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We present a simple, exact numerical method of obtaining the complex, l-dependent potentials 4 U, fr) induced in
the elastic channel by couphng to inelastic channels. For "0+ '"Sm at 72 MeV, we consider pure Coulomb
coupling and find that a simple power law absorption or the imaginary l-dependent polarization potentials of Baltz
et al. gives good agreement with coupled channel cross sections out to 100'. For larger angles a more accurate
representation of the polarization potentials for the low partial waves is required, both real and imaginary parts
being significant. We also exanune the "C+ ~Ca system at 68 MeV including a number of excited levels in both
projectile and target. Here, nuclear coupling is dominant. The strength of the imaginary part of4 U, is found to vary
quadratically with deformation length and inversely with excitation energy for excitations above about 5 MeV. The
states above 8 MeV lead to a real potential of strength comparable to the imaginary in the surface region. The effect
on the cross sections is discussed.

NUCLEAR REACTIONS Sm( 0 0'), E=72 MeV; ~oCa( BC,~SC'), E=68
MeV; coupled channel analysis; deduced effective elastic optical potential.

I. INTRODUCTION

Heavy ion elastic scattering data'~ obtained at
energies in the neighborhood of, or below, the
Coulomb barrier have revealed a significant de-
pletion of the Rutherford cross section forward
of the grazing angle. Such an effect is not obtained
with standard optical potentials. It can, however,
be explained by coupled channels calculations
which allow for the Coulomb excitation of low
lying levels.

It is useful to incorporate these Coulomb ex-
citation effects in an effective optical potential
designed for pure elastic scattering calculations,
i.e. , to derive the polarization potential associated
with Coulomb excitation. An l-independent form
of this polarization potential has been obtained
by Love, Terasawa, and Satchler' (LTS) in a
plane-wave approximation. The potential is found
to be primarily absorptive and to depend on the
radial separation as I/8' (approximately); the
long range nature of this potential, due to its
origin in Coulomb excitation, is the new feature
needed to describe the elastic scattering data.
Subsequently Baltz et al.' (BGKP) have improved
on this treatment by using Coulomb wave func-
tions to devise an I-dependent potential (see also
Donangelo et al.' for a semiclassical approach).
Baltz et al. obtain in addition the cross sections
for sub-Coulomb elastic and inelastic scattering
in closed form. We also remark that Frobrich
et al. ' have recently discussed the extraction of
a polarization potential from the elastic com-
ponent of the Coulomb excitation S matrix.

The present work is complementary to that of
Refs. 5 and 6, since we adopt a purely numerical,

although exact, approach. Specifically, we carry
out coupled channels calculations involving elastic
and inelastic scattering channels. The results are
used to define effective optical potentials which
produce the same elastic scattering wave functions
and cross sections as the full coupled channels
calculations. The effective potentials thus obtained
are local, but l dependent. This procedure is
discussed further in Sec. II, where we take as a
first example the case of "0 scattering from '"Sm
at 72 MeV. The Coulomb excitation mechanism
is dominant here, so that it is appropriate to
compare our exact numerical approach with the
work of LTS and BGKP. We also suggest a sim-
ple procedure for averaging over the l dependence
of our potential so as to produce an l-independent
result. This procedure is found to work rather
well in practice and bridges the gap between Ref.
5 and Ref. 6.

In Sec. III we turn to an example where the
inelastic excitation is dominantly nuclear, rather
than Coulomb. Rather little is known about such
cases for heavy ion scattering, although a brief
discussion of the "0+"Ca system was given by
BGKP. Here we elect to study the case of "C
scattering from "Ca at 68 MeV for a number of
reasons. Firstly, elastic and inelastic cross
sections are available for the low lying states. '
Secondly, proton inelastic scattering on "Ca and
'C has been studied' '" so that the inelastic ex-

citation strengths to low lying levels are known.
Thirdly, several groups" ' have studied the con-
tributions of inelastic and transfer channels to
the optical potential for protons scattering from
'Ca. Lastly, the angular distribution for the

"Ca("C,"N) "K reaction at 68 MeV is known
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to be anomalous" and it is conceivable that the
present work could have some relevance to this
problem. We shall make a fairly thorough study
of the polarization potential induced by exciting a
single level in "Ca and suggest a simple pre-
scription to obtain an l-independent potential. We
shall then discuss the polarization potentials ob-
tained when a number of levels in "Ca and "C are
included in the coupled channels calculations. We

give a summary of our results in Sec. IV, along
with some concluding remarks.

