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A momentum space coupled-channel formalism is proposed for the study of pion-nucleus single-charge-exchange
reactions at medium energies. Formal elimination of certain reaction channels leads to a reduced set of coupled
equations with a complex and energy-dependent interaction. A nonperturbative method based upon unitarity
considerations is then used to construct each order of this effective pion-nucleus interaction. Our analysis thus leads
to a second-order pion-nucleus interaction with analytical properties very different from those obtained from
multiple-scattering theory. The theory is applied to the study of pion-"C elastic scattering and the single-charge-
exchange reaction "C(m+,n )"N(g.s.). Included in our calculations are the first- and second-order pion-nucleus
strong interactions, and the pion-nucleus Coulomb interaction. We have calculated the first-order interaction using a
covariant, nonstatic theory and have evaluated contributions to the second-order interaction arising from two-
nucleon processes related to true pion absorption and to the scattering of pions from a nucleon pair. We present a
general relation connecting the second-order pion-nucleus strong interaction potentials of nuclei whose structure do
not differ appreciably. Theoretical results for m. "C elastic scattering predicted by our theory are found to be in good
agreement with the data. The calculated excitation function of the single-charge-exchange reaction exhibits a high
sensitivity to the type of two-nucleon processes considered. Pion-nucleus single-charge-exchange reactions therefore
have promise as a tool for investigating pion-nucleus reaction mechanisms.

NUCLEAR REACTIONS Coupled-channel theory, pion-nucleus single-charge-ex-
change reactions, pion absorption, nucleon-nucleon correlations, 7t C elastic
cross sections at 50 and 180 MeV, excitation function of C(7r', 7t ) 3N(g. s.) between

30 and 260 MeV.

I. INTRODUCTION

Pion-nucleus charge exchange reactions have
received considerable attention in recent years.
A large number of experimental and theoretical
works have been published. " In this work, we
will discuss a new approach to charge exchange
reactions which has not been explored previous-
ly. That is, we propose the use of single charge
exchange (SCE) reactions to study the nature of
the second-order pion-nucleus optical potential.
As we know, the second-order optical potential
plays an important role in the description of
pion-nucleus elastic scattering. '~ In the past
we have carried out a systematic study of pion
elastic scattering from light and medium-mass
nuclei at pion energies between 30 and 340 MeV
(Refs. 3 and 4) using a covariant scattering the-
ory. ' The microscopic first-order optical po-
tential used in our analysis is parameter-free
and is constructed by performing a complete in-
tegration over the Fermi motion of the target
nucleons. The off-shell effects related to nu-
clear binding have also been treated carefully. '
On the basis of this rather accurate first-order
theory, we have parametrized the second-order
potential and determined the parameters by per-
forming a chi-square fit to the experimental
differential cross sections. 4 The second-order

optical potential is closely related to reaction
mechanisms involving two-nucleon processes.
At pion energies below 300 MeV, the leading two-
nucleon processes are true pion absorption by
two nucleons and pion scattering from a corre-
lated pair of nucleons. (Both these reaction
mechanisms lead to a density-square dependence
of the optical potential. ) Consequently, it is
important to obtain information as to the rela-
tive strength of these two competitive mechan-
isms. We will show that the SCE reactions lead-
ing to isobaric analog states (IAS) are very
sensitive to these types of two-nucleon processes.
As an application of our theory, we will, study
the excitation function of the "C(w', w')"N (g.s.)
reaction and the differential cross sections for
m"C elastic scattering, making use of our know-
ledge of the pion-"C second-order optical po-
tential. 4 The good agreement between theoreti-
cal results and the experimental w"C elastic
scattering data (see Sec. IV) is particularly en-
couraging in that no new parameter has been in-
troduced in the present calculation.

The experimental results for the "C(w', w')"N
(g.s.) reaction have evoked a great deal of interest.
Activation measurements by Shamai et al. ' at
pion energies between 70 and 230 MeV, and
measurements by Zaider et al. ' at 30 to 90 MeV
show an almost energy-independent cross sec-
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tion of -I mb. However, in the (3,3) resonance
region, most theoretical calculations give results
lower than the experimental data of Ref. 8 by
almost a factor of 2.' " In addition, theoreti-
cal excitation functions exhibit a minimum in
this region. " Recently, it has been suggested'""
that pion-nucleon scattering amplitudes used
in the calculation of the SCE reaction should be
evaluated at different energies for different
isospin channels so as to take into account the
difference between the binding of neutrons and
protons in the nucleus. While calculations' "'
in which this energy-difference was treated as
a free parameter did provide a fit to the activa-
tion data of Ref. 8, preliminary results based
upon a careful microscopic calculation" indicate
that the effect on the SCE reaction due to a
realistic consideration of the energy-difference is
very small. In an earlier study Anderson et al."
had reexamined some experimental aspects of the
activation measurements and had estimated tar-
get thickness effects (due to secondary particle
reactions) on the measured cross sections. Their
calculations indicate that lower cross section
values may be obtained when the cross sections
due to secondary particle reactions are sub-
tracted from these activation measurements.
Bowman et a/. have made an exponential fit to
the preliminary "C(v', v')"N(g. s.) angular dis-
tribution at 150 MeV, measured with the LAMPF
n spectrometer. " They have also obtained an
estimated integrated cross section which is con-
siderably lower than the one reported in Ref. S.
Clearly, further experimental and theoretical
studies are necessary for providing a final
answer as to the magnitude and the energy-de-
pendence of the cross section of this SCE reac-
tion."

In the present analysis we have assumed iso-
spin-symmetry for the pion-nucleus strong in-
teraction. However, we have also taken into
account the macroscopic isospin symmetry
breaking due to the pion-nucleus Coulomb inter-
action. Our analysis makes use of a momentum-
space coupled-channel formalism. The basic
theory is developed in Sec. II. One important
feature of our analysis is the use of a complex
and energy-dependent pion-nucleus interaction
derived from considerations based on unitari-
ty." The consistency of the theory is achieved
through the use of a common interaction to de-
scribe both elastic scattering and SCE reaction
phenomena. For example, the first- and secogd-
order potentials responsible for the SCE reactions
are connected in a definitive way to the first-
and second-order optical potentials for elastic
scattering.

