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'He and 'H bound state for the Reid soft-core potential
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The perturbational approach that has been used for the calculation of the triton bound state is applied to 'He. The
Coulomb potential is fully taken into account within the limitation of the Reid soft-core-3 potential. We obtain 5.775
MeV as the binding energy of 'He. The Coulomb energy difference with 'H. is 0.625 MeV. The Coulomb effects to
the charge form factor and the two-body correlation function are calculated. Qualitative discussions are given for the
complex behavior of the Faddeev components expressed in terms of the spectator momentum and the relative
distance of the interacting pair.

NUCLEAR STRUCTURE 3He and 3H bound state. Exact solution of the Faddeev
equation by a perturbative approach. Binding energy of 3He: 5.775 MeV. Cou-
lomb energy difference with triton: 0.625 MeV. Coulomb effects to charge form

factor and correlation function.

I. INTRODUCTION

For a long time, the Faddeev equation for 'H has
attracted a great deal of attempts to solve it. A
number of methods have been proposed and proved
to be successful. At present, all calculations for
the Reid soft-core (RSC) potential' (RSC; 'S„'S,-
'D, ) have reached an agreement as to the binding
energy of 'H: about 6.4 MeV with the spectator
s state [Retd soft-core-3 potential (RSC3)] (Refs.
2-6) and about 7.0 MeV with the additional specta-
tor d state for the interacting 'S,-'D, states [Retd
soft-core-5 potential (RSC5)].' '

On the other hand, we feel a necessity to explore
a technique for solving the Faddeev equation for
'He that includes the Coulomb interaction as well
as a realistic nuclear interaction. In fact, only
one method, that is to solve the partial differential
equation with hyperspherical coordinates, was so
far successful. ""However, the Coulomb energy
difference obtained directly from the solution of
this method is much smaller than the value ex-
pected from the usual perturbational calculations,
because all partial waves of the Coulomb potential
are not retained. 'The eigenvalue difference for the
s-wave projected Coulomb potential problem of
Ref. 11 was 546 keV, '2 whereas including the high-
er partial waves, the first order perturbation
yielded 0.61 MeV."""Malfliet and Tjon" ob-
tained 0.63 MeV by the perturbation theory for the
Reid soft-core-4 potential (RSC4) (the spectator d
state for the interacting 'S, state in addition to
RSC3). We also remark that in all articles, ex-
cept Ref. 10, the charge form factor for 'He has

been calculated with the wave-function of 'H. Kith
this background, we present a new technique for
handling 'He.

In many cases, the Faddeev equation (for 'H) has
been solved by means of various separable expan-
sions of the two-body t matrix. However, the t
matrix for a local potential cannot exactly be ex-
pressed as a sum of separable terms. " Also, a
complete orthonormal set of functions, such as the
Sturm-Liouville function, the harmonic oscillator
function, or the K-harmonic function, has some-
times been utilized to expand the two-body t ma-
trix or the three-body wave function. 4 However,
the convergence becomes very slow in many cases,
and also the increasing number of nodes prevents
us from performing accurate numerical calcula-
tions. For these reasons, one is forced to truncate
the expansion, with the result that the short range
behavior is not accurately reproduced.

'These difficulties are avoided in the new pertur-
bational approach introduced in our previous pa-
per. ' The basic idea was to extract terms that
might cause divergence or converge very slowly,
express these terms as separable, and treat them
as the zeroth order term in iterations, all of the
remainder being treated as the perturbation. To
be more specific, the contributions from the first
Sturm-Liouville eigenstates are chosen as the un-
perturbed term. By this method, a quick conver-
gence is almost evident ab initio, and it has been
demonstrated to be the case. ' It should be noted
that in this perturbation method, we need not in-
troduce a truncation of the kind that is needed in
the method of expansion by a complete set.
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We have treated the two-body interaction in co-
ordinate space. By doing this, we avoid the diffi-
culty of truncation at large momentum that. is ef-
fective near the origin of the Reid soft-core poten-
tial.

Let us discuss some aspects concerning the ac-
curacy of Ref. 4. In Refs. 3 and 8, for example,
ten and sixteen mesh points are chosen for the
spectator and the relative motion in momentum
space, respectively. We should handle an 800& 2
matrix for each step. In Ref. 4, to be accurate
everywhere, we have used 30 uneven mesh points
for the distance x of the interacting pair from x = 0
to 6 fm with the mesh size ranging from x =0.02'?0
fm at x = 0 fm to 0.725 fm at x = 6 fm, and an ana-
lytic formula beyond 6 fm. Our smallest mesh
point corresponds to the cutoff momentum of about
40 fm '. This should be compared with the cutoff
momentum of 13 fm ' in Refs. 3 and 8. For the
spectator, we have used the momentum space re-
presentation with twelve mesh points. Therefore,
the number of mesh points as well as the cutoff
momentum in Ref. 4 are much larger than those in
Refs. 3 and 8. The theory is formulated so that the
dimensionality of the matrix from which the bind-
ing energy is obtained is as small as possible.
Thus the dimensionality is only 12 in Ref. 4. The
binding energy is very accurately determined from
this matrix as seen from Fig. 5 of Ref. 4.

The Coulomb potential was not involved in Ref. 4.
The Faddeev equation describes a sequence of mul-
tiple scatterings, in which a third particle moves
freely as a spectator while the other two particles
are interacting. " However, since the Coulomb
potential is a long range potential, the "spectator"
which is free from the short range interaction
must be under the influence of the Coulomb poten-
tial. A method of accommodating the Coulomb po-
tential according to this physical picture was given
in another paper" which the present payer follows
closely. A technical difficulty of expressing the
Coulomb wave function described in one set of the
Jacobi coordinates by another set has been numer-
ically overcome owing to the short range nature of
the interacting kernel of Ref. 1'?.