(E) -&)x, -v„x, ,

( g ) X2 2ix& + 22X2 ~

(2.I)

(2.2)

The wave functions of the target-projectile
relative motion, X, and g„describe the scat-
tering when the target is in the zero-spin ground
state (X,} and the excited level (X,). The coupling
potentials V» (=—V») and V» are functions of the
relative coordinate r and depend upon structure
parameters such as the potential deformations P.
The quantity V» involves the matrix element of
tensors of rank greater than zero acting on the
target and relative motion wave functions; it is
usually referred to as a reorientation term. It is
zero if, for example, the excitation of a one-
phonon vibrational state is considered as in Sec.
III. The diagonal part of the Hamiltonian H in-
cludes the kinetic energy operator and the sum
of the bare optical and Coulomb potentials, de-
noted by U(r). In the usual way one obtains the
set of coupled radial equations for each total J'
(determined uniquely by I, for the assumed spin-
less target and projectile}:

II. DOMINANT COULOMB EXCITATION EFFECTS

A. Calculational procedure

Consider the scattering for a two-channel system
which can be described schematically by the fol-
lowing set of coupled equations:

The problem is posed as follows: Assuming the
optical and coupling potentials are known, find
the polarization potential & U, ,(r), which solves

{ ——,Iv(r)+a U, (r)-z, l}(, (r) =o.d' I,(l, +1) 2p

(2.5)

This defines the complex, local, L-dependent,
trivially equivalent effective potential which re-
produces the exact elastic wave function Q, ,(r)
(obtained from solving the coupled equations) in
the case where the explicit coupling to the excited
state is neglected.

We obtain & U, (r) by solving (2.5}"backwards, "
that is, by inserting the elastic part of the cou-
pled-channel wave function and nurner ically
solving, for each value of x, the corresponding
pair of algebraic equations for the real and imag-
inary parts, & U (s(r) and (a UI„(r) Thi.s pro-
cedure is exact, direct, simple, and avoids the
iterative necessities of Ref. 6. Furthermore,
our method involves no additional complication
when several excited states, or couplings between
excited states, are included. The coupled equa-
tions were solved using the program CHORK. "

Having obtained the exact (t)„(r) we can return
to Eq. (2.4) for the excited state wave function
(j),,(r}. In the absence of reorientation terms
(V». -=0), the right hand side is known so that
we have an inhomogeneous equation to solve.
Matching P,,(x) to an outgoing wave yields the
transition amplitude and hence the cross section
in the usual way. This procedure is exactly
equivalent' to carrying out a distorted-wave Born
approximation (DWBA) calculation where the
distorted waves in the ground state channel are
generated with the potential [U(r) +& U„(r)] and
those in the excited state channel are obtained
with the potentia. l U (r). Clearly this can be gen-
eralized to the case where we have several ex-
cited states provided that each state is coupled
only to the ground state. Thus in Sec. III we can
compare inelastic, as well as elastic, cross sec-
tions generated with approximate polarization
potentials & U to the exact results.

d' I,(l, +I) 2p——„, [U(r) —E,] y, (r)

The set is comprised of the elastic wave equation
(2.3) and a number of equations like (2.4), one for
each possible value of l, .

B. The pure Coulomb case

As an example of strong Coulomb coupling we
consider the scattering of "0by '"Sm at E,~
=72 MeV. The elastic angular distribution ob-
tained by Weber et al. ' shows a smooth falloff
below the Rutherford cross section (down to
o/o„-0.6} at angles forward of the grazing peak
near 6), -85'. The data have been fitted in
coupled channel calculations carried out by
Kim. " (Similar data have been analyzed for the
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"0+'"W system. "')
For present purposes we wish to isolate the

effects of strong Coulomb coupling. %e there-
fore carry out coupled channel calculations
with no nuclear potentials present. The "pure
Coulomb" cross sections thus obtained are de-
signated c data. Three examples of such data
are shown in Fig. 1. In all cases the 0' ground
state and 0.122 MeV 2' excited state of '"Sm were
coupled with a form factor of the form

r r(R,
4v[B(ELt)]'i~Z~„

(2L +1) R~
C

gL
) r&R

Er
(2.6)
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with L =2, B(E24) =3.45 e'b', R, =9.82 fm, and

Z~„& =8. The form factor needed for the re-
orientation terms was related to (2.6) by using the
rotational model expression for B(E2)' ' values
in a band. Integrations were carried out to 48 fm
in steps of 0.08 fm for 201 partial waves. Com-
parison of the solid (without reorientation) and

dashed (with reorientation) curves in Fig. 1 re-
veals the effect of reorientation on the elastic
scattering when the channels are fully coupled.
At angles 8, ~ 80' including reorientation pro-
duces a slower falloff below o„but changes the
c data by less than 107&. However, at angles lar-
ger than this, the effect of reorientation is strong,
resulting in cross sections an order of magnitude
larger and an almost flat distribution for 8,
o130 .

It is also useful to compare with results ob-
tained by treating the coupling in the two-step
DWBA approximation (reorientation terms are
not included in this order). The calculation was
carried out by including three states, the ground
state 0', the excited 2', and a second 0' state at
zero excitation energy. The 2' was coupled "one
way" from the ground state and the second 0'
state was coupled one way from the 2'. That is,
the coupling potential V» in Eg. (2.1) was set to
zero but V» in Eq. (2.2) was retained, and sim-
ilarly for V» and V». The partial wave scattering
amplitudes for the two 0' states were then com-
bined with the Rutherford scattering amplitude
to calculate the elastic cross sections. This pro-
cedure thus allows only one scattering up to the
2' and then one scattering back to the ground state
and is equivalent to a two-step DVfBA calculation.
The results, indicated by the dot-dash curve in
Fig. 1, can be compared with the exact values,
with and without reorientation. In the forward

30 60 90 I20 l50

ec g (deg)

I80

FIG. 1. "Pure Coulomb" c data for the ' 0+ Sm system
at E~~= 72 MeV. The ground state is coupled to the 2'
(0.122 MeV) excited state excluding reorientation (solid
curve), including reorientation (dashed curve), and in
a tv'-step D%'BA (dot-dash curve).

angle region (e„~80') the differences are less
than 10jo. At larger angles the two-step DWBA
fails to give a good approximation to either of the
coupled channels results.

