Decay of ⁸⁹Mo^g to levels of ⁸⁹Nb

P. W. Gallagher, N. K. Aras,* and W. B. Walters Department of Chemistry, University of Maryland, College Park, Maryland 20742 (Received 19 August 1980)

The 9/2⁺ ground state of ⁸⁹Mo has been found to decay with a half-life of 2.15 ± 0.20 min to the ground state and levels at 658.6, 1155, and 1272 keV in ⁸⁹Nb. Spin and parity assignments are discussed as are the levels of the N = 48 and N = 52 odd Z isotones.

 RADIOACTIVITY
 ⁸⁹Mo^s from ⁹²Mo(p, p3n), measured $t_{1/2}, E_{\gamma}, I_{\gamma}$.
 ⁸⁹Nb deduced levels.

 levels. Ge detector. Enriched target.

I. INTRODUCTION

In a recent paper, we reported the results of an investigation of the decay of the 190 msec $\frac{1}{2}$ isomer of ⁸⁹Mo.¹ In that paper we recounted the previous efforts to establish the decay properties of ⁸⁹Mo and ⁸⁸Mo and discussed the properties of the N=47 isotones. As isomer ratio studies² of ⁹⁶Mo (p, xn) reactions gave σ_h/σ_L values >1, we could be assured that we were also producing substantial quantities of ⁸⁹Mo⁴. We therefore continued our search for the decay of ⁸⁹Mo⁶ as well as ⁸⁹Tc isomers and report the results of these studies in this paper.

II. EXPERIMENTAL PROCEDURES

Because the studies of Hagenauer et al.³ indicated an upper limit of ~ 2 min for the half-life of the $\frac{9^+}{2}$ isomer, our initial experiments were designed to search for an activity in the 15-30 sec range. Levels in ⁸⁹Nb at 0.83, 1.01, 1.16, 1.55, 1.70, 1.80, 2.05, and 2.20 MeV were $observed^4$ in a study of the ${}^{92}Mo(p, \alpha){}^{89}Nb$ reaction. Spalek et al.⁵ observed a number of γ rays in ⁸⁹Nb in a study of the ⁸⁹Y(³He, $3n\gamma$) ⁸⁹Nb reaction. In addition to finding the $\frac{13}{2}$, $\frac{17}{2}$, $\frac{21}{2}$, and higher yrast sequence, unlikely to be populated in the decay of $\frac{9}{2}$ * 89 Mo^s, they also listed a number of unplaced γ rays including those at 495, 658, 718, 803, and 835 keV that cannot be assigned to other nuclides. We, thus, focused our search of the spectra we obtained on these energy values.

In the experiment aimed at a 15-30 sec halflife, the rotating beam chopper system described earlier^{1.6} was operated by a switch to provide for 45 sec irradiations of an enriched (96%) ⁹²Mo target with 60-MeV protons and a 300 sec counting period between irradiations. A 10% Ge(Li) detector with a full width at half maximum (FWHM) of 4.3 keV was located 15 cm from the target and utilized to collect 8192 channel spectra. The ten spectra collected during the 300 sec counting period consisted of four 15 sec counts followed by four 30 sec counts and two 60 sec counts. The $658.6-\text{keV} \gamma$ ray noted above was observed and decayed with a half-life of ~2 min.

This experimental arrangement was also used to search for the decay of ⁸⁹Tc isomers. A 75-MeV proton beam was used. Any $\frac{1}{2}$ ⁸⁹Tc would be expected to decay to the 220 msec $\frac{1}{2}$ ⁸⁹Mo^m, which would in turn decay by the 268.5- and 118.6-keV γ rays.¹ Any $\frac{9}{2}$ ⁸⁹Tc could decay to the $\frac{7}{2}$ state at 118.6 keV or to any of several levels observed in ⁸⁹Mo by deBoer *et al.*⁷ who studied the ⁹⁰Zr(³He, $4n\gamma$)⁸⁹Mo reaction. In either case, the presence of 118.6-keV γ rays would indicate the presence of ⁸⁹Tc decay.