Several calculations reported in literature con-
sidered effects of second-order interactions on
SCE reactions. Warzawski et al. calculated con-
tributions due to isovector nucleon-nucleon cor-
relations in the framework of the distorted-wave
impulse approximation (DWIA)P' In that calcu-
lation the distorted waves were generated, how-
ever, only with the first-order optical potential.
Omission of the attenuation of the pion flux due
to the second-order optical potential will necess-
arily yield higher calculated SCE cross sections.
The approximation in that work is, therefore,
not consistent in the treatment of the second-
order interaction (see a discussion in Sec. IV).
In Ref. 16, a phenomenological second-order
optical potential was added to a first-order op-
tical potential to generate distorted waves. Then
the second-order direct interaction of Ref. 22
was included in the calculations. It is very likely
that the direct interaction part of the second-
order potential so introduced cannot be related
to the phenomenological optical potential used
in the same work, in the sense that they do not
derive from a common interaction. Other the-
oretical works have considered correlation
effects using a perturbative approach to describe
the basic interaction due to two-nucleon mech-
anisms (see Sec. II). However, the question of
true pion absorption as related to two-nucleon
processes has not been addressed.

In Sec. IG we show how, by isospin analysis,
one can determine the second-order potentials
for w"C systems from the knowledge of the n "C
second-order optical potential. We will also dis-
cuss the sensitivity of the SCE reaction to the
type of two-nucleon reaction mechansims being
considered. Theoretical results and the discuss-
ion of these results will be given in Sec. IV.

H. BASIC THEORY

In this section we develop a coupled-channel
formalism suitable to the study of SCE reactions
leading to IAS. Central to the analysis presented
here is the use of a nonperturbative approach to
derive the effective pion-nucleus interaction.
Thus the analytical properties of the second-order
pion-nucleus interaction that emerges from this
analysis are very different from those obtained
from multiple-scatter ing theory.

We divide the complete Hilbert space into
three orthogonal subspaces. Let P, project onto
the channel describing the elastic scattering
of incoming charged pions by the target nucleus,
and P, onto the channel which describes the
elastic scattering of charge-exchanged pions by
the isobaric analong nucleus. Let P, be the pro-
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Hl C&= El 4& (2.1)

jector which projects onto all other reaction
channels. It follows by construction that P, +P,
+P, =1 and P,P, =.6,.+, {i,j =a, b, x). We also
define the total wave function +, and various
channel wave functions, 4 „ through the rela-
tions:

(2.13)

and

(({)('I u„= {xI &'„,

we obtain

(2.14)

using the relations between the scattering wave
state I ({I„")and the plane-wave state Ix)

w,„l y,')& = v „Ix)

and

P, I@&= I {I,&, i=a, f), x (2.2)
and

'U„='U „+ dE,&, E —Ex+ iq (2.15}

In Eq. (2.1) H=K+ &. Here the K and '0 repre-
sent, respectively, the kinetic energy operator
and the interaction between the pion and the
nucleus. Using standard projector algebra, we
can rewrite Eq. (2.1) as:

and

(E-K 1i„}I ){,&='0„I )I,&+'U„I q,&,

(E-K —&2~) I {Ig='0~, I ({),&+U~ I )t),&,

(E -K -'V„) I y,) =&„I({I,&+ 'U„l g,&,

(2.3)

(2.4)

(2 5)

where '0,
&
-—P('0P& (i,j = a, I), x). Upon eliminating

I {I),& from these equations, we obtain a system
of two coupled equations:

(E-K-u..}l({,&=g., l({),&,

(E-K-6„)I{I,& =6„I){),&.

(2.6)

(2 7)

Here 1i,&=P&'UP& (i,j=a, b) are the matrix ele-
ments of an effective interaction 'U and are de-
fined by:

and

'U„-='u..+u.„G,")(E)U...

'U„G ')(E)u„,

(2.8)

(2 8)

(2.10)

with

G,")(E)=(E -Z'- 1l„,+ie}-'. (2.11)

Similar relations hold for U„. An inspection
of these equations indicates that z„and 'V» are,
respectively, the pion-nucleus optical potentials
in the channels a and b. On the other hand, 'V„
and 'U„represent the single charge exchange in-
teractions which couple the channels a and b.
Equation (2.10) further suggests that '0 is com-
plex and is energy dependent. Following Ref. 21,
we expand the propogator G „")(E}in terms of a
complete set of biorthonormal eigenfunctions
which are solutions of the equation (K+ U„){I),
=E,P, and write

G, (E)= fdE)d~')(E —E+)'(2,"I.2, (2.(2),
Introducing Eq. (2.12) into Eqs. (2.8}-(2.10}, and

'U~='U~+ dE &~ E —E +gq (2.16)

There are similar expressions for 6». We note
that the numerator of Eq. (2.15) is proportional to
the product V V

~ and is therefore always positive.
Consequently, the imaginary part of the optical
potentials, g„andg», is always negative, in-
dependent of the models used for & and Ft. It was
further shown in Ref. 21 that each optical po-
tential can be written as an expansion classi-
fied by the number of target nucleons interact-
ing with the projectile, and each term in the ex-
pansion has a negative imaginary part. The def-
initely negative sign of the imaginary part of the
optical potentials in our theory is a direct result
of the procedure used in obtaining Eq. (2.15). It
represents the transfer of flux from the elastic
channel to reaction channels as required by the
unitarity. Had an iterative method been used
in solving Eqs. (2.8)-(2.10), one would have ob-
tained the usual multiple-scattering expansion
of the optical potential in which the second-order
optical potential is proportional to (E-E,+ ig) V'.

The numerator of this last quantity is thus given

by the product && which, in general, does not

have a definite sign. Consequently, the imaginary
part of this latter second-order potential can be
either positive or negative. The situation is es-
pecially serious when there is resonance in the
elementary projectile-nucleon interaction. For
instance, if & is replaced by the mN scattering
amplitude, then V'V =(f,„)'. Owing to the presence
of the (3, 3) resonance in the pion-nucleon system,
the quantity Im( f,„f,&) is a rapidly varying function
of the energy and can become positive. Such
theories can often lead to numerical results" that
do not have any simple physical interpretation.
Consequently, in the present analysis we will only
use Eqs. (2.15}and (2.16} to construct the second-
order optical potentials.