For the Coulomb wave functions, we have used
the very accurate Saclay-code CEA-N-906. For
the two-body correlation, we have maintained a
similar accuracy as in Ref. 4. We have employed
the spline interpolation in expressing the Coulomb
wave function described in one set of coordinates
by another. For testing the accuracy of the pre-
sent calculation, we have switched off the Coulomb
potential in the code PERFECT III that was made for
the present purpose and compared the results with
those calculated by the code PERFECT I" used in
Ref. 4. Despite the complete difference in the

numerical treatment of very involved parts of ex-
pressing the function described in one set of co-
ordinates by another, we have obtained a remark-
able agreement of numerical results.

It is known that by the method of Ref. 7, the
treatment of very low energy n-d or p-d scatter-
ings is difficult in practice. On the other hand, our
method has no practical difficulty, since we can
make use of analytic expressions around the pe-
ripheral region or in the wave zone.

In the present paper, we focus our attention on
the formulation and the study of the nature of the
solution of the generalized Faddeev equation with
Coulomb interaction and some direct conse-
quences. The comparison of the charge form fac-
tor of 'He with and without Coulomb effect in the
wave function is made. To our knowledge, this is
the first exact presentation of the Coulomb effect
on the charge form factor. Also we obtained the
Coulomb energy difference which is almost equal
to that from the perturbational calculations. Some
results of physical interest will appear in separate
articles. "'

In Sec. II, the generalized Faddeev equation in-
volving the Coulomb effect is expressed in the
form of an integral equation. In Sec. III, the out-
line of the formulation and the iterative procedure
are demonstrated. In Sec. IV, the numerical meth-
od and results are presented. In Sec. V, discuss-
ions and conclusions are given.

p, =,' [I,—(k, +k,)/2]. (2)

We suppress the suffixes of x, y, and p whenever
there is no possibility of confusion. Since we are
treating the problem in coordinate space, to each
momentum p of the spectator particle there cor-
responds a momentum q of the interacting pair
through the relation

lql =(~lEI«'+»'/4)"' «=flql)
where lE l

denotes the binding energy of the three
nucleon system. Henceforth, we use the notation
q in place of lql for simplicity.

If the function 4(12, 2) is antisymmetric with re-
spect to the exchange of 1 and 2, the totally anti-
symmetric three-body wave function is given by

II. GENERALIZED FADDEEV EQUATION

For the most part, the notations and basic con-
cepts are the same as in Ref. 4. However, we re-
peat some of them to the extent that the present
paper is self-contained.

We use the set of coordinates and momenta

x, = r, —r2, y3 = r, —( r, + r2)/2,

and
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0( =4 (12, 3)+4 (23, 1)+4(31,2}. (4) In the present payer, we adopt the following form

The component 4 (12, 3) satisfies the generalized
Faddeev equation"

2

v'(y} = (1 —e ')—. (10)

(E -Ho —V»- u', 2
—us, —u~ 2)4(12, 3)

= (V„+u'„—u', ,)4 (23, 1)

+(V„+u'„-u', ,}C(31,2). (5)

Other Faddeev components satisfy the equations
which are obtained from Eq. (5) by cyclic permuta-
tions of 1, 2, and 3.

In Eq. (5), u» denotes the Coulomb interaction
acting on the pair 12,

1+ra 1+7'a
(6}

where v'(x) is the Coulomb potential

2

v'(x) =-
x

Here, 7 „is the third component of the isospin op-
erator of the particle i. The potential u', z is a reg-
ularized Coulomb interaction which is a function of
y„and defined so that it becomes e'jy, in the limit
of y, -~. More specifically, it is defined by

We have introduced the interaction (8) in Eq. (5)
for two reasons. Firstly, when the spectator and
one of the interacting particles are charged, the
spectator is subject to the Coulomb potential. Sec-
ondly, in the limit of x,-~ or y, -~, the Coulomb
effect u'„—u', , becomes as small as O(x, '). This
property helps the numerical calculation.

We use the isospin function III„~m„Mr}, where
I, I„m„and M~ denote the isospin of the inter-
acting pair, the third component of it, the third
component of the isospin t(= , ) of -the spectator,
and that of the total isospin T, respectively. For
'He, T takes the values of either & or &. The iso-
spin functions for He are shown in Table I.

We introduce a set of functions

I
V.) =

I
a}F.(p, y). (ii)

Here
I
a}denotes the spin-isospin-angular func-

tion. The arrow indicates that, in the case of 'S,
and 'D, states, the spin-angular function is repre-
sented by a 1 X 2 matrix. The function la) is one
component of la},

I
a}=1(LS)Z;(lz)j JoMO) III;, —,'m, ;Mr). (12)

+7;,1+7'ygu' (y )=V(y )

The potential (vy, ) is chosen so that

e'
v'(y, ) = —, = constant.

y) ~y] y. o

(6)

(g)

The capital (small) letters (LS)J[(l-,')j] stand for the
interacting pair (spectator}. &, and M, represent
the total angular momentum and its z component of
the system, respectively. The underline under a
of lf' ) implies the P dependence of F (P, y).