Additional experiments were performed using a procedure in which enriched 92 Mo targets were irradiated for 30 sec and transferred to an 18% Ge detector with a 1.7 keV FWHM. The transfer took place manually and required ~90 sec. The ten 8192-channel spectra collected consisted of four 30 sec spectra, four 2-min spectra; and two 5-min spectra. Most of the data were collected using a 60 MeV proton energy, and additional data were taken at 40, 50, 70, and 75 MeV to establish threshold values.

III. RESULTS

A. 89Tc

No 118.6-keV γ rays were observed in any experiment at any beam energy. The low yields observed at 40, 50, 60, 70, and 75 MeV for ⁹⁰Tc and ⁹¹Tc isomers indicate that very little ⁸⁹Tc is produced by the ⁹²Mo(p, 4n) reaction. These cross sections are reduced because of the decreasing proton binding energies and increasing neutron binding energies that render proton evaporation quite competitive with neutron evaporation.

B. ⁸⁸Mo

Earlier conflicting half-lives of 27.3 and 8.6 min were proposed by Butement and Qaim,⁸ and Doron and Blann,⁹ respectively. At 60 MeV very weak evidence for the 3 γ rays proposed by Doron and Blann⁹ at 80, 131, and 171 keV is observed. These peaks are much more prominent at 75 MeV and are found to follow an 8.6 ± 0.7 min half-life, fully consistent with the work of Doron and Blann.

C. 89Mog

The most extensive data are those taken at 60 MeV. Each sample was counted for 20 min. The data were analyzed by measuring the γ ray energies of all peaks, determining which peaks were present in the first two minutes of counting and absent in the last 5 min of counting and assigning as many as possible to known nuclides. The γ rays from 50-sec ⁹⁰Tc, 1.4-min ⁸⁶Nb met this criterion, and sharp count rate drops were observed for the γ rays from the 3.1 and 3.3 min ⁹¹Tc isomers, and the 2.6- and 3.7-min ⁸⁷Nb isomers. In addition to the 658.6-keV peak, sharp reductions in peaks near 1155 and 1272 keV were observed. Although these latter peaks were initially assigned¹⁰ to the 1153.05 ± 0.10 keV peak from 14-h 86 Y decay, the 1270.364 ± 0.013 keV peak from 14.6-hr ⁹⁰Nb decay, and the 1271.3 ±0.6 keV peak from 5.67 h ⁹⁰Mo decay, both peaks showed shifts of position in time and each peak showed a 2-min component.

In Fig. 1 we show the 658-keV peak region at three times after irradiation and show the plot of the time dependence of the peak areas in Fig. 2. In Fig. 3, we show the first 2-min count and the

FIG. 2. Plots of peak area versus time for a number of γ rays observed following the irradiation of ⁹²Mo by 60-MeV protons.

last 5-min count for both the 1155- and 1272-keV regions. The peak areas are also plotted against time in Fig. 2. For comparison we also show the peak areas versus time for the 752-keV γ ray of 1.4-min ⁸⁶Nb and the 733-keV γ ray of 4.4 min ⁹²Tc. We show the 658-keV peak area at 40, 50, and 70 MeV for the first two minutes of counting in Fig. 4. The 1155 and 1272 keV peak areas main-

FIG. 1. The 650-keV region of the γ -ray spectra taken from 2-4, 8-10, and 17-22 min after irradiation of ⁹²Mo by 60-MeV protons.

FIG. 3. The 1150- and 1270-keV regions of the γ ray spectra taken from 2-4 and 17-22 min after irradiation of ⁹²Mo by 60-MeV protons.

tained the same ratio within the uncertainty limits with the 658.6-keV peak at 50 and 70 MeV.

We also observed a number of other weak γ ray peaks whose half-lives could not be determined with great accuracy. Peaks at 803 and 997 keV did give indications of a 2-min half-life and could not be assigned to the decay of any other nuclides that were produced.

IV. DISCUSSION

The 2.15 ± 0.20 min half-life we attribute to ⁸⁹Mo^s is at the upper edge of the limits set by Hagenauer *et al.*³ and slightly below a value of 2.6 ± 0.2 reported by Della Negra *et al.*¹¹ No mention in the latter report was made of what radiations showed the 2.6 ± 0.2 min half-life. It should be noted¹⁰ that there is a 2.6 ± 0.1 min isomer in ⁸⁷Nb.