We now apply our formalism to the SCE reaction
"C(w', v')"N(g. s.) and let a and 5 denote, re-
spectively, the elastic channel of the m'-"C and
m'-"N systems. For notational convenience in the
following discussion, we write the interaction 'U

in an expression which does not have an apparent
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matrix form: ./2
Xtf " 3X (3/2) "3X (1/2) (2.22)

(2.17)

(2.18)

with

0= V+I,(-,'-f„)v, ( ',-+-f„)n,,
Equation (2.17}is equivalent to a (2 x2) matrix
representation of g, provided we also replace
the one-column vector representation of the two-
channel pion-nucleus wave function by the expan-
sion k= P, + g«. In Eq. (2.17}, V is the compleg
and energy-dependent pion-nucleus strong inter-
action. The quantities t, and t„denote the third
components of the isospin operators acting, re-
spectively, on the pion and the nucleus. Our
convention for the isospin is that the eigenvalue
of t„equals-,' for "N and --' for "C. Finally,
the quantity 4, represents the mass difference
between the two channels being considered. In
the present example, 4,=m(v')+m("C)-m(w')
—m("N) = 2.4 MeV, reflecting the Coulomb
splitting of the two channels.

Since the pion has isospin one and is spinless,
while either ' C or "N has isospin-,' and spin-,',
it follows that the pion-nucleus strong interaction
V has the general form

V= S'+ &, 7'~U,

and

,I 2 ,/1
XQ "

3 X(3/2) 3 X(1/2)'

Consequently, the wave function 4' can also be
written as

(2.23)

~(3/2)X(3/2) ~(1/2)X(1/2)& (2.24)

and

(E K —W-+ U —V,) I P,) = v2 Ul g~),

(E K W-+ n, -. l y,) = WRUi y.).

(2.25)

(2.26)

Equations (2.25) and (2.26) are formally identical
to the Lane equations" "used for the study of

(p, n} reactions. If R„ is the range of the nuclear
force, then the nuclear potentials vanish at
r & RN. Consequently, in the external region
we have two uncoupled equations:

(E K —V,)$,(r)=0, r&R&, (2.27}

with (t)(3/2) and (t)(1/2) describing the relative mo-
tion of the pion in the isospin channels. Intro-
ducing Eq«. (2.17)-(2.21) into Eq. (2.1) and making
use of Eqs. (2.22) and (2.23), we obtain two coupled
equations:

and

W= W, -is (k'xk}W„. (2.18)

(E+n, -K)y (r)=0, r&R„. (2.28)

U= U, -is ~ (k'xk)U, . (2.20)

Here the k and k' are the unit vectors in the di-
rection of the initial and final pion momentum
calculated in the center-of-mass frame of the
pion-nucleus system. Furthermore, the strong
interaction V given above is diagonal in the basis
formed with the eigenvectors I IJI). Here the
quantum numbers I-, J, and I stand, respectively,
for the relative orbital momentum, the total
angular momentum, and the total isospin of the
system. However, the full interaction 'U does not
conserve the total isospin and is therefore not
diagonal in the basis ILJI). This isospin sym-
metry breaking is due to the second and third
terms in g, which are related to Coulomb inter-
action and do not commute with the total isospin
operator I =~,+ ~„.

We use the following model wave function for the
effective two-channei system of Eqs. (2.15}and

(2.16):

+= y (r)X, + 4,(r)&,. (2.21)

Here Q, and (t), describe the rel.ative motion of
the pion in the physical channels n'"C and w "N.
The X, and X, represent the internal wave func-
tions and are related to the internal wave func-
tions of definite isospin by vector coupling

and

u, (r) = —.S~ [H ~(k,r)]„.,L/

t&RN Z

(2.29)

(2.30)

Here the k, and k, are the channel wave vectors.
The F ~ and G~ are the regular and irregular
Coulomb functions and g is the usual Coulomb
parameter. Furthermore,

[H «z, '(k ~r)]„0= G~~(k~r) + iP~(k~r)

= (k~r)[nz(k«r)+ij ~(k~r)].

The 6, and S~, are the nuclear phase shifts and

the scattering function in the presence of the
Coulomb interaction.

The scattering problem in the internal region
can be described by the short-range part (r- R„)
of Eqs. (2.25) and (2.26), 2~ where the short-range
Coulomb potential is given by V,(r)B(R„-r). In

Equation (2.28) indicates that the channel energy
of the physical channel m'-"N is greater than that
of the physical channel m'-"C. In the external
region the radial wave functions of Eqs. (2.27)
and (2.28) satisfy the following boundary condi-
tions:

u, (r) = e~~~ cosh, [Fz(k,r)+ tanb, G~z(k, r)],
t) RN
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our calculations, we have used V,(r)B(R)E r-)
= (Z, e'/2R, )(3-2/R, '), with the number of protons
Z, equal to 6 and the charge radius R,=R&. Since
the pion-nucleus strong interaction is nonlocal,
it is advantageous to solve the problem in mo-

mentum space. We have transformed the internal
equations into two coupled momentum space Lipp-
mann-Schwinger type integral equations. For
each given partial wave I-J we have solved the
set of equations:

(4 I Eg
(k)4(4 I 4I

y
lk) + 2 4 f 4 4k x (4 I II ' I k )G (4 )(4 I E

g
I 4'), (', j=, 4)

fit + IN ~ b

Equation (2.31) may be written in matrix notation as

(k I E"Ik& (k III=*'Ik& ~ k,f k Ek (k-'I 4-*
I k &G ~(k-*&(k«i 4 lk&

with

f WL7 UL7 VI z ~JUL J)
~LJ c

ULJ' w"~'

and

(,) -„E
~

E —E,(k") —E„(k")+iv. 0
0 E ~ 4, —E (k ).—"E (k")+').