The function F (p, y) represents the radial func-
tion of the spectator. It is given by

(2jr)'~'pj, (py), for state No. 2 of Table I,F. p, y =

F'(P, y), for states No. 1 and No. 3 of Table I. (i3)

The function F'(p, y} stands for a regular solution
of the Schrodinger equation for the spectator with
the modified Coulomb interaction v'(y). The func-
tion F (p, y) is orthonormalized so that

(a,F.(p, y) I,F..(p', y)) =5..6(p- p'). (14)

Here, (
I

and
I

) are taken for the same partition,
e.g. , for (12, 3). The inner product (

I
) repre-

sents the sum and integration over all coordinates
except x= lxl.

We expand the function I4(12, 3)} in terms of
lf, ) as follows.

4'(12, 3)=S
I
T (12, 3)}($ (12, 3}

I
4 (12, 3)}. (15)

Here S- denotes the integration over p and the

sum over G.
Multiplying Eq. (5) by the function (T (12, 3) I, we

obtain

2
———T, (x) —V,(x) —u,'(x} (T. IC)

~a

=(&.IvI'IC)+(&. Ia lc}, (16)

where 7~(x}denotes the kinetic energy operator
for the relative motion of the interacting pair with
angular momentum L, and V, (x) and u', (x} are de-
fined, respectively, by

V, (x) =—( a
I
V

I a) and u, (x}=—( a]u'
I
a) . (17)

The function
I a) stands for the two-body spin-iso-

spin-angular function involved in la). The matrix
( al Vl a) is a 2 x 2 matrix for the 'S, -'D, coupled
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TABLE I. Isospin functions for the first component. I and I, (t and m, ) denote the isospin
and its third component of the interacting pair (spectator). Mz stands for the third component

of the total isospin. Isospin functions for other components are obtained by the cyclic per-
mutations of 1, 2, and 3.

State Pair
~ Ilc;tm), Mr(12 ~ 3))

No. 1

No. 2

No. 3

1
I 10;y -,T(12,3)) = -~ (t)())2+))(P2)P3)

111;T—P., F(12,3))=P(P2))~

=1
I ()o;

2
-', ,T(12,3)) = ~ 4&2 Qp2)PS)

states. The notation P represents the permutation
operator,

P4 =P4)(12, 3) =4) (23, I)+4) (31,2) .
'The potential W' is defined by

(18)

au'
~

4» = (u'„- u', ,)
~

4 (23, 1)&

+ (u'„- u', ,)
i
4 (31,2)& . (19)

A more explicit presentation of Eq. (16) in terms
of the antisymmetric wave function of 'He was
given in another paper. " However, in the present
paper, we do not write out Eq. (16) in more detail,
because the more explicit expression is clear if we
refer to Ref. 21.

Let us express Eq. (16) in the form of an integral
equation. For this purpose, we define the two-body
Green's function by

1
c (2)

—Iaq'jM —Ti —V, —u,'
Gc (2) + G«2)y Gc (2) (20)aio a~o a a

Of course, for state Nos. 1 and 3 of Table I, we
should drop the Coulomb potential u'„as well as all
superscript c's, meaning "Coulomb. " However,
throughout the present paper, we keep the notation
c to remind that the Coulomb effect is involved in
the theory In Eq..(20), the superscript (2) repre-
sents that the Green's function is defined in the
two-body space.

For a bound state, the function (F ~4) of Eq.
(16) is represented in terms of the two-body t ma-
trix defined by

G«&)y (21)

as the solution of the homogeneous integral equa-
tion

III. FORMULATION

To solve Eq. (23), we divide Q'„(2)t~ as a separable
term and the remainder. For this purpose, we
introduce the first Sturm-Liouville function for the
potential V, +u,'. Among the infinite number of so-
lutions of the homogeneous equation

Qc(2) V
~

yc& )(
~

y c& (24)

the first Sturm-Liouville function is the solution
with the largest eigenvalue A;, which is determined
by Eq. (24) for each q and a. The function y', is a
function of q and x. We normalize this function as

The eigenvalue for the Reid soft core potential
are shown in Fig. 1. The maximum eigenvalue for
the coupled 'S, +'D, states is unity at q=0.23140
fm ', corresponding to the deuteron bound state.
The values of q necessary to the calculation of 'He
are qa 0.38 fm '. In this case, i&~I&0. There-
fore, the iterative calculation of the two-body ker-
nel

(25)

Qc(&)t Qc(c) V +Qc(2)g Qc(2) V +. . . (26)a 0 a a~0 a ace a ail) a

converges. However, the convergence is very
slow around those values of q not very much larg-
er than q = 0.38. To overcome this inconvenience,
we express this kernel up to a certain value q„as"

Q;(c)t, = —
~

(();&((();~V, + ((d',—1) (q„h q) (27)

(4'& =~) & )[Q:"' t, (&.(P[4»+Q'"'(+
(
&u'(4»j.

(23)

This is the integral representation of the general-
ized Faddeev equation (5).

(F-I4'& =Q:,""(&=~ ~4»+Q:"'(F-14"'~4».

(22)

Accordingly, the function
~

4&[=4 (12, 3)] is repre-
sented as

for 'S, and 'S, +'D, states. Here

(()c = [)(-j(1- )( )]'

and

(26)
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0.125 0.250.9 0.575

P(fm ')

0.50 0.625

bation.
According to the above prescription, we divide

the sum S in Eq. (23} into the sum over basic
states S and over nonbasic states S",

0.8

(
4& =S

~

F g-
~
'g&(P;

~
V, + (g; —1)]{F

) P~ 4&

+s"')$.}c:&:&t.($
(
p)4»

0.7

0.6—

0. 5

0.4
4.0 5.0 6.0

q(fm )

7.0

+ 8
i
f )6'"'(Ta

i
&u'i 4» .