The recent measurement of the -75.003 MeV mass excess of ⁸⁹Mo by Pardo *et al.*,¹² in a study of the ⁹²Mo(³He, ⁶He)⁸⁹Mo reaction combined with the earlier measurement of the -80.64 mass excess of ⁸⁹Nb by Serduke and Henning in a study⁴ of the ⁹²Mo(p, α)⁸⁹Nb reaction, fix $Q_{\beta^*/EC}$ at 5.64 MeV for the decay of ⁸⁹Mo^f. As log *f* is 3.2 for a Q

FIG. 4. The 650-keV region of the γ -ray spectra taken from 2-4 min after irradiation of ⁹²Mo with 40-, 50-, and 70-MeV protons.

value¹³ of 5.6 MeV, a log*ft* value of 5.3 can be calculated for the β^+ +EC decay from the $\frac{9^+}{2}$ ⁸⁹Mo^f to the $\frac{9^+}{2}$ isomer in ⁸⁹Nb (assuming a nearly 100% ground-to-ground decay branch). This value is consistent with the trend¹⁰ observed for the decay of isotonic ${}^{32}_{38}$ Sr (6.1) and ${}^{67}_{40}$ Zr (5.6), and less than the value of 6.1 found for ${}^{91}_{42}$ Mo^f decay.

We show in Fig. 5 a partial decay scheme for ⁸⁹Mo⁴. As the 803-keV γ ray was one of those also observed by Spalek *et al.*⁵ and not assigned

FIG. 5. The partial decay scheme of ⁸⁹Mo^g to levels of ⁸⁹Nb. Also shown are the levels observed in ⁸⁹Nb in the ⁹²Mo(p, α) reaction (Ref. 4) and the ⁸⁹Y(³He, $3n\gamma$) reaction (Ref. 5).

to any other nuclide, we have included it in thisscheme and suggest that it may represent the $\frac{5}{2}$ to $\frac{1}{2}$ transition from the possible $\frac{5}{2}$ level at 830 keV observed in the ${}^{92}Mo(p, \alpha)$ reaction study.⁴

We show in Fig. 6 the low-lying level structure observed for isotonic ⁸⁷Y. These levels have been observed in a number^{14,15} of experiments including (p, α) , (p, t), $({}^{3}\text{He}, d)$, (p, γ) , (α, p) , $(p, 2n\gamma)$,

E (keV)	J ‴	(p,t)	(p, a)	(³ He,d)	(a, p)	β ⁺ /EC
1608.6	9/2	+ 2	х	4	х	ιγ 303
1591.3	11/2	+				100
1504					х	
1405.4	13/2	t(7/2 ⁺)	Х	X	x	85
					X	
1202.7	5/2	2	X		X	
1181.5	3/2	2	X			
	5/2	+		2	Х	24
<u>982.6</u>	3/2	2	X		X	
793.6	5/2	2	Х	3	Х	30
3911	9.72	+ ~	×	4	V	
	5/2			4		
0	1/2-	0	x	1	x	
		87 _Y				

FIG. 6. The properties of the low-lying levels of 87 Y. The data are taken from Refs. 10, 14, and 15.

and $(\alpha, 2n\gamma)$ as well as in the decay of ⁸⁷Zr. The (p, t) reactions on $\frac{1}{2}$ ⁻⁸⁹Y are particularly useful for locating the negative parity states resulting from $(p_{1/2} \times 2^+)$ and $(p_{1/2} \times 4^+)$ configurations. The strong l = 2 and l = 4 transfer strength in the (³He, d) study establishes $\frac{5}{2}^+$ and $\frac{9}{2}^+$ as the spin and parity values for the 1155- and 1608-keV levels, respectively. The recent in-beam γ -ray studies of Fields *et al.*¹⁵ clearly establish $\frac{11}{2}^+$ and $\frac{13}{2}^+$ spin and parity values for the 1590 and 1404 keV levels, respectively.

