table II contains the comparison between the
different choices of the function f in q =u,f for
V, = 72.63 MeV. Evidently, the Austern series
(with f= 1) and f= exp(-ar) with a=0.1 do not
converge, while a =0.3 may eventually converge
to the correct phase shift 5 =3.82 with more
iterations. Numerical study of the model shows
that the f= 1 series always converges to 0 = v

when the actual 6 &p. On the other hand, for
a ~ 0.5, the iteration series converged after
6- 10 iterations. More important for practical
applications is the behavior of 6„when a~ 0.75;
in this model they fluctuate about the correct
value by first shooting over the mark. This fea-
ture is very important, since the nonconvergence

TABLE I. Heal part of the phase shifts 6„ for the nth
iterations are compared for V0=16.60 MeV in the real
Woods-Saxon potential and E =15 MeV in a model proton-
oxygen scattering. The function y is given by y =uof,
with f =exp(-an) for various values of a. The exact
phase shift D =1.141 rad and is real. The last column
with y =uo gives 6„, which seems to oscillate around
the correct value.

TABLE II. Real part of the phase shifts 6„ for thenth
iterations are compared for V0=72.63 MeV in the real
Woods-Saxon potential and E =15 MeV. Note the false
convergence at a =0.0 and 0.1 which implies nonconver-
gence. The exact phase shift is 6 =3.82 rad. The imag-
inary part of 5„remains small throughout the iteration.

0.1 0.3 0.5 0.75 1.00 1.20

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1.23 1.26
2.74 2.89
3.04 3.26
3.22 3.45
3.35 3.60
3.44 3.68
3.51 3.74
3.56 3.78
3.60 3.80
3.63 3.81
3.66 3.82
3.68 8.82
3.70
3.72

1.19 1.20 1.30
2.50 2.58 3.05
2.67 2.79 3.55
2.85 2.97 3.73
2.94 3.08 3.84
3.00 3.15 3.87
3.04 3.20 3.86
3.07 3.24 3.84
3.09 3.27 3.8 3
3.10 3.29 3.83
3.11 3.31 3.82
3.12 3.32
3.13 3.33
3.13 3.33

1.33 1.36
3.18 3.27
3.86 4.17
4.01 4.25
3.96 3.89
3.86 3.79
3.83 3.81
8.82 3.83

3.82
3.82

of the series may often be difficult to discern,
as is shown by the a= 0, 0.1 (and 0.3) cases. For
practical situations, therefore, it is important
to find at least two sets of f (r) for which the 5„
converges to the same 5 nonnzonotonically. This
is a practical way of determining whether the con-
verged phase shift with a particular choice of y
is in fact the correct one and not spurious.

Table III contains the values of y„and the am-
plitude t„ for the case V, = 72.63 MeV and a = 0.75
fm '. As the iteration series converges, y„- 1
and is real. The phase shift is very large and u„
has an extra node developed compared with the
original. up. Applications of the above procedure
to ma scattering in the resonance region are in
progress.

ReY„ Im Y„ Re tn Imt„

TABLE III. The coeffici.ent y„and the amplitude t„are
given for the case V0=72.63 MeV anda =0.75 in y

!

=Qoe . If the iteration converges, y„1and this pro-
vides a good indication of the quality of convergence.

1
2
3
4
5
6
7
8

a 0 (Austern)

0.831
1.098
1.123
1.136
1.139
1.140
1.141
1.141

0.2

0.850
1.126
1.133
1.139
1.141
1.141
1.141

0.4

0.870
1.153
1.140
1.141
1.141

0.8

0.908
1.204
1.145
1.141
1.141

0.841
1.115
1.136
1.147
1.151
1.154
1.156

1
2
3
4
5

7
8
9

10
11

0.039
-0.103
1.317
1.148
1.179
1.074
1.046
1.015
1.005
1.000
1.000

0.140
0.571
0.715
0.243
0.086
0.027

-0.008
—0.013
-0.011
-0.005
-0.001

0.258
-0.091

0.361
0.472
0.520
0.508
0.505
0.501
0.500
0.499
0.500

0.928
0.008
0.157
0.311
0.415
0.439
0.432
0.416
0.404
0.400
0.398
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V. DISCUSSION

The improvement of the Sasakawa-Austern
procedure considered here should be useful
for many physical applications in which compli-
cated coupled equations and nonlocal, integral
operators are involved. Application of this
method to pion-nucleus scattering near the (3.3)
resonance will be reported later.

We have shown in Sec. IV that a simple choice
for the function f in y can improve the conver-
gence of the iteration series (2.14)—(2.15) dras-
tically. We have not been able to formulate a
systematic way to construct the optimum form
for y. Preliminary study indicates, ' however,
that a specific form for y in (2.16) leads to the
Pade approximants.
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APPENDIX

We explicitly show the equivalence between the
two iteration procedures as formulated by (2.7)-
(2.9) and (2.13)-(2.15) for the special choice of
cp = uo and e = G,Vu/t.

For the SA procedure given by (2.7)—(2.9), we
have for

n=o:

Iuo&
= Iuo& and t = —(u,

I
V lu );

n=l:

n= l. '

lx,)=G,vlu, ),
y. = &..I

v I..&/(&..I
v lug - &u. i

v
I x,&),

lu &
—lu.&+ I x,&y, ;

n=2:

Ix.&
= G.v I.,&,

„=&.. v lug/(&u. l
v lu, & -&u.

l
v Ix,&),

t, = —(u
I
V lu, )y„ lu, ) = lu, )=u,&+ lx,)y, , etc.

For convenience, we define the following quanti-
ties:

n = &u, I
v Iu,), 0 = &u. Iu. I

VG.V Iug

r=&uoIVGovGovlug, etc.

Then it is simple to show first that for n= 1

I ~i& = —
I x,)/~,

Iu~& = lu, &, t, = t, .

Next, for n=2, we have

Io.&= lx.) (-,
and thus

Q 3

n' —O'. P —my+ P'

~(~ -6)
(~ P)'+ ~-(P r) '-

so that

I(u, &
= G,V I

Q/ut , o

t =-&u. Ivlu. &/(1+&u. IVI~ )),
fu, )= lu, &+ Ice,&t, ;

and

nPQ+ y
p

2 2

Iu.) = Iu.)+ I
~&.& t. = lug+

I x.&y. = Iu.&,

n=2:

&u2&
= GoV lu, &/7, ,

7~ = —(uo I
V

I ug /(1+ &u o I
V

I
&u g),

lu, &= lu, &+ Ice,&t, , etc.

On the other hand, the QP procedure given by
(2.14)-(2.15) generates for

n=O:

lu, &= Iug;

and so on for the higher order iterations. There-
fore, (2.13) with the choice y =u, and &u = G,Vu/t
generates an iteration series which is identical
to the SA iteration series defined by (2,7)-(2.9).
Our numerical study of course is in agreement
with this.

For the more general case in which cp 4u,
but still ~= G,Vu/C and C= —&q I Vlu), we again
have K=O. However, u=u, +vC of (2.16) generates
the iteration series which is different from that
obtained by V, of (2.13).
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