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The effect of the two-body charge and current densities is considered in the deuteron photoabsorption sum rules.

The modifications induced in the Siegert form of the E1 operator give rise to an enhancement factor k, 0.2 over

the Thomas-Reiche-Kuhn value of the integrated cross section oo. The bremsstrahlung-weighted cross section

o,(E1) is found practically unchanged with respect to its value in impulse approximation, while o,(M1) shows a
30% increase. The calculations are performed with hard-core, soft-core, and super-soft-core potentials. The

dependence on the potential model is small for o., and quite negligible for o.

I+

NUCLEAR REACTIONS Two-body charge and current densities, deuteron pho-
toabsorption sum rules.

I. INTRODUCTION

Interest in the photonuclear sum rules has
been renewed in consequence of the measure-
ments of the Mainz group' of the total photoab-
sorption cross section on several light nuclei,
A ~ 40, up to the pion threshold E„=140 MeV.
When the first results appeared in 1972, the the-
oretical estimate of the enhancement k over the
Thomas-Reiche-Kuhn (TRK) sum rule was still
that of Levinger and Bethe, ' k=0.4, based on the
exchange percentage in the central part of the
nuclear potential. Instead, the value deduced
from these measurements was k, pt 1 for all the
nuclei with A ~ 4. More recently, Bergere and
collaborators' have extended the Mainz data in
the region A & 100, obtaining k =0.75 independently
of A.

The theoretical efforts for raising the theoreti-
cal k to 1 were successfu14 thanks to the two-body
correlations in the wave functions, especially
those induced by the tensor force. The large k
values also made it necessary to look more deeply
into the relation between k and the deviation Og,
from the free value of the orbital g factor in nuc-
lei. ' From the theoretical point of view the first
problem is to what extent it is meaningful to com-
pare the unretarded E1 sum rule with the experi-
mental total photoabsorption cross section inte-
grated up to E„. The arguments against this pos-
sibility are straightforward: Multipoles other than
E1 contribute to the E1 cross section; the E1
operator should have its complete expression, i.e.,
with the retardation factors included; and finally,

the theoretical sum is for the infinite energy range
while the experimental cross section is necessarily
integrated over a finite energy interval. The in-
vestigations about these points have thrown new
light on some classical results such as the Gera-
simov sum rule' and the finite energy sum rule
of Gell-Mann et al. (GGT).

Reconsidered by several authors, ' Gerasimov's
proof of the exact cancellation between the E1
retardation effect and other multipole contributions
does not hold for nonrelativistic systems, the vio-
lations being of the order B/M, where B is the
binding energy and M the nucleon mass. Besides
these binding corrections, the GGT finite energy
sum rule must be corrected for the shadowing
effects as pointed out by Weise.

The conclusion which can be drawn from these
investigations is that the integral up to E~ of the
experimental total photoabsorption cross section
constitutes the natural comparison value for the
unretarded E1 sum rule, as long as only
the nucleonic degrees of freedom are considered.
When the mesonic degrees of freedom are also
included, the integration limit of the experimental
cross section should be accordingly increased.
But a clear-cut criterion to define this limit does
not exist. However, when the effect of the 6-
resonance excitation is taken into account, it
seems reasonable to extend the integration limit
to cover the region of the h resonance. "

In this paper we shall be concerned with the
exchange effects on the deuteron sum rules. More
precisely, our aim is to evaluate the effect of the
two-body charge density p~2~ on the unretarded
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E1 sum rule 00 and on the unretarded E1 brems-
strahlung-weighted cross section c,(E1). For
the sake of completeness and because the experi-
mental value is known with high precision, we
shall also evaluate c,(M 1}, including in the M 1
operator the contributions of the meson-exchange
currents (MEC) and of the A-excitation current
(IC). While the exchange current operators are
well defined through low-energy theorems, some
uncertainties affect the determination of the two-
body charge density. However, it is clear from all
the processes studied [for example, the electro-
magnetic form factors of the two- and three-body
nuclei, "" the forward angle deuteron photo-
disintegration, "'" and the charge form fac-
tors of 'He, "0, and "Ca (Ref. 18)] that the dom-
inant contribution to p@&, up to momentum transfer
q &20 fm ', comes from the pionic pair process
pNE'

The theoretical problem concerning the defini-
tion of p t2~ and its solution in a consistent scheme
will be brieQy discussed in the following section.
At this point, we want only to stress that we shall
consider in our calculations all the contributions
to pi, l deriving from the one-pion exchange (OPE)
but disregarding the nonlocal and frame-dependent
terms.