(2.31)

(2.32)

(2.33)

(2.34)

Here the use of the symbol%, for the interaction
serves as a reminder that the quantity 4, has
been separated out from the original interaction
'U [see Eqs. (2.17), (2.25}, and (2.26)] and was
absorbed into the definition of the channel-energy
of channel b [see Eq. (2.34)]. Finally the par-
tial wave expansion of the potential W in Eqs.
(2.31)-(2.33) is given by

u.",(r) = F"='(b,v)+ &;:[H()(b.r)), ,r) RN

+ f'~,~[H~~) (b,r], . (2.36}

A similar equation holds for u, ~(r} Here th. e
subscript s denotes that the wave functions are
due only to the nuclear potentials and. the short-
range part of the Coulomb interaction, V,. Con-
sequently, in Eq. (2.36) the functions Er, and H'~

are evaluated with @=0. The quantities &~&J

(i,j =a, b) are obtained from solving numeri-
cally the set of equations (2.31} in momentum
space. The phase shifts 5~ J and the scattering
function S~~~ defined in Eqs. (2.29) and (2.30)
are then determined from &~(j~(i,j = a, b) by
matching the "interior" wave functions u~ J and

u, , to the "exterior" wave functions u, and u,

W = —' dij WQ (p) —W
2 -j L S ] ~2 1/2

(2.35}
A similar expression holds for U~J and V~J.
We may note, however, that since Coulomb in-
teraction is spin independent, the partial
wave expansion of the V, does not have a term
corresponding to the second term in Eq. (2.35}.

If we denote the radial wave functions of the
internal equations as u~ J and u~ J then u, J has
the asymptotic behavior

I

at r & R„. This procedure represents a general-
ization of the single-channel momentum space
matching method of Vincent and Phatak. "

By solving the coupled equations, we are able
to obtain with a single calculation the differen-
tial cross sections for m'-"C elastic scattering
and for the SCE reaction "C(v', v'}"N(g.s.).
For 71 --"C elastic scattering, the pion-nucleus
system is in a pure isospin state of isospin —,.
In this case, we do not use the coupled-channel
formalism. Instead, we solve the scattering
problem by using a single-channel equation Hg
= (K+ V —V,))lj = E(tj, where V is the optical
potential of the m -"C system. Further, the
Vincent-Phatak momentum-space matching
method" can be used without modification to
determine the nuclear phase shifts in the pres-
ence of Coulomb interaction.

III. ISOSPIN ANALYSIS OF REACTION MECHANISM

In this section we discuss models used for the
first- and second-order strong interaction po-
tentials. Our emphasis is on the investigation
of the dependence of SCE reactions on types of
two-nucleon processes being considered. In par-
ticular, by use of isospin analysis, we formulate
a scaling method which allows us to obtain the
strength of the second-order SCE potential from
the second-order optical potential determined
in the analysis of the elastic scattering of pions
from neighbonng nuclei. For example, we show
that, within a given reaction model, the second-
order SCE potential for the reaction "C(v', v')"N
(g.s.) can be determined from the knowledge of
the second-order optical potential of the pion-"C
system. As it has been discussed in Sec. I, it is
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of interest to study the relative importance be-
tween contributions to the second-order optical
potential duetotruepion absorption by two nu-
cleons and scattering of pions by a nucleon pair.
To implement this latter study, we extend, at
the end of this section, our scali:ng method by
introducing a mixing parameter to account for
the competition between these two two-nucleon
processes.

We use superscripts to denote the order of
interaction. Referring to E(ls. (2.18)-(2.20}, we

will further employ the notation V'"'= W'")

+(v, v„}U'"'and W'"'= W, '"' is-~ (k xk)W,'"&,

(&2=1,2). A similar expression will be used
for U'"'. For the first-order potential we use
the microscopic, nonstatic covariant theory

employed in previous works. '4 We write

(3.1)

In E(1. (3.1) V"' is the first-order potential de-
scribing the interaction between the pion and the
core nucleons. For the pion-"C system, the
analytical expression for V"' is identical to that
for the pion-carbon optical potential4' except
that now the nuclear wave functions are deter-
mined from electron scattering data for "C.
(The procedure used for determining wave func-
tions from electron scattering data can be found
in Ref. 29.} The potential V~' describes the in-
teraction between the pion and the valence nu-
cleon and can be derived by use of methods simi-
lar to those used for V'" . We find

('2k( +gk( klk&; )tk= k&'(& R&'&'(k f&d(((&( /E &(((, —k'-Q;k'If (Ms&lk, —2 —Q k&k"'(Q QQ

(3.2)

Here, nlj are the quantum numbers specifying
the orbit of the valence nucleon and p„'» is the
corresponding nuclear form factor. For sim-
plicity of notation, we have used 0, and e' to
denote, respectively, the spin and isospin quant-
um numbers of the pion and the nucleus in the
initial and final state. We note that in the present
example, the isospin of the nucleus is identical
to the isospin of the valence nucleon. Further-
more, E,= (@2+M,2}'~2 is the energy of the spec-
tator core, and Q„and Q'„are, respectively, the
momenta of the valence nucleon in the rest frame
of the initial and final target nucleus. We refer
to Refs. 4 and 6 for the definition of the kinematic
factors, R'~2. Finally, in E(I. (3.2), E denotes
the total energy in the center-of-mass frame of
the pion-nucleus system.

The nuclear binding and the Fermi motion of
the target nucleons have a significant effect on the
vN interaction through the determination of the
energy available to the vN collision, Ms. ' Since
the nN scattering amplitude is strongly energy-
dependent, we have carefully distinguished the
binding energy of the valence nucleon from the
binding energies of the core nucleons of different
orbits. Experimental separation energies and

binding energies given by Hartree-Fock calcu-
lations were used in the determination of ~s
for each nucleon.