To express the right hand side of Eq. (31) com-
pactly, we put

q;~V. (f ~P~4

(31)

(32)

and

= '~F )(&u,'—)(F~~P+S"
~

F )G ."t.(F ~P
JL

+s~m )G: (r ~~ . (33)

Then, Eq. (31) reads

~4» =-s'~T q;&y-+c~4», (34)

where for coupled states F& ~ P; denotes E('S,)g'
&& ('S,)+E('D, )P'('&, ). Namely, it represents a
function like a scalar product of two vectors F~
and P. For the same reason, C is a 1x 1 matrix.

If we write
FIG. 1. The first eigenvalue X of the Sturm-Liouville

functions for the Reid soft core potential. In the 'So,
I,= 1 state, the Coulomb potential is also involved.

~4~ &= (1 —C)
~

F~ ~ g~c&,

Eq. (34) reads

(35)

(36)
u)', = 1+g', V, (d', ,

where the Green's function g,'is defined by

(29)
B

We put Eq. (36) into Eq. (32) to obtain a coupled
set of algebraic equations for y-,

~gc Gc(2) + y
~

yc&gc~ (30)
y-=-S~M- -yB,

B

where

(37)

A large part of G","V„which makes the series
(26) very slowly convergent has been absorbed in
the denominator (1 —A~)

' of Eq. (28). Since the
new kernel g', V', is orthogonal to the kernel
g;&(g;~ V„ it is small. As a result, the term

(Po,'-1) in Eq. (27) is small and may be treated as
a perturbation when we put Eq. (27} into Eq. (23).

We call those states a, for which we use Eq.
(27), "the basic states. " More precisely, the
basic states consist of the states with the quantum
numbers 'So or Sg+ Dy and momentum q& q„. We
call all other states nonbasic. For nonbasic
states, the kernel 6"2't, is small, and, in calcu-
lations of Eq. (23), we treat this kernel as a per-
turbation without decomposing as Eq. (27}. The
last term in Eq. (23) is also treated as the pertur-

(39)
i
4-,

& =si F.) P&&,

and compare Eq. (39) with the equation obtained
from Eq. (35),

~4-& =
~

g~ ~ g;&+C~4q&. (4o}

Noting that C is given by Eq. (33), we obtain the
following results; if ~ belongs to the basic
states,

V.(F ~P~4;&. (38)

The homogeneous equation (31), as well as Eq.
(37), are satisfied at the bound state.

Now, we have to calculate the function ~4~&. For
this purpose, we express

~
4~ & as
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+Gc "&($
I

n(&cl 4-&

and if & does not belong to the basic states,

If we define a function p~ (x)& by

(41a)

I4» =-s'(s'I $-)[I y &(5- -+M-;)+
I

P3&]
B

+9&(&&l g )I &c&»}r

In the case that Eq. (37) is satisfied, Eq. (45) is
reduced to

(45)

I
4» =-sl |'.)s'I (&.'&y;. (46)

B

If we put Eq. (42) into Eq. (46) and use Eq. (36),
we see that Eq. (46) satisfies the generalized
Faddeev equation. On the other hand, if Eq. (37)
is not satisfied, Eq. (36} is expressed by virtue of
Eq. (39) as

and make use of Eqs. (27} and (38), Eqs. (41a) and

(41b) are expressed as

I
&I&}(

&
= P'& (5- - M- 3)

I
t'),

for a belonging to the basic states, (43}

and

for a not belonging to the basic states. (44)

If we put Eqs. (43) and (44) in Eq. (39), Eq. (36)
becomes

Ic» =-sit.}s'P'&y;.
B

This function does not satisfy the generalized
Faddeev equation. Since, in the course of itera-
tions, neither the generalized Faddeev equation
nor Eq. (37) is satisfied, Eq. (47) should be used.

The iterative procedure. Let us explain how to
handle the above equations to obtain the solution.
We put

(47)

&t&&& (x} g y&&(m&( )a (48)

The first term on the right hand side of Eq. (43) is
taken as the zeroth order function

yB(&»(x)
SK

(i'(x)5- -, if a belongs to the basic states

0, if n does not belong to the basic states. (49)

For m R 1, Eq. (43) without the first term and Eq. (44) are used,

g'(x}M(( =' '+ $~' '(x), if &r belongs to the basic states,
y&&(m &(x) a e,

3&

TL

$f '(x), if n does not belong to the basic states. (50)

(51)

with

(52)

and for m R1

Corresponding to Eq. (38), M(&"I in Eq. (50} is
defined by

(gal y
I

l(&&(m&)

g&&&m&(x) Gc&a&[y }&B(m &&+ &7&&(m--»]a

where &7~' '(x') is defined by

&}&'&"&(x) =s ($
I
~u'I $,)y&'& &

If the iteration converges, the function Pf (x)
given by Eq. (48) satisfies Eqs. (43) and (44 .
When Eq. (37} is satisfied for

(54)

(55)

(53}x&'& (x)=s(f lrl|'~)4~&'(. .

For all n, the function t'~'m& in Eq. (50) is calcu-
lated by the following equation obtained from Eqs.
(42), (39), and (53),

M- -=
SRvl cog &

m=0
(56)

Eq. (46) is obtained. As a result, the sum (48) is
the solution of the generalized Faddeev equation.