In order to compare our results more appro-
priately with those of LTS and BGKP, who neglect
reorientation, we exclude the reorientation cou-
pling henceforth. Figure 2 showa the exact imag-
inary polarization potentials 4 U~(r) (for selected
l's) corresponding to the solid curve in Fig. 1.
Also shown are the BGKP potentials calculated
with B(E24) =3.45 e'b' and g, ($) =1.0 (see Ref. 5
for notation). It is seen that &U, (r) is absorptive
in. the interior rising smoothly to a maximum near
R, (where the excitation form factor peaks) and
then generally decreasing with larger r. For the
higher partial waves (f z 30), this falloff in the
exterior is very closely approximated by the
BGKP potentials, except for spikes where the
potential changes sign. These spikes occur at
minima in the magnitude of the coupled-channel
elastic wave function. For the lower partial
waves, & U~ is strongly oscillatory and this is not
reproduced by the BGKP potentials. Of course
this is not surprising since the approximations
made by BGKP were tailored to large l values.

The exact real polarization potentials n Up(r)
for l =0, 20, 40, and 60 are shown in Fig. 3.
They are attractive in the interior rising to a
peak near 8, and oscillating about zero in the
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FIG. 2. Imaginary polarization potentials, b, U&(r), for
the 0+ @Sm pure Coulomb case (without reorientation).
The arrows mark values of r where (f&(r}[ has maxima.

exterior. The general structure of the expres-
sion' for & U" suggests that it would be roughly
given by the ratio of an irregular to a regular
Coulomb function. This would give rise to a
cotangent behavior with the sign of & U" changing
at the minima in the magnitude of the elastic
wave function. This is in qualitative agreement
with the results in Fig. 3. One expects that these
oscillating functions would contribute only "in-
significant hair"" to the Coulomb plus centrifugal
potential terms. This is evidently the case at
large separations where the amplitude of & U,"(r)
is ~ 0.5 MeV and (E, —Vo,„,—Vc, ) is tens
of MeV. However, near the classical turning
point where the radial wave function is rising
toward its first peak, (E, —Vc,„,—Vo„t)-0,
and a & UP'(r) of a fraction of an MeV can have
a significant effect. Indeed it happens that for

FIG. 3. As for Fig. 2, but the real polarization poten-
tials, 4U) (t').

the lower partial waves (l ~ 30) the Phase of the
S-matrix element S, is strongly changed by ex-
cluding &U,"(r}. This effect is displayed in Table
I. It can be seen that the magnitude of S~ is also
to some extent dependent on & U,"(r}.

It is interesting to ask how the cross sections
depend on the low partial waves. In Fig. 4 the
solid curve was calculated using the complex,
exact & U, (r) for l =0-30 and the BGKP purely
imaginary, l-dependent potentials for l =31-200.
The fit to the c data (squares) is excellent. Com-
parison of the solid curve with the dot-dash curve
which was calculated with the exact 4 UP(r) for
l =0-30 and BGKP imaginary l-dependent po-
tentials for l =0-200 shows that inaccuracies in
the BGKP approximations for the low partial
waves are significant at the. larger angles. How-
ever, for l & 30 [where 4 UP(r) is unimportant],
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TABLE I. Magnitude and phase of the S-matrix ele-
ment S, for scattering of 0 by @Sm with only Coulomb
potentials present. The upper line for each l contains
the exact S, produced by &U, + &U, . The lower line con-
tains the S& obtained with 4U& only.

'~0+ '5~Sm

erg(S, ) (rad)

10

20

30

40

60

90

150

0.179
0.142
0.120
0.216
0.273
0.380
0.503
0.556
0.677
0.699
0.862
0.866
0.954
0.955
0.991
0.991

2.12
0.02
1.37

-0.05
0.18

-0.10
-0.01
-0.11
-0.06
-0.10
-0.07
-0.08
-0.05
-0.05
-0.09
-0.09

b
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the BGKP,potentials accurately approximate the
exact & U~(r), and indeed for l & 60, the BGKP
S-matrix elements are within 1% of the coupled-
channel S,. The dashed curve of Fig. 4 was cal-
culated by using only the & UI of BGKP. This
produces cross sections considerably larger than
the c data at angles beyond about 120'. The cor-
responding results obtained with the LTS potential
(dotted curve) are very similar.