Several aspects of the ⁸⁷Y levels are important to the interpretations of the data available for ⁸⁹Nb. First, the levels observed below 1 MeV in the ⁹⁰Zr(p, α)⁸⁷Y reaction are identified as the low-lying $\frac{3}{2}^{-}$ and $\frac{5}{2}^{-}$ levels. Thus, it is likely that the levels at 830 and 1010 keV observed in the ⁹²Mo(p, α)⁸⁹Nb reaction are also negative parity levels.

In the study of the ⁸⁵Rb(α , $2n\gamma$)⁸⁷Y reaction, ¹⁵ the cascade down the negative parity yrast levels led to substantial intensity for the 793.6-keV $\frac{5}{2}$ to $\frac{1}{2}$ γ ray. As the 803-keV γ ray was observed by Spalek *et al.*⁵ in the (³He, $3n\gamma$) reaction, additional support exists for placing the 803-keV γ ray as the $\frac{5}{2}$ to $\frac{1}{2}$ transition in ⁸⁹Nb.

Spin and parity assignments for the 1155 and 1272-keV levels are difficult to establish. Comparison with the levels observed in the decay of 87 Zr to levels of 87 Y would suggest a $\frac{9^+}{2}$ assignment for the 1272-keV level and an $\frac{11}{2}$ assignment for the 1155-keV level, as the $\frac{9+}{2}$ level is the more strongly fed in β decay. An inverse argument could also be made on the basis of the (p, α) population of a level at 1160 keV in ⁸⁹Nb. If that 1160-keV level is the 1155-keV positive parity level that we propose, then it would be analogous to the (p, α) population of the $\frac{9^+}{2}$ level at 1608.6 keV in $^{87}\mathrm{Y}$ and support a $\frac{9^+}{2}\mathrm{spin}$ and parity assignment. However, the 1160-keV peak observed in the ⁹²Md(p, α)⁸⁹Nb reaction could also be a negative parity state or doublet corresponding to either or both the 1181.5- and 1202.7-keV levels observed in the 90 Zr(p, α) 87 Y reaction.

The spin and parity of the 658-keV level is most simply assigned as $\frac{7}{2}^+$ in view of the intensity of 658-keV γ ray. In Fig. 6, we note, however, the sizable γ ray intensity attributed to both the $\frac{5}{2}^+$ level at 1153.4 keV and the $\frac{13}{2}^+$ level at 1405.4 keV in the decay of 87 Zr to levels of 87 Y. As the $\frac{5}{2}^+$ and $\frac{13}{2}^+$ levels cannot be fed directly in the $\beta^+/$ EC decay of $\frac{9}{2}^+$ 87 Zr, evidence for substantial indirect feeding may exist. We suggest, however, that the 1405-keV level in 87 Y is a doublet with the $\frac{13}{2}^+$ state fed in the in-beam γ ray studies, while the $\frac{7}{2}^+$ member is observed in the $\beta^+/$ EC decay of 87 Zr and in the (p, α) , (α, p) , and par-

FIG. 7. The low-lying levels of the N = 52 isotones of 3^{39} Y, 41 Nb, and 43 Tc. The data are largely taken from Ref. 10 with spin and parity assignment for 91 Y taken from Ref. 16. The positive and negative parity states are normalized to the $\frac{9}{2}^{*}$ and $\frac{1}{2}^{-}$ states, respectively.

ticularly the (³He, *d*) transfer reactions. It is highly unlikely that adequate $i_{13/2}$ strength would be present to permit population in a (³He, *d*) reaction. The numerous γ -ray branchings from higher lying levels that are fed in the β^+/EC decay of $\frac{9^+}{2}$ strength would be more likely for a $\frac{7}{2}$ level than a $\frac{13^*}{2}$ level, and the tentative¹⁴ 251-keV γ feeding to the $\frac{5}{2}^+$ level at 1154 keV impossible for a $\frac{13^*}{2}$ level. Eight of the higher-lying levels feed the 1405-keV level whereas only two feed the $\frac{11^+}{2}$ level at 1591.3 keV and four feed the $\frac{9^+}{2}$ level at 1608.6 keV.