The integrated cross section oo for the deuteron
has already been given by Lucas and Rustgi, "by
Rustgi et al. ,20 by Arenhovel and Fabian" (but
neglecting the two-body charge density), and by
Had)imichael, "who finds a further large enhance-
ment k, due to p„-„.

Our results agree with those of Refs. 20 and 21
for the usual enhancement k, coming from the
double commutator of the potential with the one-
body dipole operator. As for k„we obtain values
rather different from those of Had jimichael. "
Because Ref. 17 is lacking in details, it is not
easy to understand the origin of this discrepancy.
Strangely enough, the values for 0, quoted in Ref.
17 also disagree with ours and with those in Refs.
20 and 21.

As for c,(E1},we find that the inclusion of phd
causes slight increases with respect to the Levin-
ger and Bethe classical result~ evaluated with
realistic wave functions by Rustgi et al.' and by
Arenhovel and Fabian. 2'

As said above, we have also obtained o, (M 1)
in closed form with the exchange current contri-
butions included. We take the opportunity to note
that the analytic expression ofc,(M 1) for the iso-
vector and isoscalar transitions in impulse ap-
proximation, i.e., with only the one-body oper-
ators, have been incorrectly reported in Ref. 19.

In Sec. II we discuss the problem of the deter-
mination of the two-body charge density and we

give the expression of the two-body E1 operators
we shall use. We report and discuss the results
for the enhancement factor k over the TRK sum
rule in Sec. III, and those for o,(E1) and c,(M 1)
in Sec. IV. Finally, in Sec. V our conclusions are
stated.

II. CHARGE DENSITY AND E1 OPERATOR

The problem of the two-body corrections to the
charge density has been initially tackled by sev-
eral authors""~ developing to a higher order in
1/M the exchange currents coming from the Feyn-
man diagrams which give the dominant contribu-
tions to the magnetic moment. Recently, the theory
of the OPE contributions to p&» has been put on
more certain ground~ "by reducing through uni-
tary transformations a relativistic meson-nucleon
Hamiltonian to the subspace not containing mesons
and the negative energy nucleon states. The major
advantage of these approaches is to treat the pro-
blems of the NN interaction and of the ega currents
at the same time. For example, the problem of the
wave function renormalization has a more consis-
tent and satisfactory solution. As a result, one
obtains exact cancellation to the order 1/M'
between the contribution of the recoil process and
that of the wave function renormalimation process
at every momentum transfer. On the other hand,
the resulting two-body em operators suffer from
some ambiguities coming from the arbitrariness
of the unitary transformations and of their order.
As usually done, we resolve this arbitrariness
by choosing the free parameters so that pN-„re-
duces to the form first given by Kloet and Tjon's
in pseudoscalar m-N coupling.

For the sake of completeness, we shall also
include in the calculations the retardation effect
in' the recoil and wave function renormalization
processes (in short, retardation process}. In
fact, this process gives the only other contribution
to the local part cf the charge density to the order
1/M'. Besides the nonlocal terms we shall dis-
regard the - and p-exchange processes, "the
pry process, '*'""and the two-boson exchange
process, ~" ' which give negligible contributions.

In conclusion, the OPE contributions to the
charge density which we shall use are those re-
lated to the pair process p„-„and to the retarda-
tion process ~ as given by Hyuga and Gart 2'

Their explicit expressions in momentum space
are given in the Appendix. We observe that these
charge densities do not contribute to the total
charge of the auclear system. In fact, both of
them vanish in momentum space for vanishing
photon momentum.