The dashed and dotted curves of Fig. 4 actually
give quite a good approximation to the exact re-
sults including reorientation out to 130' (see
dashed curve of Fig. 1). However, if reorientation
effects are included in the BGKP potential fol-
lowing Hussein, "the dashed curve of Fig. 4 is
pushed up at angles beyond 90'. This is not suf-
ficient to give agreement with the exact results
at extreme backward angles and leads to poorer
agreement in the 90-120 region. Furthermore,
it is clear that for angles beyond about 100' the
lower partial wave potentials must be more ac-
curately represented and, in particular, the real
effective potential is not negligible. Thus several
opposing effects come into play at large angles
so that the close agreement between the approxi-
mate BGKP treatment and the exact results (with
reorientation) must be regarded as fortuitous. Of
course, in actual considerations of large angle
data at this energy the effect of nuclear- potentials
in the low partial waves must be considered, and
this is discussed in Sec. IIC.

While the LTS and BGKP potentials are adequate
for regions forward of 80, as we have remarked,

FlG. 4. Calculated cross sections for the 60+ ~ Sm
pure Coulomb case. The squares are the c data from a
coupled-channel calculation (without reorientation) .
The curves show the single-channel predictions in var-
ious approximations.

it nevertheless is useful to consider a simple
phenomenological approach here. Specifically
we fit the c data with a simple power law polari-
zation potential of the form

U rtl2
p&2nu» r~~c

c
(2.7)

The shape of the potential inside R, (=9.82 fm)
has been chosen to simulate the square of the
Coulomb excitation coupling form factor [Eq.
(2.6)], although the cross sections are insensitive
to the potential inside 10 fm.

A free search on n and U,„gives n=6. 38 and U,„
=2.65 x 10'"=6.36 && 10' MeV. This potential fits
the c data from 8 =0-80 with a X' per point
of 0.3, assigning "errors" of 1% to the c data. By
gridding on n and adjusting U,„ for a best fit, it is
found that the important absorptive region is cen-
tered around 16 fm where the c data require
& U ' "(16)- —0.12 MeV.

We calculated the elastic scattering using the
exact n U, (r) for l =0-30 and & U~'6'~' for 1

=31-200. It is essentially identical to the solid
curve of Fig. 4 which employed the BGKP l-de-
pendent potentials for l = 31-200. Although the
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cross sections for these two calculations differ
by less than a couple of percent, it should be
pointed out that the S, from the power law & U ""
differ in magnitude from those of the BGKP po-
tentials by + 2% (I =40), —15% (I = 100), and —40%
(I =150).

It has been noted that all of the l-dependent
potentials of BGKP [and also the exact & U~t(r)]
fall off considerably more slowly than either the
r "(near 16 fm, including the so-called Coulomb
braking) of the LTS potential or the r "of the
phenomenological potential. However, the l -de-
pendent potentials may be reconciled with the
l-independent ones by noting that an approximate
effective I-independent absorption & U (r) can
be generated by requiring &U to be approximately
correct (at each r) for the partial wave most af-
fected by the potential near that separation. For
example, consider the E =0 radial wave function
which first peaks at 11.5 fm and the l =90 wave
function which has its first maximum at 20.V fm.
Because of the large centrifugal repulsion, P„(r)
is insensitive to the potential near 11.5 fm, so
& U (r) can be chosen to be close to & U, (r) in that
region. Conversely, P, (r) is little affected by the
potential near 20.7 fm, where P„(r) is most sen-
sitive, and thus & U(r) near this separation should
be close to &U~»(r).

A prescription based on the idea of choosing the
l-independent potential to be appropriate to larger
partial waves as r increases can be given in the
following way.

(1) Determine the distance R, at which the first
maximum in the lth partial wave occurs.

(2) Plot 4 U~t(R, ) vs R, and interpolate to obtain
4U (r).

It is very satisfying that & U~(r) generated in this
physically reasonable way (see Fig. 5) is very
close to & U~""(r), the best fit power absorption.
It is found that d Ut(r) has an average logarithmic
slope (i.e. , power of r) of -6.3, but is about 15$
too low in magnitude.

C. Combined Coulomb and nuclear coupling

Here we consider the effect of nuclear coupling
in the presence of a strong Coulomb interaction
for the "0+"'Sm system at E,~=V2 MeV. The
c data (squares in Fig. 6) were generated as in
Sec. IIB except that a nuclear potential was in-
cluded and both Coulomb and nuclear (&f =2, 4)
reorientation terms were retained. W'e used the
optical parameters of Kim, "which are listed as
Set A in Table II, together with P, =0.219 and

P, =0.0385 and included only the 0' ground state
and first excited 2' level. Diagonal and off-dia-
gonal radial form factors were obtained from the
full multipole expansion of the optical potential.

ISO + I52 S

1.0
io-'

O.I

H

c3
I

O.OI

10

I

12

I I I I I I I I I

14 16 18 20 22

r (fm)
FIG. 5. Plot of the power law polarization potential
/Ps, 6 ~y) The dots correspond to QUl&(g g) for var

ious l, where R, is the value of r at which [ P&(r)~ has its
first maximum.