In spin and isospin space, the wN amplitude is
an operator and can be written as f,„=f, —o n,f,
+ v', ~ v&((f2 is n,f2}.-Here n, is the scattering
vector associated with scattering of the pion from
a moving target nucleon and is to be integrated
in our treatment of Fermi motion. We can there-

I

fore write V~(» =E(V", ~& (i =0, 1,2, 3), where V,"~&

is obtained by substituting f, for f,„in E(I. (3.2).
It follows from E(ls. (2.18)-(2.20) and (3.1) that

U," can be readily calculated from P'&„„and
(1)

V3,~.
The second-order strong interaction potential

V"' can also be considered as being composed
of two terms

V(2) V(R) + V (2) (3.3)

Here V~(2) describes the interaction between the
pion and two core nucleons, while V~(2) describes
two-nucleon processes involving the valence
nucleon and a core nucleon. Again, V~ repre-
sents a scalar interaction and VQ* does not. In
isospin space, one can write

V~ = 8'~ +&, ~ &„U~, (3.4)

and similarly

V(2) gr(R)+~, ~ U(2) (3.5)

and

W(2& — & (V (2& + V(2& }C
C

(3.6}

U (2& 1 (V (2& V (2& )2 r 13C g+13C (3.7}

We now proceed to determine 8'"'and U"'by
considering those reaction mechanisms that

It follows from E(ls. (3.2)-(3.5} that W"'= V~&
+W~'» and O'" = U~'. Thus we obtain the following
results for the second-order m"C optical poten-
tials: V'~'» = W"'+ U"' or conversely,
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and

gp= — 3f(~(2) ~

01 3 ( f(3/3) f(1/3 )}

3 (2.f(3/3)+f(1 /3)).

(3.10a}

(3.10b)

(3.10c)

The scattering amplitude of a pion in an initial
isopin state (I, x) by two nucleons in an isopin

represent the dominant contribution of two-
nucleon processes in the calculation of second-
order potentials. We first consider the true
absorption of pions by two nucleons. Contribu-
tions of this reaction mechansim (denoted as
mechanism A) to the second-order pion-nucleus
potential are illustrated by Fig. 1(a). In Fig. 1(b),
we show a microscopic model for the true pion
absorption process ()/NN -NN). In this model
the pion is scattered from a first nucleon and is
then absorbed by a second nucleon. The two
nucleons may or may not be strongly correlated.
This two-step absorption mechansim represents
the dominant mode for pion absorption in the (3, 3)
resonance region and has been extensively em-
ployed in many theoretical calculations. " In iso-
spin space, the absorption amplitude can be
labeled by ATI, which corresponds to the initial
isospin T and to the final isospin I of the two
nucleons. [The quantity I is also equal to the
total isospin of the initial (vNN} three-body sys-
tem]. There are three independent amplitudes":
Ayp Apg and A». App lying standard angular
momentum algebra to the analysis of the two-
step mechanism of Fig. 1(b), we obtain:

As= Zs...(-1) [21,~ 1)(ss~ ))]'~',
Ig

(3 3)

where

g/, — iv 3 ( 1) / ~ s[2(2I +1)]1/ f 1 —' I
'22

(3.9}
Here the factor -iv 3 arises from the mÃN ver-
tex. The quantity f«) is the ((N scattering amp-
litude in the channel of isospin I,." Detailed
evaluation yields:

(a)

state )T,m), via mechanism A, to a final isopin
state il, a') with the two nucleons left in a final
isopin state (T', m'), is therefore proportional to

g& T'm', XTm ~ g&T'I
MULTIA ~ X'm'N XmN TI T'I

I
(3.11)

Here, ~ =1, 0, -1 represent, respectively, the
value of the third isopin component of n', n, m .
Further, we have the relation Ar./=(Ar. /)*. If
the charge state of the pion is unchanged (X' =A.),
only transitions with p= T' and ~&=~' are allowed
for nuclei with closed shells. Equation (3.11)
thus reduces to

(b)
Fyo. 1. (a) Diagrammatic representation of the con-

tribution of the true pion absorption process to the
second-order pion-nucleus interaction. Pions and tar-
get nucleons are represented by wavy and simple solid
lines. The dashed lines represent nucleons in states
that are unoccupied in the target ground state. The
vertical lines indicate that the spectral decomposition
of Eq. (2.12) has been used. The heavy solid lines de-
note nuclei containing A or A-2 particles. The small
open circles denote nuclear vertex functions; the large
open circles containing the plus and minus signs are,
respectively, the pion absorption and production ampli-
tudes. (b) Diagrammatic representation of the two-
step model for the pion absorption amplitude of (a).
The filled circle is the x+N vertex function; the open
circle with the plus sign is the xN scattering ampli-
tude.

s„"-=-F (c ) ls „I* (3.12)

=[)r.o&~, olAo)l' [)r,1[3[)1,-~IA.J'+ 4(2+ m)(I-mx)(l-5 ())+ —[), (A„( ]) (3.13)
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where the subscript 3 refers to reaction mecha-
nism g. When the pion is scattered from a val-
ence nucleon-core nucleon pair, T gT' transitions
are allowed. However, one must have ~' =ng when

The only possible values for ~' and ~ are
thus ~' = ppg=0. That is, 7' g 7' transitions can
take place only for a valence-core nucleon pair
consisting of a proton and a neutron. Qwing to
the antisymmetrization of the wave function of
two nucleons, a change in the total isospin of the
two nucleons is necessarily accompanied by a
corresponding change in the spin-space part of
the two nucleon wave functions. The contribution
from 7"g 7' transitions is therefore much smaller
than that from 7" = T transitions. We define,
therefore, a strength function

(3.14)

which represents the sum of all T' = 7.' contribu-
tions to the scattering of the pion from a nucleon
pair. Expressions for S„due to various combina-
tions of nucleon pairs are given in Table I. W'e
have used the notations w[np], w[nn], and w[pp] to
imply the summation over all 7 values of the two-
particle isospin states of definite symmetry, as
required by Eq. (3.14). Hence in this notation,
we have S„(w[npj) = S„(w[pn]). We shall also use
the notation (np), (nn), (pn), and (pp) to indicate
the physical combinations of two nucleons, which
do not necessarily have a definite isospin value.
For example, l(np)) =(IT=1) -IT=0})/vY and

I(pn)) = (IT = 1)+ I T = 0)}/W, etc. In this
latter notation, the (np) and (pn) are counted as
two distinct combinations. Since (nn) and (pp) are
in a pure isospin state while (np) and (pn} are not,
we have S„(w(nn)) =S„(w[nn]), while S„(w(np)) =S„
(w[np])/2, etc. We will also use the subscript v

or q to denote whether a valence or a core particle
is involved. When the symbol & is used, it im-
plies a sum over the two charge states of the nu-
cleon N. For example, (NN) is equivalent to four