A. CAMBI, B. MOSCONI, AND P. RICCI

The two-body modifications D~, ~ to the Siegert
form D~» of the electric dipole operator

D[g] z 1 +T f

r, being the nucleon coordinates, corresponding
to p„-„and p„„are easily derived (see the Appen-
dix) with the result

DN)[= —
2 Y,())r) p, v, ~ r, + p„' ' ' r (o,x o2) —y,, ' ' ' (o, o2 ~ r +on@, ~ r)

D„, = — ' ' [Y)(gr) (o,o2 ~ r+o,o, . r)- —', r (e "o,~ o, + Y,(pr)d&»)],

(2}

where S» is the usual tensor operator, f'= 0.081,
r = rlr ~p, = Ip+ )), I, = )) —)) (l)

proton, neutron magnetic moments}, p is the pion
mass, and finally,

3
Y,(x)=e ' 1+ —+rx

(3)

These expressions are for the hadronic form
factor F„„„(q')= 1. As we shall see in the next
sections, the sum rules for the deuteron should
diverge with these forms of D~, ~, unless one uses
only hard-core potentials. This divergence is
eliminated in the most natural way by exploiting
the momentum dependence of E,». In our calcu-
lations we shall use the monopole form

A 2 2

F.ee(& }= A. , qn (4)

e-""-y,(r, p, A),

Y,-g(r, p, A).

As for the explicit form of these functions we
refer to the Appendix.

III. INTEGRATED CROSS SECTION

For the deuteron the unretarded E1 sum rule is

with A = (1003+ 66) MeV as obtained by Dominguez
and Clark ' in their fit to the charged pion photo-
production data. With a straightforward calcula-
tion one obtains the new radial functions, which
substitute those in (2) following the scheme

Hamiltonian, and (d, m) indicates the deuteron
state with polarization m. Factoring out the TRK
sum rule, deriving from the double commutator
of the kinetic energy with Dfy) Qp reads

pe 2

o, = (1+k}.

The enhancement factor k canbedivided into the sum
of k„deriviag from D~,~ and the nuclear potential
V, and k, coming from 5~,~.

.

h, = g&d, m~[D„) [V, D„,.]]~d, m),
2M

2M
k~=

3 Q&d, m)[D[, )B, [H, D[2) ]]+B[D[2)B&[H&D[,)B]]

+ [D[ ), [H D [ ) ]] Id, m) . (9)

In the previous works on the deuteron sum rules,
in which p&» was neglected, ' ' it was possible to
calculate explicitly, with realistic potentials, the
double commutator defining k, owing to the simple
form of D[».

Because of the complex structure in spin and
angular variables of D&,~

it is not convenient to
follow this method for k, . Rather, we shall eval-
uate directly 1+k, developing the original double
commutator (6) and exploiting the property H

~ d)
= -B~d), where B is the binding energy. The
isospin matrix elements are easily evaluated
with the result

1+&= Q(d, QBW ~ B)D," d,",m),
4M

(1o)
where the sum is over the T = 0, 1 parts of the
Hamiltonian and the dipole operator

H' =A. +&T iviT),
2 A

Dr o= 3 @ r))x(o,x g,),2M

where D is the dipole operator, II is the nuclear

A

+
4M &r g,o, .o, +y, S»).
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Here K is the kinetic energy and the arguments
of the Q's have been omitted.

By means of the Wigner-Eckart theorem, (10)
can be expressed as the reduced matrix element
of the zero-order' tensor obtained by coupling
the first order tensors Dr and (FIr+B) Dr,

1+k=- d' [D'e(Ifr+a}Dr]«d .
3

(12}

By inserting complete sets of spin-angle states we
obtain

1+k = — Q (-)'(d [~D (|jls)(jls
~
(H + 8)gl's)

ps'~r

x(jl'sllD II"&

using the Hamiltonian property of not coupling
states of different spin. A lengthy but straight-
forward calculation gives the final result

1+ 4'= . dX EST U JI.'ST gZL 8ZLs+ ~LL + gZL 2 + ~ ~
sr sr i dg'i~i ' ~2 L(I. + I)

JLL ST
(14)

where x = gr, ~= MB/p', U=M &/g', and the
functions gI~(x) different from zero are defined
by

1
g,", = - (f, + 2f, + f,)u+ (f,- f, -fPy,

di= ~(~ (~fg-f)u+ ~~() (15f.+ Ilf, -f)4s,
(15)

g,", = 2 (4)'"f,u+
~~ (f,- f,)u,

~i& —~&« '« i

in terms of the usual deuteron wave functions u

and Is, and of the functions f4(x) given by

f, = 2x+ ——f' $0,

f =
M

f'(I4 4' —r'44),

&s=SM f421 p.

f4=2M f P4$-

The enhancement factors k, and k, follow from (14)

l

annihilating the appropriate functions in (16).
In Table I we report k, (NÃ), which corresponds

to the pair-process contributions only, and the
total k„which includes the retardation-process
contributions. For reference, the values of k, are
also listed. In order to see the influence of the
short-range behavior of the phenomenological
potentials, we have considered the Hamada-John-
ston potential (HJ),"the Reid soft-core potential
(RSC},"and the super-soft-core potential (SSC)
of de Tourreil et al."