In practice, we solve Eq. (54) as an ordinary
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differential equation. The most difficult parts are
the numerical calculations of the terms involving
the particle exchange operator P, namely, Eqs.
(52), (53), and (55). For 'H, where the spectator
is free from any interaction, we may manipulate
the transformation from one set of coordinates to
another by Eq. (29) of Ref. 4. However, for 'He,

if the spectator is a proton and under the influence
of the modified Coulomb interaction, there is no
analytical method for the transformation and we
must rely on a numerical method. For the case
of the s-wave spectator, to which we restrict our-
selves, we can readily derive the following expres-
sion,

g(m) OO CO &max 1=gN . dp' y'dy F (p, y) — x'dx'Pi(cos8&z, ) F,,(p', y')p~', '(q', x'}.
r}8(m&(r) a' 0 0 3 x|n|z [&c(&) pc(yi)]

(57}

and (58)

x xI ylxmga- 2-& ~ xmas =2+& ~

In concluding this section, we remark that if we
use the values in Table II to the Faddeev equation,
the equality

1
80& lgeo ~2 80

(80)

Here N ~ denotes the transformation coefficient of
spin and isospin,

N, ,= (II;, —,
'

m-, ;Mr(12, 3}iI'I,', —,
' m', ;Mr(23, 1))

x ((S ~ )SOM~ (12, 3)
i

(S' ~ )SOM g (23, 1)}.
(58)

The value of N ~ is given by Table G. The func-
tion rf '(x) is nonzero only for n = No. 2, i.e., for
the 'S, state with I, =1 for 'He. The relation be-
tween the set of coordinates (x', y) and g', y') is
given by

xww3~1&x'=---y y'= —x-—y2 ' 4 2

holds if there is no Coulomb interaction in the
three-body system.

IV. NUMERICAL CALCULATIONS AND RESULTS

A. Numerical procedure

In numerical calculations, we take the maximum
value of p as 1.9504 fm-'. In Fig. 11 of Ref. 4, it
is seen that this value is sufficient. By Eq. (3),
q is related to p and I El . The value of p„ that
corresponds to q„of Eq. (27) is set to 0.75043
fm-'. We divide the interval (0, 0.75043) into six
equal intervals. To each mesh point of p corre-
sponds one value of q, for which we calculate the
Sturm-I iouville function. The number of discre-
tized basic states is thus 3x6. Here, 3 is the
number of states; two 'S, states with I,= 0 and 1
and one coupled 'S, +'D, state. As a result, the
matrix M-

8 defined by Eq. (38) in an 18&&18 ma-
trix. Beyond p = 0.75043 fm-', we discretize
continuous values of p into six intervals of size
0.2 fm-'. This part is treated as the perturbation,
which is involved in the sum S"a of Eq. (31). We
take A of Eq. (10) as 2 fm-'

TABLE II. Transformation coefficient of spin and isospin N~ ~ defined by Eq. (58).

State components

1
('s, ,r,= p)

No. 1
2

( SO, I =])

No. 2

3
(3@,I = p)

No. 3
4

(3D r =p)

No. 1

No. 2

No. 3

M3

4
v3
2M
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In order to speed up the calculation, keeping
enough accuracy near the origin of the relative
coordinate of the interacting pair, we set up an
uneven x mesh by the following formula

f(x) = C(x + r)x/(x +S), (61)

with equidistant t mesh. The parameter C deter-
mines the slope (dt/dx), „while the parameters
T and S are chosen so that (i) at t = to, x=x„and
(ii) at x=0, df/dx= p, , for preassigned values of
tp, x„and p. . We use 0.3 fm for the t-mesh size,
tp 9 fm, x, =6 fm, and p. =12. The inverse
transformation x(f) is easily found. The first x
mesh point is x, = 0.025 920 5 fm, while x3p x29
=0.68626 fm. Equation (54) is solved numerically
as the inhomogeneous differential equation by the
Numerov algorithm from the origin to x„=x»
=12.6339 fm. Beyond this point x~, the inhomo-
geneous term is sufficiently small due to the short
range character ofq-, ' (x) of Eq. (55) as well as
V, .

In Eq. (57), at every mesh point of x=x„, the
integral over y is performed until x';„becomes
larger than 20 fm. For the y mesh, we use a
transformation t(y) similar to Eq. (61), but with
C 0 3 tp: 18 fm, y, = 30 fm, t-mesh size = 0.36
fm, and p. =2. This yields y, =0.184369 fm,
while y5p y49 1.0156 fm.

To perform numerical quadratures involving os-
cillatory functions E,(p, y) and F, ,(p', y') in Eq.
(57) accurately, we use a double spline interpola-
tion on smooth varying parts of the integrand to
speed up the calculation. Except for the zeroth
order calculation, the integral over p' is carried
out first to ensure smooth x' and y' dependences.
The x' integration from x' to x' is done by the
Simpson method with a small enough step size.

In calculating the solution vector y; of the homo-
geneous algebraic equation (37), we use the same

method as explained in Ref. 4. The residual D
as defined in Ref. 4 is very sensitive to energy,
and we can determine the binding energy accurate-
ly.

For safety, we also calculated 'H using the same
computer code PERFECT III as for 'He but with the
Coulomb interaction turned off, and compared the
result obtained from the code PERFECT I, made
for calculating 3H. We obtained remarkable
agreement.

B. Binding energy, Coulomb energy difference

In Table III, the calculated results are summar-
ized together with the results obtained by other
authors. As described in Sec. I, all calculated
binding energies of H with RSC3 agree, despite
the difference in approaches. In Refs, 10 and 11,
the binding energy of 'He was obtained by solving
a set of partial differential equations expressed
by the hyperspherical coordinates. This results
in a small Coulomb energy difference bE, . Ref-
erence 11 yields 546 keV for RSC3 and 559 keV
for RSC5. Although Ref. 10 does not write the re-
sult of nonperturbative calculation of b,E, for the
pure Coulomb and RSC potentials, this calculation
should yield a similar result. All the perturba-
tional calculations" ""yield 0. 61-0.63 MeV for
4E, . Thus we have obtained a larger value for
4E, than in Ref. 11 and our value almost agrees
with (or is 0.01 MeV larger than) the values cal-
culated by the first order perturbation 4E, ' with
RSC3.