S„{w (n„N, ))= S„(w [n„n,]}+!S„(w [n„p,])
=!IAo|I'+ 3 IA„I' (3.17)

There are X„A, charge states, with 3(„being the
number of valence neutrons. (X„=1for "C.) Each
of these charge states is associated with an aver-
age strength function S„=S„(w'(n„N, ))/2, since
each (n„N, } is equivalent to two charge states. The
total contribution to the 7]*"C system is therefore
given by:

S ~ "C= 3 A, (A,—1)S„{w(N,N, ))+ 3X„A,S„(w'(n—„No})~

(3.18)

Similarly, the corresponding quantity for the pion-
"C system is

S,»c= —', A, (A, —1)S„(w(N, N, )). (3.19)

Since the difference between the nucleon density
distributions in "C and "C is small, "we neglect
the difference between the single-particle shell
model wave functions used in these two neighbor-
ing nuclei. The second-order optical potentials
for n "C systems are then determined with the
relation

combinations: (nn), (np), (pn), and (pp). Em-
ploying these notations, we find from Table I that
the contribution due to all four possible charge
states associated with a core nucleon pair is

Sx{w(N N, ))= IAoil'+IA«I'+ IAiol' (3 15)

There are A, (A, -1)/2 charge states for A, core
nucleons. To each of these states one can associ-
ate an average strength function S„' = S„(w(N, N, ))/4
For the valence-core nucleon pair, the strength
functions due to m' and m differ from each other.
We have, for example:

S„(w'(n, N, )) =- S„(w'[n „n,]} —'S„(w' [n„p,]}

=-'IA, I'+ IA I'+ IA .I', (3 15}

and

V3& 'oc 3}~(E}V3"ci
(2) (3.20)

TABLE I. Expressions for strength functions S~. where q, (E) is an energy-dependent sca, ling factor
defined by

Systems

'[pp)

7r [np)

~[pp)
~'[np)

Sz

I
A o|l + 31 A i|l

21A nfl + 31 Awol

+-.'I& iol'

3IA«l'+ 3IAool'

I A ool'+ 31 A |il'

S.o |oc 1 ~ S„{w'(n„N„))
S,|oc A, —1 S„{w(N,N. ))

(3.22)

Equations (3.20} and (3.21) represent our scaling
method. The isoscalar and isovector part of the
interaction can therefore be obtained by using
Eqs. (3.4} and (3.5). The results are:

W'o ' =
3I 3 (E}V343c,

U'o ' = o}w(E)V,ooc, (3.23)
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where the scaling factors g~ and gU are defined,
respectively, by (7~ = (q, +(} )/2 and (7n= ((7 —(7,)/2.
Our calculations show that the values of (}~(E)
are = 1.18, being nearly independent of energy.
The values of (I„(E}are given in Table III.

In a similar way, we consider the two-nucleon
mechanism associated with the scattering of pions
from a correlated pair of nucleons. This reaction
mechanism, denoted as B; is shown in Fig. 2,
where the open circles with the plus and minus
signs denote the w~ amplitude and its complex
conjugate. As emphasized in Sec. II, the presence
of the product of the wN scattering amplitude and
its complex conjugate represents the main differ-
ence between our approach and the usual multiple-
scattering approach to the calculation of the sec-
ond-order optical potential. Owing to the presence
of the pion in the intermediate states in Fig. 2,
there are f ive independent isospin amplitudes de-
scribing the eppes- ming scattering. These ampli-
tudes can be labeled by MT„T, with T" and Y' being
the final and initial isospin of the two nucleons, and
I being the total isospin of the mpN system. Stand-
ard angular momentum algebra gives the following
results:

T1„T = g (2f, +1)[(27'"+1)(2T+1))'i2

(3.24)

Rncl

Ital —& X +2 C'
LYLY 11 3 J(3/2) 3 J (1/2) y

2M 11 = f(3/2) ~

(3.29}

(3.30)

In analogy to Eqs. (3.11) and (3.12), we define,
respectively,

Rnd

g)(. 'T'm', X Tm —~ g1T I g1TI yla ~ X'm'u ) mSS T'T
I

( I 7'

Si r~ C I
Vs

m t(. + m)

(3.31}

(3.32)

where

VTT ~ MTT" ( ) T"T 'I M I t I (3.33)

The strength function in this model is then defined
RS

g& Tm (3.34}

Here the subscript B stands for the reaction mech-
anism B. Expressions for S~ are presented in
7able II. Using considerations similar to those
leading to Eqs. (3.15)-(3.17), we obtain

S((((((N, N, ))= 3 V11+V11+ VM+ -V11, (3.35)

S(((&(n„N,)) =
12 V11+ 4 V11+ 2 V(t(t +

3 V11, (3.36)

Rnd

Rncl

Detailed calculations show that
0M„=f(, )2( t

1 2 4 1
Moo 3 J(3/2) 3 /(1/2) P

1
M10 3 (f(312( f(1/2)}t—

(3.25)

(3.26)

(3.27)

(3.28)

Sa(w(T(„Nt:)) = vV11+ 2 V11+ 2 Voo (3.37)

The scaling factors (7,(E) are defined through the
use of equations similar to Eqs. (3.18)-(3.23). We
find that q~(E) = 1.18, being again independent
of energy. The values of (}U(E) are given in Table
III.

Let us denote the scaling factors qU determined
from the reaction mechanisms A and B, respec-

TABLE II. Expressions for strength functions Sz.

Systems Sg

(4-2)
FIG. 2. Representation of the contribution to the

second-order pion-nucleus interaction arising from
pion scattering from a correlated pai, r. The correla-
tions are indicated by cross-hatched double lines. The
open circles with the plus and minus signs denote the
xN amplitude and its complex conjugate. The other
circles and lines have the same meaning as in Fig. 1.
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~0[pp]
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2 Vfi 2 Vii
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2 I f
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X(z) = —q"„(E)/[pe~(z) —q~(E)]. (3.39)

Before concluding this section, we discuss the

TABLE III. Values of gz as function of pion energies.