0 30 60 (8090 I50

ec.~(~&)

FIG. 6. Cross sections for the 0+ +Sm system at
8~~= 72 MeV including nuclear and Coulomb potentials
Qith reorientation). The squares are coupled-channel c
data. The solid curve gives the single-channel predic-
tions using the bare potential plus 6P& for l = 20-40 and
&U '~.3 for E=41—200. The dashed curve gives the two-
step DWBA predictions using the full nuclear and Coul-
omb coupling.
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TABLE II. Parameters of the optical potentials.

Parameter
set

V

(MeV)
+R

(fm)
a&

(fm) (MeV)
&s

(fm)
as

(fm)
+c

B
C

13.0

33.6
39.6

1.37

1.30
1.31

~60+ ~5~8m

0.50

C+'oCa
0.55
0.52

4.5

12.0
10.3

1.40

1.30
1.46

0.58

0.55
0.38

1.25

1.27
1.27

Three features of the elastic angular distribu-
tion can be correlated approximately with indi-
vidual parts of the interaction. That is, the
smooth decrease in cross section out to 8,- 80' is determined by the Coulomb coupling be-
tween the two states; the plateau near 8, =85'
is a result of the mcelear off-diagonal coupling;
and the rather steep falloff at angles beyond 8,
-90' is due chiefly to the diagonal nuclear po-
tential. These angular effects correspond to the
following considerations in angular momentum
space. The larger partial waves (I =41-200}are
little affected by the nuclear potentials or re-
orientation couplings and are therefore well de-
scribed by the Coulomb polarization potentials
of Sec. IIB; the grazing waves (I =20-40) are
significantly affected by the nuclear coupling;
and the smaller partial waves (I =0-19) are so
damped by the diagonal absorption that their cor-
responding & U, (r) have a relatively small effect
on the cross sections. These features are de-
monstrated by the good fit (Fig. 6) to the c data
obtained by adding to the bare potential: no polari-
zation potential for l =0-19, the exact polarization
potential & U P'~(r) for I =20-40, and the imaginary
Coulomb polarization potential & U ~ 6 (r) of Sec.
II B for l =41-, 200. The corresponding DWBA
inelastic scattering predictions are in similar
excellent agreement with the inelastic c data.
The dashed curve in Fig. 6, which was obtained
in a second order DWBA calculation, is in much
better agreement with the c data than in the pure
Coulomb case. Thus, higher order effects, such
as reorientation, are less significant when the
nuclear potential is present.

The polarization potentials 4 U, (r) obtained in
these calculations are shown in Figs. I(a) and V(b).
As might be expected from the discussion above,
the polarization potentials are strongly damped
in magnitude for the low partial waves, while for
l =40, and beyond, they are similar to the &U,
obtained in the pure Coulomb case. For the gra-
zing waves (I=20), the &UP{hUQ found here are
similar in shape to the & U~~(& UP) of the pure
Coulomb case. For instance, d U f,(r} peaks

at separations which correspond to maxima in

~ QM~, whereas in the pure Coulomb case the
imaginary part showed this behavior. This sug-
gests that the real potential significantly affects
the cross sections and this is found to be the case
at angles in the region of the grazing bump and

beyond 120'.

III. NUCLEAR POLARIZATION POTENTIAL

In this section we consider a case where nuclear
effects dominate the inelastic excitation. For the
reasons explained in the Introduction, we elect to
study "C scattering from "Ca at 68 MeV. In our
calculations we use the optical potential para-
meters of Bond et al. which are listed as Set B
in Table II. The coupling potential is generated
by allowing the nuclear surface to vibrate and
expanding to first order in the deformation in the
usual way. " Thus we have no reorientation
couplings and the form factor for inelastic ex-
citation is given by the first derivative of the
optical. potential. The employed deformation
lengths PR are discussed below. We also allow
Coulomb excitation, but this produces a very
small effect. Integrations were carried out to
25.2 fm in steps of 0.08 fm for 81 partial waves.

We note that the parameters of Bond et al. '
were obtained by coupled channels fits to the data
for the 0' ground state, the 3.73 MeV 3, and the
4.48 MeV 5 levels of "Ca. Thus these para-
meters should produce physically reasonable re-
sults. This is our main concern here, since we
are interested in qualitative trends rather than
detailed comparison to data.

A. Effect of single states in Ca

First we consider coupled channels calculations
which involve the 0' ground state and 3.73 MeV 3
level. The data' yield a deformation length P, R
= 1.05 fm for the inelastic coupling. However, in
order to accentuate the coupled channel effects
for the purpose of illustration, we have increased
this value by about a factor of 2. We take P,R
= 2.22 fm. The deformation used, for Coulomb ex-
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citation was kept at the value obtained from the
measured B(E3)." The imaginary and real parts
of the polarization potential & U, (r) that we obtain
are shown in Figs. 8(a) and 8(b), respectively,
for a few selected partial waves. The dashed lines
in these figures show the appropriate component
of the bare optical potential U(r), set B of Table
II. The results are clearly l dependent with

l
& U,

l
peaking for the surface partial waves. (The

magnitude of the elastic scattering matrix ele-
ment lS, l

has the value 0.5 at a critical angular
momentum of 34.5.) The imaginary part of &U,
is absorptive almost everywhere, whereas the
real part changes from repulsive to attractive

as l increases. This is quite similar to the case'
of "0 scattering from 'Ca. For l-34, we see
that the imaginary component 4 UI(r) obtained
here exceeds the bare potential between 7 and 9
fm. This is the region which is significantly
sampled by the "C scattering. On the other hand,
the real part & U P(r) changes sign in this region
and is smaller in magnitude than the bare poten-
tial. It is therefore to be expected, and indeed
is found, that the imaginary part of & U, (r) pro-
vides the dominant effect.