C. Charge form factor and mean square radius

The charge form factor of 'He that has so far
appeared in all articles has been calculated using
the wave function of 'H, except so far by Gignoux and
I,averne, "where the Coulomb and a charge asym-

TABLE IQ. Summary of H and He properties for the Reid sof't core potential. The dagger denotes the value for s-
wave projected Coulomb potential ~, is the value from the first order perturbation calculation. RSCN (N= 3,4, 5)
indicates partial waves which are taken into account (see Introduction of the text). CA denotes the inclusion of a charge
asymmetric potential (Ref. 23). P(S'), P(D), and P(T=&) are probabilities in Vo of the S', D, and T= T states.

'He b,E 6E P(S ) P(D) P(S')
3He

P(D)

Expt.
Oul s
PGF

GL
MT

8,482
6.400
6.38
7.01
6.44
6.9

7.718
5.775
5.83
6.45
5.80
6.27

0.764
0.625
0.546~
0.558$
0.64

0.614
0.616
0.61
0.63

1.91
1.88
1.68
2.0
1.6

8.02
8.01
9.11
7.8
8.5

2.265
1.88/2. 21
1.66/1.93
2.6

7.970
8.01/8.06
9.10/9.17
7.9

2 16 x10 RSC3
RSC3
RSCS

2 x10 CA
RSC4

'Reference 11.
b Reference 10.
'Reference 14.
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D. Properties of Faddeev components

In Ref. 4 , we observed the following properties
of a Faddeev component of th to e riton wave function:

or a given value of the spectator momentum p,

'S, states, but no node existed in the 'D
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(J4 i i i I I I I I I I

20

q'(fm')
IO

ge factor of He with and withoutFIG. 2. Char form 3
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4,.(p, x) p=O. 5 fm'
x(&m)

O. I

-O. I (P, x)
P = l. 55fm '

3

x {fm) -0.2—

FIG. 4. The functions tt)N(p, x) and .~(p, x) for the Sp

states of He '(see caption of Fig. 3).

tator momentum p of the particle 3 and the relative
coordinate x of the pair 12. We define a function
:;(p,x) by

FIG. 6. The functions p~(p, s) and "~(p,x) for the D&

state of He (see caption of Fig. 5). We see that the
node moves into the direction of small x, with increasing
spectator momentum p. A qualitative discussion of this
behavior is given in Sec. VB.

and

:-.-(p, x) =x=-.-(p, x) . (64)

cy(23, 1) +@(31,2) = -SI F-(12, 3))"-„(p,x), (63)
F. Two-body correlations

The two-body correlation in 'H for RSC was
studied in Ref. 7. This quantity affects various
phenomena. In the present paper, we compare
the correlation functions for 'He and 'H.

In the sum p;(p, x)+=-(p, x), the node seen in the
previous section disappears as shown in Figs. 3
and 4, while a node that moves into the origin with
increasing spectator momentum appears in the 'D,
state. This is illustrated in Figs. 5 and 6. This
behavior also appears in the Fourier transform of
the Brandenburg-Kim-Tubis wave function. '" IO

4"„(P,x)

P =0.5 frn

(23, I )+(3I, 2)

x (fm)

(23, I } + (3I, 2 I~ IO

-0.5—

IO

—I.O—

-5xI0

-10 '—

FIG. 5. The functions f~(p, x) and ~(p, x) for the BD&

state of He. Each function has no node. But the sum
of these functions has a node. A qualitative account is
given in Sec. VB.

IO-3 I I

3 4 5
I I I I I I

6 7 8 9 IO I I

x (fmj

I

l2

FIG. 7. The behaviors of tt) (p, x) and "~(p,g) at large
distances x. Note that the function - (p, ~) does not
show the asymptotic behavior at x= 12 fm as yet.
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We define the two-body correlation function for
a state @by

IO

p;(x)= t ~p-(p, x)+-"-(p,x)~'dp. (65)

Figure 8 shows the correlation functions of the
'S, and the 'D, states in 'H. These are compared
with the probability density of the S, and the D,
states of the RSC deuteron. The correlation func-
tion and the probability density of each state are
normalized to unity. From Fig. 8, we see that
the correlation function has no node in the SD,

state, although the function &f&-(p, x) +=-(p, x) for
this state has a node as we have seen in Figs. 5
and 6. The square root of the correlation function
for 'H may be compared with the function $,(r) ii-
lustrated in Fig. 3 of an article by Hajduk et al."
We see almost similar behaviors for both func-
tions.

To see the Coulomb effect, Fig. 9 illustrates the
correlation functions for the 'S„'S„and 'D,
states in 'He and 'H. The correlation function of
each state is normalized to unity. Figure 10
shows the correlation functions of 'H and ~He

summed up for all states. The sum is normalized
to unity for each of 'He and 'H. The correlation
functions for 'He and 'H differ by about 10 ' near
9 fm.