T (NeV)

30
50
80

100
120
150
162
180
200
230
260

-0.152
-0.0812
-0.0447
-0.0374
-0.0342
-0.0320
-0.0316
-0.0309
-0.0306
-0.0301
-0.0297

-0.0950
0.0098
0.0547
0.0690
0.0775
0.0846
0.0862
0.0886
0.0904
0.0928
0.0957

tively, by g~ and g~. We see from Table III that

g~ and g~~ have opposite signs at most energies.
This feature is easily understood. In the true
absorption mechanism, the absorption of m takes
place on an ~-p pair or on a p-p pair, while the
absorption of m' requires the presence of an pg-p

pair or an g-~ pair. In "C, there are fewer p-p
pairs than z~ pairs, and consequently reaction
mechanisms leads to g &g, and g~&0. On the
other hand, for the reaction mechanism B the
strength is governed by the pion-nucleus scatter-
ing processes. In the (3, 3} resonance region, w n
scattering is stronger than m'g scattering. This
basic feature of m~ scattering is reflected in the
relative strengths between scattering from various
pairs, as shown in Table II. Again, since N~g
in "C, there are more pairs favoring m scattering
than n' scattering. Consequently, reaction mecha-
nism B leads to q ) g, and q ~ ) 0.

An inspection of Figs. 1 and 2 shows that the
intermediate states in the two reaction mecha-
nisms discussed above are orthogonal. In mecha-
nism A, there is no pion in the intermediate state,
whereas in mechanism B a pion is present. When
both reaction mechanisms are contributing to the
second-order pion-nucleus interaction, the effec-
tive scaling factor should therefore be a combina-
tion of q ~U and q ~. We propose to write

q, (z) =[I X(E)]g",(Z-)+X(E)qU(z) (3.38.)

In Eq. (3.38} the energy-dependent quantity X(E)
defines the degree of mixing of two reaction mech-
anisms, and X(E}can be determined by comparing
the experimental excitation function with theoreti-
cal SCE cross sections calculated with q (E) of
Eq. (3.38). Since q~ and ps' have opposite signs,
it is possible that for a given energy p, g„may
vanish. This implies that at this energy, the mix-
ing parameter is given by

effect of neglect of T' eT terms in Eqs. (3.14}and
(3.21). We find that the inclusion of these terms
has only a small effect on the calcul. ated cross
sections. By way of clarification, we note from
the preceding discussion that only (n„p,} pairs
contribute to T'x T transitions, while both (n„p,}
and (n„s,) pairs contribute to T' = T transitions.
Taking into account this feature, we have calcu-
lated $~~ ~~ and the change in g„due to all
allowed T'g T transitions using Eqs. (3.11), (3.31),
and (3.21). Owing to the model-dependence feature
of 5 and q, the change in g~~is much smaller than
the change in g~. For g~, the 7"g T transitions
cause a modification of —20 of the values given
in Table III. However, the overall change in the
calculated cross sections is much less than 20%,
since the overlap between the initial and final nu-
clear wave functions in a T'g T transition is much
less than that in a T'= T transition. If we let
V~('~&, » denote the contribution to the second-
order potential arising from a given (Tm)- (T'm)
transition and a pion in the charge state g, and
if we factor out the mb) interactions from the
rest of the evaluation of the reaction diagrams
shown in Figs. 1(a} and 2(a), we obtain'
(&'~V"' (E)$)~ S" ' ~ (E)lr rgj), where
Ir,re) describes the overlap between the initial
and final nuclear wave functions, and I| is the
momentum transfer. Since the total two-nucleon
wave function is antisymmetric, a change of the
total isopin of the system must be accompanied
by a change of the symmetry of the spin-space
part of the wave function. For example, if T=1,
then the isospin part of the two-nucleon wave func-
tion is symmetric and the spin-space part is anti-
symmetric. If T= 0, then the isospin part of the
wave function is antisymmetric and the spin-space
part is symmetric. The change of symmetry of
the spin-space parts of the wave functions in a
T'g T transition reduces considerably the value
of the overlap integral I~,~. We estimated this
reduction effect by assuming that the total spin
of the two-nucleon system was unchanged during
the interaction. [This simplification will introduce
only a small error as a result of the weak mN

spin-flip interaction in the (3, 3) resonance region]
Single-particle harmonic oscillator wave functions
were used to construct the two-nucleon wave func-
tions with definite symmetry. ~ Our estimate has
shown that the average value of the overlap inte-
grals for T'g T is about one third of that for T'=T.
The overall effect of T'g T transitions on the
second-order potential is therefore 20 x —', = Vg.
Furthermore, because of the presence of the first-
order SCE potential this V$ change in the second-
order SCE potential has caused only -3g change
in the calculated SCE cross sections.
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IV. RESULTS AND DISCUSSION

Using the procedure outlined in the previous
sections, we have calculated the excitation function
of the SCE reaction "C(v', v')"N(g. s.). The re-
sults are presented in Fig. 3. If we assume that
only the true pion absorption mechanism contri-
butes to the second-order potentials, we obtain
curve A. . Similarly, curve B corresponds to the
situation in which the contribution to the second-
order potentials comes only from the two-nucleon
process involving the scattering of pions from
nucleon pairs. The excitation function obtained
in the limit g~ = 0 is represented by the dashed
curve in Fig. 3. For comparison, we also show

the result when the second-order interaction is
entirely omitted from the theory (dash-dotted
curve). This last result is, of course, not realis-
tic since we know from the analysis of elastic
scattering data that two-nucleon processes are
very important. ' In Fig. 3, with the exception
of the dash-dotted curve, all other theoretical
excitation functions exhibit a minimum at pion
energy near 150 MeV. In Fig. 4, we compare
theoretical results with the experimental angular
distribution of Ref. 19. The prediction for the
SCE differentical cross sections at 180 MeV is
presented in Fig. 5. In both Figs. 4 and 5, we
note the first minimum occurs at 0, = 36 . This
minimum is related to the first minimum in the
nuclear form factor of the valence neutron. It is
worth mentioning that if only the first-order theory
was used, one would obtain differential cross sec-
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FIG. 4. Theoretical results for the angular distri-
butions for 3C(m+, x ) N(g. s.) at 150 MeV. Data are
from Ref. 19. Notation is the same as for Fig. 3.