Our values of k, are in agreement with those
calculated by Arenhovel and Fabian" and by Rustgi
et al. ,"in the common cases. Instead, our re-
sults do not agree with those of Hadjimichael"
for both k, and k, (NN), even if k, + k, (NN) nearly
coincides for the HJ potential. As can be seen
from Table I, the inclusion of the retardation
charge density has the effect of reducing the pair-
process contribution, but by a small amount. This
reduction is more easily understandable looking at
expressions (2) of D» and D~ for E,NN=I. In
fact, D~ partially cancels the isovector part of

NN'
Unlike k„which is essentially the matrix ele-

ment of w'V, k, could be expected a Priori to be
more sensitive to the NN interaction model be-
cause of the short range behavior of the two-body

TABLE I. Enhancement factors over the TRK sum rule for the deuteron, evaluated with
the Hamada-Johnston potential (HJ), the Reid soS-core potential (RSC), and the super-so5-
core potential (SSC) of de Tourreil et al. k~ is the enhancement for the one-body charge den-
sity, k2 (NN) for the OPE pair charge density, k2 (NN+ret) for the total OPE charge density,
and k is the tota1 enhancement.

Potenti
nhancement

factors Q (NN) k, (NN+ ret) k= kg+ kg

HJ
RSC
SSC

0.525
0.502
0.533

0.191
0.162
0.192

0.190
0.161
0.192

0.715
0.663
0.725
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operators, which are even divergent for F„«=1.
As already said above, in order to avoid divergent
matrix elements in the calculation of the last term
in (9), we have used DL;~ with the radial functions
regularized thanks to the hadronic form factor.
Our results for k, (see the third column in Table
I) show nearly the same dependence on the po-
tentials as k, . The ratio k, /k, goes from 3(g
to 35% for the potentials used. Instead, Hadji-
michael" obtains values of k, /k, remarkably
model dependent, ranging from 20% to 50, even
if with a set of potentials which does not com-
pletely coincide with ours.

It is difficult for us to comment on this model
dependence and the discrepancy with our results,
since it is not explained in Ref. (I I) how the short-
range behavior of D&,j and its corresponding di-
vergent matrix elements have been handled.

The last remark about the values of 4, concerns
the amount of uncertainty introduced by the regu-
larization of D&~ by means of form (4) of F„».
Taking into consideration the error + 66 MeV for
A quoted in Ref. 29, we have obtained variations
in k, of about + 10%.

The total enhancement k follows by adding k', to
k, and is reported in the last column of Table I.
The values are around 0=0.V, with little dif-
ference among the potentials.

At this point, there still remains to be considered
the contribution to 4 coming from the excitation
of the isobar resonances, and, essentially, of the
dominant b resonance. First of all, we wish to
note that the isobaric degrees of freedom do not
fall within the theory developed by Gari and
Hyuga"" and by Friar, ' and must be treated
separately. Now, the cha, rge density operator
for the 4 excitation has been evaluated by Kloet
and Tjon, ' from the corresponding diagram, and
turns out to be nonlocal. Thus, consistently with
what has been done for the nonlocal OPE terms,
it has been disregarded in our calculations. How-
ever, besides the approach by means of effective
two-body operators, the virtual presence of nuc-
leon isobars can be treated by adding isobar con-
figurations to the usual nucleonic wave functions. "
In principle, these two methods are equivalent,
but, obviously, in practical calculations their re-
sults may be different because of the unavoidable
approximations. For the deuteron sum rules, the
wave function modification method has been ap-
plied by Arenhovel and Fabian" and a, further en-
hancement factor k,(b) = 0.2 has been found, with
a small model dependence. Since the coupling
constants entering in the Nb, transition potential
are far from being univocally determined, we re-
call that these authors take the b, Nn-coupling
constant from the 4-decay width (f~~'/4v = 0.35)

and the 4Np-coupling constant from the quark
model prediction (f~& /f„„& = 'l2/25). This con-
tribution cannot simply be added to that calculated
in this paper because of the renormalization of
the deuteron wave function induced by the intro-
duction of the isobar configurations, and, more-
over, because of the interference terms. How-
ever, these effects are small when only the one-
body charge density is considered, as follows
from Table I of Ref. (21). In the reasonable hy-
pothesis that the inclusion of the two-body charge
density does not cause a large interference term,
the total enhancement factor assumes a value
k = 0.9.