In concluding this subsection, we see that the
behavior of our correlation functions for 'H is al-
most similar to that in Ref. V. In 'He, the
Coulomb potential pushes the correlation functions
slightly outward . Before the normalization, there
is no Coulomb effect at short distances. However,
when the wave function is normalized to unity, the

I
O-'-

I 0

I
O-'-

I 0 I I I I I

0 I 2 3 4 5 6 7 8 9
x (fm)

FIG. 9. The correlation functions for the '$&, $&, and
3D~ states in 3He and ~H. The correlation function of
each state is normalized to unity.

lp

0.8

0.7— P~ (x)

0.6—

0.5-

0.4—
IO

0.2—

O. I

0

x (fm)

I
P-3

3 4 5 6 7 8 9

FIG. 8. The two-body correlation function defined by
Eq. (65) for the 3$& and ID~ states in H. These functions
are compared with the probability density of the $& and

D& states of deuteron for RSC. The correlation function
and probability density of each state are normalized to
unity.

x (tm)

FIG. 10. The correlation functions of H and 3He sum-
med up for all states. The sum is normalized to unity
for each of He and H. We see a small Coulomb effect
at large distances.
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correlation function for 'He becomes smaller than
that for 'H at short distances.

(-5 q2/M —T~ —u, )g- ' =0, (66)

for which the analytic form is known, and again
we can calculate it numerically with a sufficient
accuracy. The function (,' ' behaves asymptoti-
cally as

P(III) (2 ) gg /g
x (67)

To summarize, we have imposed correct bound-

ary conditions everywhere. On the other hand,
the boundary condition BF(p, 8)/3p=0 for p=p
used in the hyperspherical approach' " is yet to
be justified when the system involves the Coulomb
interaction.

V. DISCUSSIONS AND CONCLUSIONS

A. Boundary conditions

We have used the function defined by Eq. (13}for
the spectator. On the other hand, we have used
the solution of Eq. (54) as the wave function of the
interacting pair. These functions are regular at
the origin of the coordinates y and x, respectively.

At a large distance, if the spectator is charged,
its wave function behaves as the Coulomb wave
function with the phase shift resulting from a short
range potential -e-~"xe'/y in Eq. (10). In the
asymptotic region, the wave function is known in

an analytic form. Also we can calculate it numer-
ically with a sufficient accuracy. If the spectator
is not charged, it is simply a spherical Bessel
function.

For the interacting pair, the right hand side of
Eq. (54) becomes negligibly small beyond, say,
12 fm. Then the wave function behaves as the ir-
regular solution of the equation

the D state at a large distance. This node disap-
pears if we integrate over p as seen in Sec. IV F.
Although this behavior of the components is due to
the Faddeev decomposition of the total wave func-
tion and by no means physical, it might be worth-
while to discuss the properties of the Faddeev
components.

1. Node near the origin

As stated in Sec. IV D, the node near the origin
appears as a consequence of the direct overlap of
the potential V(xs) and the components @(23, 1) or
@(31,2). In the present paper, we are taking RSC
as the potential, and there is no drastic conse-
quence of this over1ap, provided that we perform
the calculations very carefully. However, if the
potential V(x~) involves a hard core, this overlap
becomes infinite. In this case, we should reform-
ulate the theory with more suitable boundary con-
ditions, so that no particle may enter into the core
region. From this argument, we see that there
must be a more physical formulation by which one
can treat the potential with a soft core as well as
with a hard core on the same basis. However, in
such a formulation, the boundary condition be-
comes very complicated near the origin and we
need more time and memory to solve the equation.

What we want to emphasize here is the following.
Under the usual boundary condition, the Faddeev
component for the S state should have a node near
the origin, if the potential has a soft core. To
get this node in solving the Faddeev equation, we
should calculate very carefully especially near the
origin. For instance, if we want to calculate the
Faddeev equation utilizing a set of harmonic oscil-
lator wave functions, we need a prohibitively large
number of quanta. Otherwise, the component

(p, x} for the S state has no node, resulting in a
larger (wrong) binding energy. 28

B. Properties of Faddeev components 2. Node at a large distance

Solving the three-body Schrodinger equation
a la mode de Faddeev is now common, but the
properties of the Faddeev components are not
known very well, because most authors have
solved the Faddeev equation in momentum space.
In Secs. IVD and IVE, we have seen the following
behavior of the Faddeev components for a fixed
momentum p of the spectator. The component
Q-(p, x) for the 'S, as well as the 'S, states of the
interacting pair has a node near the origin, while
the component for the 'D, state has no node of this
kind. On the other hand, if we sum up three com-
ponents to obtain @-(p,x)+--(p, x), the node dis-
appears for the S states, while a node appears for

In Sec. IV E, we have seen that the function

p, (p, x)+=, (p, x) has no node for the S states,
while there is a node at a large distance for the
D state. In this subsection, we study these be-
haviors qualitatively.

First let us remark that except around the origin,
the component Q, (p, x} for the 'So state is positive
both for I,= 0 and 1, while the components for the
'S, and 'D, states are negative (see, Figs. 3-6).
The different signs of 'S, and 'S, components are
due to our choice of the isospin function as given
in Table I.

Next, we remark that from Figs. 3 and 4, we
see an approximate relation
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l @., (p, x)! =31 e.. . ,(p, x)! (66)

holds.
Since the Coulomb effects are rather small. com-

pared with the nuclear effects, let us consider only
the term (F, l VPl Q) in Eq. (16). If we neglect the
Coulomb effect, the function F, ,(p, y) is approxi-
mate4 by

F, ,(p, x) = (2/r)'~'pj, ( py ) . (6S}

~F,..(P,y)F...(p', y ).

(70)

The function -"„-(p,x) is equal to twice of the sum
of Eq. (70) over o', namely, the sums over the
states o' of Table II and the integration over p'.