2.0

I.O— y C(n, m. ) N(g s.).
10

Cl
E

b 0.5—

0.2—

L

Cl
E

-2
10

b

O. i
I

50
I

IOO

I

150

T~(MeY)

I

200 250 300
I Q 3

FIG. 3. Theoretical excitation functions for the SCE
reaction C(r+, g ) 3N(g. s.). Curve A corresponds to
the situation in- which only the true absorption processes
contribute-to V~ 2~ . Results calculated with the assump-
tion that V ~ is due solely to pion scattering from corr-
elated pairs are represented by curve B. The dashed
curve represents the excitation function calculated in
the limit ~=0. The dot-dash curve indicates theore-
tical results when only the first-order interaction is
used.
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FIG. 5. Predictions for differential cross sections
for 3C(r', r ) N(g. s.) at 180 Mev. Notation is the
same as for Fig. 3.
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tions having first minima at 8, = 45'. Conse-
quently, the inclusion of the second-order interac-
tion has effects equivalent to those produced by
increasing the rms radius of the valence neutron
distribution. This feature has also been observed
in our previous studies of pion-nucleus elastic
scattering. ' Consequently, we believe that in the
absence of a reliable calculation of the second-
order pion-nucleus strong interaction, SCE reac-
tions do not provide a simple measure of the neu-
tron distribution. Indeed, we have also investi-
gated the role of the valence neutron distribution
in "C, and we have found that with a reasonable
variation of this distribution the effect on the cal-
culated excitation function is very small.

It is of interest to compare the theoretical elas-
tic scattering differential cross sections, obtained
from this work, with experimental data. ""The
comparisons are shown in Fig. 6 for m'-"C and
n -"C elastic scattering at 180 MeV and in Fig. 7
for w'-"C elastic scattering at 50 MeV. In all
these calculations, we use the microscopic first-
order potential described in Sec. II and the second-
order potential determined from scaling the pheno-
menological pion-"C second-order optical poten-
tial. 4 Since no new adjustable parameter has been
introduced in this calculation, we are greatly
encouraged by the good agreement obtained be-
tween our theory and the data.

Inspection of Figs. 3-7 reveals that while theor-
etical elastic differential cross sections are rather
insensitive to the dynamics of two-nucleon pro-
cesses, calculated excitation functions of the SCE
reaction dePend strongly on the nature of the tuo
nucleon processes. The integrated cross sections
calculated with several values of the mixing para-
meter X are shown in Table IV. The cross sec-
tions are quite sensitive to the value of x, especi-
ally for X~0.50. Consequently, SCE represents
a useful tool to study pion-nucleus dynamics. For
example, the quantity X(E) may be determined in
certain cases by comparing theoretical results
with data. The kind of analysis proposed here
will allow us to obtain information about the ener-
gy-dependence of true pion absorption and to sup-
plement various microscopic calculations of pion-
two-nucleon processes.

Since the second-order pion-"C optical potential
does not have a spin-flip term, the scaling method
of Sec. III does not allow us to determine $P,"}and

U,"&. However, our calculations do include the
first-order spin-flip terms g", & and U,"&. Contri-
butions to the excitation function from the first-
order spin-flip terms is negligible for pion energy
greater than 100 MeV and becomes quite important
at low energies (s 80 MeV}. Since contributions
from the second-order spin-flip potentials are

! [ &
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expected to be much less important than those
from ~,'~ and tJ~'&, the analysis proposed in this
work should be reliable for pion energies greater
than 100 MeV.

The present analysis also indicates that although
it is possible to have g(~& equal to zero, it is not
possible to have q~& equal to zero. Translated
into the distorted-wave formalism, this means
that the calculations can be carried out with omis-
sion of the second-order direct interaction and
inclusion of the second-order distorting potentials
in the calculation of distortions. In this case, we
obtain very small SCE cross sections. In fact,

6 (deg)

FIG. 6. Calculated differential cross sections for
C and ~ '3C elastic scattering at 1SO MeV. Data

are taken from Ref. 32. The solid curves correspond
to the situation in which only the true pion absorption
processes contributes to V~ 2~. Results calculated with

the assumption that V~2~ is due to pion scattering from
correlated pairs are represented by the dot-dash curves.
The dashed curves represent theoretical results cal-
culated in the limit g&=0.
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TABLE IV. Calculated integrated cross sections (in
mb) for the C(x+, 7I ) N(g.s.) SCE reaction as a function
of X.

T (MeV) X= 0. X= 0.25 X= 0.50 X=0.75 X=1.00
C', IO
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FIG. 7. Calculated differential cross sections for
g+ C elastic scattering at 50 MeV. Data are taken
from Ref. 33. Notation is the same as for Fig. 6.

we cannot omit the second-order distorting poten-
tials in the calculation of distortions while keeping
second-order potentials in the direct interaction.
(In general, this latter procedure gives higher
SCE cross sections. }

In summary, we have presented a coupled-chan-
nel approach to single charge exchange reactions.
When SCE reactions leading to an isobaric analog
state are considered, one obtains a system of two
coupled equations in which the diagonal matrix
elements of the effective interaction can be identi-
fied with second-order pion-nucleus optical poten-
tials. The off diagonal part of this effective inter-
action is responsible for charge exchange. Various
spin and isospin terms of the effective interaction

can be determined from phenomenological optical
potentials of neighboring nuclei by use of isospin
symmetry properties. In considering microscopic
models for the construction of the effective inter-
action, we have used a unitary theory of optical
potentials for strongly interacting particles. "
This approach facilitates the physical interpreta-
tion of the theoretical results and does not lead
to spurious enchancement of cross sections. From
the study of the pion-"C system, we find that
theoretical results for the SCE reaction leading
to the IAS are quite sensitive to two-nucleon pro-
cesses. This indicates that SCE reactions leading
to the IAS offer a useful tool for probing pion-
nucleus dynamics. Finally, the method developed
here can be generalized to study SCE reactions
on nuclei with any spin and isospin and to study
double charge exchange reactions.
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of the U. S. Department of Energy.
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