Additional support for $\frac{7}{2}^+$ assignments for both the 658-keV ⁸⁹Nb level and one of the 1405-keV levels in ⁸⁷Y may be derived from the odd Z N=52 isotones shown in Fig. 7. There we see

- *On leave from the Middle East Technical University, Ankara, Turkey.
- ¹P. W. Gallagher, E. W. Schneider, and W. B. Walters, Z. Phys. A 296, 81 (1980).
- ²J. J. Hogan, J. Inorg. Nucl. Chem. <u>35</u>, 705 (1973).
- ³R. C. Hagenauer, G. D. O'Kelley, and E. Eichler, J. Inorg. Nucl. Chem. <u>37</u>, 1111 (1975).
- ⁴F. J. D. Serduke and W. Henning, Bull. Am. Phys. Soc. <u>20</u>, 73 (1975).
- ⁵A. Spalek, I. Adam, J. Jursik, A. Kuklik, L. Maly,
- D. Venas, P. Simecek, G. Winter, and L. Funke, Nucl. Phys. A280, 115 (1977).
- ⁶E. W. Schneider, Ph.D. thesis, University of Maryland, 1978 (unpublished).

FIG. 8. The low-lying levels of the N=48 isotones of 39 Y and 41 Nb. The data are taken from this work and Refs. 4, 5, 10, 14, and 15. The positive and negative parity states are normalized to the $\frac{9^*}{2}$ and $\frac{1^*}{2}$ states, respectively.

that most of the particle $\otimes 2^*$ states move slowly as protons are added relative to the adjacent 2^+ core, except for the $\frac{7^+}{2}$ state. As the occupancy of the $g_{9/2}$ orbital increases, the mixing of $(g_{9/2})^3_{7/2}$ cluster character clearly brings down the $\frac{7}{2}$ level. The $\frac{7}{2}$ (and other) assignments proposed for ⁸⁷Y and ⁸⁹Nb that we show on Fig. 8 are consistent with the N=52 isotones. The increased $(g_{9/2})^3$ cluster character required in ⁸⁹Nb to bring down the $\frac{7}{2}$ level can also account for the sharp increase in β^+/EC decay strength.

ACKNOWLEDGMENTS

We wish to express our appreciation to Professor D. L. Hendrie and Mr. John Brett of the Maryland Cyclotron for their cooperation and efficiency in producing the various proton beams required in these experiments. This work was funded in part by the National Science Foundation whose support we greatly appreciate.

⁷F. W. N. deBoer, C. A. Fields, R. A. Ristenen, L. E. Samuelson, and P. A. Smith, Technical Progress Report No. C00-535-767, 89, University of Colorado Cyclotron, 1979 (unpublished).

- ⁸F. D. S. Butement and S. M. Qaim, J. Inorg. Nucl. Chem. 26, 1491 (1964).
- ⁹R. Doron and M. Blann, Nucl. Phys. <u>A161</u>, 12 (1971).
- ¹⁰Table of Isotopes, edited by C. M. Lederer and V. S. Shirley, 7th ed. (Wiley, New York, 1978).
- ¹¹S. Della Negra, C. Deprun, H. Gauven, J. P. Husson, and Y. LeBeyec, Abstracts of the Division of Nuclear Chemistry and Technology of the American Chemical Society Meeting, 1980, Houston, Texas (unpublished).
- ¹²R. Pardo, L. W. Robinson, E. Kashy, W. Berreson,

and R. M. Ronningen, Phys. Rev. C 2, 462 (1980). ¹³N. B. Gove and M. J. Martin, Nucl. Data Tables <u>10</u>,

- 206 (1971).
- ¹⁴P. Luksch and J. W. Tepel, Nucl. Data Sheets <u>27</u>, 389 (1979).
- ¹⁵C. A. Fields, F. W. N. deBoer, J. J. Kraushaar, W. W. Pratt, R. A. Ristinen, and L. E. Samuelson, Z. Phys. <u>295</u>, 365 (1980).
- ¹⁶O. Horibe, Y. Mizumoto, and M. Kawamura, J. Phys. Soc. Jpn. <u>42</u>, 1803 (1977).