As far as the experimental enhancement factor
p$ is concerned, the problem of establishing

the upper limit of integration of the experimental
cross section has no clear solution. In fact, in
o, (unlike o, and, in general, &r „) there is not a
weighting factor with a negative power of the
excitation energy, which enhances the importance
of the low-energy part of the cross section. This
lack has two consequences: On one hand, the
theoretical 0 can only be taken as an estimate be-
cause of the low-energy approximations used in the
calculations, and, on the other hand, it is difficult
to compare k with evaluations [k,„~,(E„)]obtained
integrating the experimental cross section up to
a finite energy Ey. The upper limit of integration,
Ey, should be chosen in such a way that all the
degrees of freedom considered in the theory have
already given, at that energy, their main contribu-
tion to o „and no other degrees of freedom are be-
coming important. Obviously, this requirement is
not easily satisfied. For example, partially in-
consistent results occur in the deuteron case if
Ez is taken to be the pion threshold (E„=140MeV)
which is commonly considered the natural upper
limit when &, is evaluated with Dpjg In fact,
k,„„(E) = 0.35 (Ref. 10) while, from Table I, k,
= 0.5. Qn the other hand, this discrepancy is not
so large as to make the comparison completely
meaningless.

When the effects of pL» and of the &-resonance
excitation are included in &„a convenient Ey can
be found looking at the behavior of the experi-
mental cross section. In fact, beyond E, it shows
a broad resonance just below 300 MeV, and then,
towards 500-600 MeV, falls off by an order of
magnitude. This resonance is attributed to the
pion-exchange effects and, mainly, to the 4-
resonance excitation. In consequence, it seems
quite reasonable to compare our result 4= 0.9
with k,„~, (540 MeV) = 0.80+0.10." To the extent
that the validity of the comparison is sensible,
we can conclude that there is a good agreement
between these two values.
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IV. BRHI)JISSTRAHLUNG-WEIGHTED CROSS
SECTIONS

The electric dipole bremsstrahlung-weighted
cross section for the deuteron may be written
as

o 1(E1)= g (d, m (Di id, m&,
4m e

which becomes

v Nl)= 9, I f dx())'„*)'
sg sr

(18)

tation currents are included.
We start, for the sake of clarity, from the

expression

& (MI)=~ Q i&f1&~ V id m&l' (I
}t, m, f

where the sum over the possible final states [f&

has yet to be performed. The other sums in (19)
run over the photon and deuteron polarizations;
& is the photon polarization vector and p is the
magnetic dipole operator in units e/2M, which
for the n-P system can be written as

TABLZ If. Deuteron bremsstrahlung-vreighted &1
cross sections in mb for the same potentials as in Table
I. 'Xhe first column corresponds to the one-body charge
density, the second column includes the contributions of
the OPE pair charge density, and the third one includes
the contributions of the retardation charge density.

Potential Pg]
ag(&1) (mb)

~g)+ ArF Pg, i+ PNp+ P~t

HJ
Rsc
ssc

3.668
3.677
3.746

3.704
3.712
3.781

3.703
3.712
3.780

when the dipole operator is modified with respect
to its Siegert form by the inclusion of the OPE-
two-body charge density. The functions gJzr are
given in (15) and (16). from where it is easily
seen that (18) reduces to the Bethe-Levinger
form when the exchange contributions are ig-
nored.

The values of o,(E1) obtained with the poten-
tials considered are reported in Table II for
the following cases of charge density: only pQ y,

p«&+ p», and p&, &+ p» + p~ . The two-body
contributions produce a small increase of e, with
respect to the classical value. As for 60, the
inclusion of p~ in addition to p» lowers the
effect of the exchange charge density very slightly.

If we take into account the decrease of a, due
to the IC effects as calculated in Ref. 21(with
the same cares previously underlined concerning
the interference terms and the wave function re-
normalization), we must conclude that MEC and
IC contributions nearly cancel each other.