It is not obvious that an l-independent potential
n U(r) can be found which will give a reasonable
approximation to the coupled channel elastic
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and inelastic cross sections. We have examined
various methods of averaging over our calculated
l dependence and we conclude that what is needed
is a weighting which emphasizes the surface

partial waves. In our calculations we use a
weighting factor exp(-4(ln2) [(I —34)/6]2), i.e. ,
a Gaussian peaked at l =34 with a full width at half
maximum (FWHM) of 6 units of 1. However, the
results are not very sensitive to the precise form
of the weighting provided that the surface partial
waves dominate. The results obtained by this
procedure are illustrated in Fig. 9. The heavy
dotted "data points" show the coupled channel
results. The dashed curves show for the ground
state a pure elastic scattering calculation with
the bare potential U(r) (Set B, Table II) and, for
the 3 level, the cross section obtained in the
DWBA. The dotted curves show the same cal-
culations, but with U(r)+&U(r), i.e. , including
the approximate /-independent polarization po-
tential. Note that this differs from the usual
treatment in that we use U+&U for the elastic
optical potential appropriate to the 0' ground state
and U alone for the other potentials needed. As
explained in Sec. IIA, this form of the DWBA
will yield the exact coupled channel cross sec-
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FIG. 9. Elastic and inelastic cross sections for the
C+ Ca system. The results of calculations (see text)

with the bare and bare plus polarization potentials are
indicated by the dashed and dotted curves respectively.
The heavy "data points" are the result of coupled chan-
nel calculations. The dot-dash curve gives the result of
an optical model fit.
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tion for the 3 state if the exact polarization po-
tential & U, is used. Clearly the dotted curves
give a reasonable approximation to the full coupled
channel results, whereas the results obtained
with the bare potential alone are vastly different.

We mention in passing that the effect of cou-
pling, which we simulate by a predominantly
imaginary 6 U, is an increase in the magnitude
of the elastic cross section (for the angular range
shown, something of the opposite trend appears
for the large angles). This is surprising since
it differs from the usual experience in light
ion scattering. We have verified that the large
Coulomb potential for heavy ions is necessary to
achieve this effect. However, we have not found
a complete explanation, although if we apply the
model of Frahn and Gross" we find that the cri-
tical angle is larger for the U+&U case than for
U alone. This has the effect of reducing the far
side contribution (the oscillations are damped)
and enhancing the near side contribution.

It is interesting to enquire whether the coupled
channel elastic cross section can be fitted by a
variation of the parameters of the phenomeno-
logical optical model. As expected, we found
that changes in the real part of the potential are
of minor importance. Regarding the imaginary
part, comparable fits can be obtained by adding
a surface peaked term (standard first derivative
Woods-Saxon) to Set B of Table II or by simply
modifying the volume term. The latter yields
Set C of Table II and the fit i;s illustrated by the
dot-dash curve in Fig. 9. It is surprisingly good,
given the surface nature of the polarization po-
tential. The important point seems to be an en-
hancement of the imaginary potential in the 8-9
fm region.

Thus far we have coupled the ground state to a
level with J'=3 . If instead we couple to single
levels with J'=2', 4', or 5, the remaining para-
meters of the calculation being unchanged, we
find that quite similar polarization potentials
are obtained. Also the qualitative trends of the
cross sections are similar to those of Fig. 9. For
reasons of economy, we therefore consider cou-
pled channels calculations involving the 0' ground
state and a 2' level at a variable excitation energy
E, excited with various deformations P, . (The
"physical" value for the nuclear deformation is
taken from Ref. 9 and the physical value for the
Coulomb deformation is taken from Ref. 19 and
the two are scaled together )We sho.w in Fig. 10,
for various P, and E„ the magnitude of the imag-
inary polarization potential at 8.56 fm for the
l =35 partial wave. This should be sufficient to
display the significant trend of the results.
Firstly, for a given E„we see that the points

E„(MeV)

2

CO
lA 2
CO

IO

O l5
20

Os2 0,5 04

FIG. 10. For the case of C+ oCa, the/& dependence
of nUifg (8.56) is displayed for several values of the exci-
tation energy E„of a 2' level.

fall quite accurately on straight lines, i.e., the
polarization potential is proportional to P'. This
is a trivial result for the nonlocal form of the
potential, ' but not for the equivalent local po-
tential. One might, in fact, have expected some
change from linearity since I3,

' ranges up to 0.40
corresponding to P, R =2.81, whereas the physical
(nuclear) value of S,R is 0.41. It can also be seen
from Fig. 10 that the polarization potential falls
off as a function of E, approximately as E, ', for
E,z 5 MeV. Below this value of E„the magnitude
of the polarization potential levels off.