Since (t&, , (x') is a rather smooth function of p',
the integration over p' of p'j, (p' y)Q, (x') is
roughly proportional to 6(lx'/2+x! ). This 6 func-
tion is realized when the vectors x and x' are in the
opposite direction with the magnitude x=x'/2. As
a result,

J
1 CO

d(cos 8-"-,)P~ (cos 8~.)FO(p, y) dp'Fo(p', y') Q . (x')
-1 p

(.. (q„*'&J u(cose,:,.&

6( -x/2)
-1

x 6(8,-,, —v)F, (p, y)

y. , (q„x )F,(p, ! —,'x —x'I),
XX'

where q, is some value at q„& q, & [(m/8')l El ]'&'.
Hence,

Z(F. IPIF. )y.. ( )

(71)

a'

(72)N, (P .(q, 2x)F (p, $x).

Since the function F,(p, $x) is positively definite
so far as px & ~s, the estimate (72} shows that the
sign of:" (p, x) relative to ((»,(p, x) depends only
on N „which is given by Table II. For instance,
:",(p, x) of the 'D, state is of the opposite sign

The factors that affect the change of sign of a
Faddeev component in going from one set of coor-
dinates to another, for example, from (23, 1) to
(12,3) are the transformation coefficients N, , and
the overlap of angular functions. If we restrict
oursel. ves to the basic states, me can readily de-
rive the equation

(F.IPIF..&(.. (*&=x... J '*~ (,( &

p

1

d(cos 8-"..)Pi(cos 8;;-,)
-1

from (t& (p, x), since N, = ,-6—..As seen from
(72), the functions " (p, x) and (t& (p, x) depend
very differently on x, . As a result, this differ-
ence of the sign at a large distance causes a node
in the 'D, state when = (p, x) is added to @ (p, x).
Due to the function Eo(p, ax) in Eq. (72), the node
shifts to the direction of small x with increasing p.

For the S states, we see from Table II, the
equality (60), and approximate relations (68) and
(72), that the right hand side of (72) for 'S„ I =0

1
4 Pl~ g =P 2Q Al I 4 P3~ (0P& 2

——+ —+3—(t&, (q„2x)F,(p, —,'x). (73)
~Sp, l -p

As a result, the function = (p, x) for the 'S„I,=O
state is of the same sign as Q, (p, x) of this state.
We can demonstrate this similarly for the Sp I
= 1 and 'S, states, respectively.

C. Summary and conclusions

Including the full Coulomb interaction for RSC3
and with correct boundary conditions, we have ob-
tained the binding energy of 'He to be 5 ~ 775 MeV,
which is 1.94 MeV less than the experimental val-
ue. We have obtained 6.400 MeV for the binding
energy of 'H. This value agrees with Refs. 2-6.
The Coulomb energy difference that we have ob-
tained is 625 keV. This value is larger than the
values obtained from the s wave projected Coulomb
interaction" "and the first order perturbative
calculations"" with RSC3. However, our value
is 15 keV less than the "expected" value of around
640 keV. '9

We have seen, e.g. , in Fig. 10, that the Coulomb
effect enlarges the system. This results in a shift
of the diffraction minimum of the charge form fac-
tor toward smaller momentum transfer as seen in
Fig. 2. So far, the charge form factor of He has
been calculated with the wave function of 'H. In
the present paper, we have calculated this quantity
with the wave function of 'He and compared with
the result obtained from the wave function of 'H.
We obtained the diffraction minimum of 'He at
q'= 15.2 fm ' with the wave function of H and at
14.7 fm-' with the wave function of 'He. The root
mean square radius of SHe is 1.999 fm for the
wave function of 'H and 2.033 fm for the wave
function of 'He.

We have found the complex behavior of a Faddeev
component when it is expressed in terms of the
spectator momentum p and the relative distance of
the interacting pair. The results were given in
Sec. IVD. The qualitative discussions of these
behaviors mere given in Sec. VB.

In Fig. 7, we have seen that if the Faddeev
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(23, 1) and (31,2) components are expressed in

terms of the set of coordinates x, and y„ these
components do not drop to the asymptotic value
even at x3 =12 fm. This property does not harm
the calculation of Eq. (5), since the interactions
appearing on the right hand side of Eq. (5) are
short ranged with respect to x, . However, accur-
ate calculations of quantities such as the isospin
selection rule, magnetic form factor, etc. , which
are described by the direct overlap of wave func-
tions without intervention by a potential, need a
careful treatment of contributions from large dis-
tances.

In the present paper, we have focused our inter-
est on a technique to calculate the Coulomb effect
and a few direct consequences. Some quantities
of physical interest, such as the dipole sum rule
for ~He and the (d, 3He) asymptotic normalization
constants, will appear elsewhere.

The subjects of the effect of b, exchange cur-
rents, etc. , will be treated in subsequent papers.
Here l.et us remark that the present situation con-
cerning the three-nucleon system can not be opti-
mistic. It has been being clear that RSC is by no

means "realistic" in the sense that this potential
does not reproduce any three-nucleon properties
correctly, and all other existing potentials are to
be blamed for the same reason. " The three-nu-
cleon force of the Fujita-Miyazawa type" was
once thought to be encouraging, giving about 1

MeV of binding in triton. ~ However, it turned
out in nuclear matter calculations that other three-
nucleon contributions almost cancel the attraction
of the three-nucleon force of the Fujita-Miyazawa
type. ' " For the charge form factor, once the 4
contribution was thought to give a satisfactory
magnitude, 3' but later it turned out that this was
misleading and the 4 contribution is not so strik-
ing." 4 consistent calculation of the nuclear po-
tential and the exchange current has not been done
as of yet, although Hadjimichael has obtained the
overall good agreement with existing experimental
data by using a three-body wave function derived
from variational calculations with the admixture
of the b -resonance contribution. '
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