As far as the magnetic dipole bremsstrahlung-
weighted cross section 6~(MI) is concerned,
Lucas and Rustgi" give the result of its evalua-
tion in impluse approximation exploiting the
completeness of the states, while Arenhovel and
Fabian ' give the result of the explicit integration
of the theoretical cross section up to E,. The
closed form of o, (Ml) does not have a cumber-
some expression when the two-body M1 operators
corresponding to the meson exchange and 4-exci-

(~ -r) (&-&)p=2L+ p.P+y., ' ' ' ' ' + p, . (20)

For the exchange part p,„we follow the classi-
fication of Cherntob and Rho~:

(x)l),„=
ia (rx 'r2)c [ox oat+ T xs 8'iiJ

+ (&i —&2). [&x —o )&a+ &'ia'&u0 (21)

with the definition

T;, = rid, Oe, ) ~ r -—,e,o o„
where r = r/r. Let us note that operating on the
deuteron wave function

(22)

&..Id& = '(&i —&.).[(&x —&a)VI+ hz)

+ T ia' (err + hu) J I
d&.

The pair current and the pionic current con-
tribute only to the g factors, "which added to-
gether are

gz(NN) +gz(v) = — f~(2 pr —1-)Yo(pr),
2M q

M ~gzz(NN) + giz(w) = —2-f~(1+ l)r) Yo(gr).
(24)

As for the isobar-excitation processes, we
limit ourselves to the dominant & excitation,
which, according to Riska and Brown, ' gives
the contributions

g,(n)+ a,(n) =0,

Zzg(djt. hu(n) =- Q f P„Y2(l)y), ,

(25)

where M~ is the &-resonance mass.
After this digression on the M1 operators, let

us come back to expression (19) of o,(M1). In
order to obtain o~(M1) in closed form we must
sum over all n-P states except the deuteron state."
This exclusion makes a difference only for the
isoscalar transitions, because the isovector oper-
ator in (28) does not connect states with the
same T. The results are
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o &
'(Ml) = ~ dr(u'+w')(G, '+2G,~}

dew Su —w 2G, G, +G,'

(26)

TABLE III. Deuteron bremsstrahlung-weighted M1
cross sections o.

& in mb for the same potentials as in
Table I. The values in the first column are for the iso-
vector transitions, and those in the second one are for
the isoscalar transitions. The values of the total cr~ are
in the third column.

where

G, = p„+2[g,(NN)+ g,(v)],

2 sl gll( } gll( ) +g11( )+hll(n) J

(27)

Potential

HJ
BSC
SSC

0.2987
0.2974
0.2978

~~(~) ~mb)
b, T=0

0.61 x10
0.56 x10
0.52 x10

Total

0.299
0.298
0.298

and P~ is the D-wave probability.
As a first remark we can observe that, dropping

the exchange contributions, o', (Ml) reduces to
the form given by Rustgi and Levinger, "

(26)

2

hN (I (29)

Using these expressions of the form factors,
derivation of the radial function substituting
Y,(pr) in (25) is straightforward and we do not

report it here.
We list in Table III the results for the isovector

o', (Ml), calculated with the same value as before
for A and with o. =5 fm ', which corresponds to

(where IA is for impulse approximation), which
retains its validity when the D-wave component
of the deuteron is taken into account. In passing,
we note that Lucas and Rustgi" report the same
o,(MI) multiplied by [P~+~o~], P~ being the
S- wave probability.

Our second remark concerns o', (Ml). Its ana-
lytic expression previoulsy given in Ref. 19 does
not agree with ours: The difference seems to
derive mainly from the inclusion in Ref. 19 of the
deuteron state in the set of possible final states.

Numerically, from expression (26) if follows
o.~(M1) —= (0.5 —0.6}x 10 3 mb depending on the
D-wave percentage, which is three times smaller
than that given in Ref. 19. This does not change
the total o.~(M1) which is nearly completely de-
termined by the isovector transitions, and which
assumes in IA the model independent value of
0.235 mb.

Of course, o', (Ml} should be divergent if the
contributions to the M1 operator coming from
the &-excitation current are taken as in (25),
where the hadronic form factors are assumed
to be F, NN =F», =1. To regularize the behavior
of [gzz(n)+biz(n)] at r =0 we have introduced in the
calculations the momentum dependence of F,„„
in the form (4), and of F~N, in the form

the explicit inclusion of the p-exchange effect in
the &N transition potential V~„."' ' This value
agrees with the estimate obtained in dispersive
theory by Dillig and Brack." Also reported in
Table III is the isoscalar o.', (MI) together with
the total o.,(MI).