Now, in practice, the strength of a single level
may be spread over several levels, so we have
explored the effect of fractionation on the polari-
zation potential. Firstly, we have compared the
polarization potential obtained from a coupled
channel calculation involving the 0' ground state
and three 2' levels with the sum of the & U ob-
tained in three separate coupled channel cal-
culations involving the 0' and each 2' in turn. The
agreement is quite reasonable in the cases we
have examined (to within 10/z beyond 8 fm), al-
though since the nonadditivity results from the
reduction to an equivalent local potential it will
clearly depend on the strength of the coupling.
Making the additivity assumption, &U will be
proportional to Z, P, (i)'/E, (i) whereas the energy
weighted sum rule conserves, P, (i)'E,(i) It.
therefore appears that & U would be rather sen-
sitive to the precise distribution of strength. In

fact, however, this sensitivity is not very great
in a realistic case. We have in mind a single
level at a reasonably high excitation energy, say
-15 MeV, whose strength is symmetrically dis-
tributed over a series of levels in the 10-20 MeV
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range, as, for example, in Ref. 12. Provided
that the energy weighted sum rule is satisfied,
the polarization potentials in the single level and
multilevel cases differ by less than 10/0 in the
examples we have studied. Thus the sensitivity
to the distribution of strength is probably no more
marked here than in the light ion case." Note
that this conclusion rests heavily on the assump-
tion of a symmetrical strength distribution.

B. Effect of several states in Ca and C

Here we consider the effect of including in the
coupled channel calculations a number of excited
states in the "C +"Ca system. These states are
listed in Table III. Below 10 MeV in "Ca they
represent levels, or groups of levels, which are
strongly excited in inelastic proton scattering. "
In some cases' the deformation lengths P„R could
be taken from measurements of the inelastic
scattering of "C. In other cases deformation
lengths were taken from the proton data" and
these were multiplied by factors 1.0, 0.78, and
0.65 for multipolarities X of 2, 3, and 4, re-
spectively, on the basis of the results given in
Ref. 9. These factors correct for the fact that
the conventional derivative form factors, which
we use, are independent of A. , whereas the folding
model" and the data' indicate that the magnitudes
should depend on the multipolarity for heavy ion
scattering. The remaining states in "Ca were
placed, somewhat arbitrarily, in the neighbor-
hood of 20 MeV with deformation lengths chosen
to exhaust the energy weighted sum rule. " Using
a radius parameter R =4.45 fm, the deformations
P„ in Table III were thus obtained.

The calculations we have carried out thus far
have been independent of the spin of "C. Were
we to take into account the important states in
' C with their actual spin values the calculation
would become intractable. Instead we have chosen

to represent the spectrum of "C by that of "C thus
ignoring the presence of the extra particle. This
should be sufficiently accurate for the collective
excitations in which we are interested here. We
therefore take the ground state to have zero spin
and use the excited states and deformations listed
in Table III. These are derived from the com-
pilation of Ajzenberg-Selove, the hadron inelastic
scattering work of Buenerd et al. ,

" and the energy
weighted sum rule as in the case of "Ca. Here,
however, the radius parameter R =2.98 fm.

Coulomb excitation was included in the calcula-
tions, but it is a small effect; the values of the
Coulomb deformations were derived from electro-
magnetic data, where known, and scaled according
to the nuclear deformations otherwise. The op-
tical parameters used are as listed under Set B
in Table II, except where noted.

Using various combinations of the states in
Table III we have derived l-independent polari-
zation potentials & U. The averaging over / was
carried out with the procedure discussed in Sec.
IIIA; this appears to be reasonable for the sur-
face partial waves in the 7-9 fm region, although
here we cannot compare with exact results since
it was only possible to perform these large cou-
pled channel calculations for a few partial waves.
Some selected polarization potentials are shown
in Figs. 11(a) and 11(b).

The behavior of the imaginary component & U~

[Fig. 11(a)] is straightforward —it essentially
just scales according to Z, fl~(i)'R, '/E, (f), where
R, is the radius parameter appropriate to "Ca or
"C. If we compare the case where all the states
of Table III are included to the case where just
the "Ca 3 level is involved, we get a scaling
factor of about 6 and the actual curves give this
ratio at -8 fm. Clearly this is a large enhance-
ment. The largest individual contribution is given
by the 4.44 MeV 2' state of "C; the 3.74 MeV 3
level of "Ca is also strong. However, the effect

TABLE III. States included in the coupled channel calculations of 3C+ Ca. The states
of C are used to represent the inelastic excitation of C.

g
(MeV)

'Oca

Multipolarity Deformation
p),

E
(MeV)