The values of o.', (MI} are practically indepen-
dent of the potential model. As for their sensi-
tivity to the F,» parameter, we can add that
they are unchanged for A running in the range
(1003a 66) MeV." Higher uncertainties affect
the &Nm vertex. Indeed, n drops to 2 fm ' if
only the m-exchange effect is considered in V~„."'~'
With this lower a, the values of e', (MI) diminish
by-5$, independently of the potential.

For comparison, we remember that Arenh'ovel
and Fabian" find a nearly exact cancellation be-
tween MEC and IC effects in o, calculated from
explicit integration up to E, of the theoretical
cross section, in which all multipoles up to L
=4 and the retardation factors are included.

V. CONCLUSIONS

We have evaluated, for the deuteron, the un-
retarded El sum rule and the bremsstrahlung-
weighted E1 and M1 cross sections including the
two-body contributions to the charge and current
densities. The exchange magnetic moments used
are the standard ones corresponding to the pair
current, m' current, and the &-excitation current.
For the exchange charge densities, which are
less firmly established, we have taken the ex-
pressions associated with OPE as derived by
Hyuga and Gari.2'

We find that p&» produces a further enhance-
ment k, = 0.2 over the TRK sum rule; this en-
hancement, unlike that of Hadjimichael, "is
not so sensitive to the potential model. The domi-
nant contribution to k, derives from the pair
charge density and is slightly lowered by the in-
clusion of the retardation terms.

The total enhancement becomes k= 0.9, taking
into account the IC effects as evaluated by Aren-
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hovel and Fabian'' This theoretical &alue is in
good agreement with k„„=0.80+ 0.10, obtained
from the integration of the experimental cross
section up to a 540 MeV.2'

As far as the two-body effects in e, are con-
cerned, e., (E1) remains practically unchanged
with respect to its value in impulse approxima-
tion, while o.,(M1) increases from its IA model
independent value of 0.235 mb to 0.3 mb; This
value presents insignificant variations with the
potential model.

Finally, we have given the analytic expressions
o«.', (MI) and o.', (MI) which in IA correct those
previously obtained by Lucas and Rustgi. "

x p(fc, q, q ) . (A2)

The corresponding dipole operators are obtained,
in a straightforward way from the definition

D = Jt d'exp(x}. (As)

With F»(q~) =1 one has expressions (2) of the
text, while, with the monopole form"

to q, and q, one gets the expression of the charge
densities in configuration space,

p(x, r„r,) =Jt (
g)',

( ~exp(i[q, (r,—x)+tf, ~ (r,-x))

APPENDIX

The two-body charge densities p» and p „
in momentum space and for real photons, are~

g t 0' ~ K.o' ~ Q
IL*+ ~e

A -p.
rNN(q } Am+'P

the radial functions in (2) become, with self-
explanatory notations,

1Y"x"-4 = Y,(x) —&'Y,(y)—

(A4}

x(p,r, ~ v, +p.„r„}F,„'„(q,')+(1=2),

e gl xq, e, q, s, q,
4M 2M, W (g'+ ~')*'

(Al)

x(7, r, +r„)F,„„'(q,')+(1=2),

where k is the photon momentum, g is the yseudo-
scalar wN coupling constant, iP is the pion momen-
tum, p, the pion mass, p, =0.88 and p, „=4.71 are
the isoscalar and isovector magnetic moments of
the nucleon in units of nuclear magnetons, and

F,e„(q ) is the hadronic form factor.
By Fourier transforming (Al) with respect

-X4 Y~ +2 y'

Y, y, = Y-,(x)+ X'Y,(y) —, Y,(x) —X'Y,(y),4
x'-1. '

where x = pr, y = Ar, X =A/y, , and

e ' 6 15 15
Y (x) = 1+—+~+~ I .x x x. x. &' (A6)

Y;"-y, = Y,(x)+ X*Y,(y)
4 Y,(x), Y,(y)

(A5)
e -$,=e '+X'e ~

Yi(x)+ 2
4 Y2(x)

x'-1
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