12C

Multipolar ity Deformation
p),

3.74
3.90
4.48
7.5
8.0
8.0

18.0
20.0
20.0

0.24
0.09
0.10
0.08
0.13
0.11
0.23
0.23
0.28

4.44
9.64

14.1
27.0
27.0
27.0

0.53
0.31
0.08
0.51
0.59
0.68
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phenomenologically by using U rather than U'. We
have not carried out a detailed fit to obtain U',
but have simply considered modifications of the
imaginary parameters W and rz. Furthermore,
the following remarks should be regarded as
qualitative since we have only obtained a rough
fit to the original cross sections. We find that it
is necessary to reduce the imaginary strength
8' to about 2 MeV if rI is unchanged. Similar
results can be obtained with a larger value of W

if the imaginary radius tz is also reduced, e.g. ,
W=4 MeV, r~ =1.0 fm. As regards the polariza-
tion potentials this significantly reduces & U,
e.g. , at 8.5 fm by about a factor of 2. However,
& U~ is little changed. While these considerations
are crude, they do suggest that inelastic excitation
of a few strong states in the target and projectile
can account for a surprisingly large part of the
empirical imaginary optical potential.
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FIG. 12. Elastic and inelastic cross sections for the
C+ Ca system. The results shown are obtained in

optical model and DWBA calculations (see text) using the
bare potential and the bare plus the various polarization
potentials of Fig. 11.

are found to lie between those obtained by in-
cluding all levels in "Ca (dot-dash curve of Fig.
12) and those obtained by including all levels in the
"C+"Ca system (full curve). This is to be ex-
pected from the relative sizes of the polarization
potentials shown in Fig. 11.

Now the imaginary part of the phenomenological
elastic optical potential is intended to take into
account the flux lost in exciting the channels we
have considered as well as the many other pos-
sible channels. The real part will also include
the effect of the polarization potentials. Thus we
should, in principle, use a modified optical po-
tential U' in our calculations which would lead
to the same elastic scattering and inelastic
(DWBA) cross sections as obtained with the ori-
ginal bare potential U. We use the modified po-
tential U' for the elastic scattering in the ground
state and for the inelastic coupling. However,
for elastic scattering in the excited states we
use the original potential U since one can imagine
that, just as for the ground state, each excited

IV. CONCLUSIONS

We have described a simple numerical pro-
cedure whereby the local, l-dependent polariza-
tion potential is obtained by inserting the elastic
component of the coupled-channel wave function
into the uncoupled Schrodinger equation. This
method is exact and does not necessitate neglecting
couplings (including reorientation terms) between
excited levels. We then applied this procedure
to two cases of heavy-ion scattering.

Firstly, we have examined the "0+'"Sm sys-
tem at 72 MeV in the case where only Coulomb
potentials were present. We find that coupled
channel calculations including the 0' ground and
2' first excited state of '"Sm require an ima-
ginary && (r)IX:r '". A similar dependence
is obtained by taking the values of the BGKP'
& U~l(r) at the first maximum of a given partial
wave to define an /-independent potential. While
these polarization potentials reproduce the cou-
pled channel elastic cross section up to 100', the
larger angles require a real components U" and
a more accurate representation of & U for the
lower partial waves. Thus n-step processes with
n& 2 are significant and this includes reorienta-
tion terms. These effects are ameliorated when
nuclear potentials are included in addition to the
dominant Coulomb potentials. The low partia. l
waves are strongly damped; however, an ac-
curate treatment of & U for the grazing partial
waves is still clearly required.

We next turned to a case where nuclear effects
dominate, namely "C+"Ca at 68 MeV. In studies
with a single excited level the & U are found to



800 M. A. FRANEY AND P. 3. ELLIS

be strongly l dependent, but the coupled channels
results are quite well reproduced with ant-in-
dependent & U for which the surface partial waves
are strongly weighted. We do not suggest that this
is necessarily a universal prescription, but it is
at least a compact way of presenting our results.
We have studied the effect of including low levels
which are known to be strong in inelastic excita-
tion, together with high lying levels chosen to
exhaust the energy weighted sum rule, in both
"Ca and "C (which is treated as a "C nucleus).
The largest single effects come from the 4.44
MeV 2' state of "C and the 3.73 MeV 3 level of
"Ca, but all of the states give significant con-
tributions. As more states are included the
imaginary component & U becomes increasingly
absorptive and scales approximately according to
Z, [P„(i)R,]'/E, (i), where P„R is the deformation
length. For the real part, the levels below 8 MeV
give a &U" which changes sign in the surface,
but the higher states give an attractive surface-
peaked potential which is comparable to & U in
the important 8-9 fm region. We have considered
modifications of the bare potential so that (U'

+& U') gives crudely similar cross sections to
those obtained previously with U. This requires
a surprisingly strong reduction in the imaginary
strength (from 12 to 2 MeV) or less of a reduction
in the strength together with a reduction in the
imaginary radius.

Finally, we remark that we have carried out a
few exploratory calculations for "C+ "Ca in-
cluding a real spin-orbit component U in the
bare potential. Only the ground state and 3.73
MeV 3 level of "Ca were included. We find that
the real and imaginary parts of the deduced spin-
orbit polarization potential & U are fairly' simi-
lar. Further U and &U" show some cancel-
lation in the surface region so that the net spin-
orbit term tends to shift from a real to an ima-
ginary character. However, there appears to be
no significant enhancement of the spin-orbit
strength.
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