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We use a classical dynamical theory with shape degrees of freedom to describe deep inelastic scattering of heavy

ions, and include thermal fluctuations by means of the Fokker-Planck equation. The degrees of freedom allow for

neck formation, mass transfer, and stretching of the two-nucleus system. Inertias are calculated for these degrees of
freedom, and dissipative and conservative forces are used. Fluctuations are calculated by considering the second

moments of the distribution and determining a temperature from the excitation energy at each time. We calculate

distributions in final energy, angle, charge, and mass, including some double differential cross sections. Results are

in good agreement with data.

NUCLEAR REACTIONS Classical dynamical model, shape degrees of freedom,
Fokker-Planck equation, thermal fluctuations; angular, energy, mass, and
charge distributions are calculated for the reactions Bi+ +Kr, Bi+ Xe,

and Au+6 Cu.

I. INTRODUCTION

In this paper we present a classical theory which
accounts for the observed properties of strongly
damped collisions. In particular, we show that the
model explains very well (a) the angular distribu-
tion of the projectile-like fragment, (b) the energy
loss, (c) the width of the mass distribution, (d) the
mass drift in most reactions, and (e) the correia-
tion between energy loss and the width of the mass
distribution.

The theory is based on a trajectory calculation.
Trajectory calculations have been shown to re-
produce qualitatively the properties of strongly
damped collisions. ' However, simple trajectory
calculations always predict (i) a too narrow angu-
iar distribution and (ii) no mass distribution or
mass drift. Furthermore, they do not allow for
the very high observed energy loss bel.ow the
Coulomb barrier of two touching spheres. Final-
ly, simple trajectory calculations require a num-
ber of adjustable parameters to fit the data.

It is clear that in order to obtain a wide mass
or charge distribution one has to include thermal
and quantum fluctuations. During the earliest
stages of the interaction between the ions, quan-
tum fluctuations may be significant. However, in
collisions that are strongly damped one sees
primarily smooth distributions, with no evidence

of interference effects characteristic of quantum
fluctuations, and so it is likely that thermal fluc-
tuations dominate. It has been shown' that by de-
scribing the time evolution of the mass or charge
asymmetry degrees of freedom by a Fokker-
Planck equation, one can expl. ain very we1.1 the
charge or mass drift and distribution. However,
such a nondynamical calculation cannot reproduce
the angular distribution or the energy loss. One

way to incorporate both the dynamical and thermal
aspects of strongly damped collisions is to include
random transfer through the neck region during
the course of a trajectory calculation. ' In such a
model one integrates the equations of motion many
times for a selected number of impact parameters
and obtains the wide distributions. This model
accounts very well for the mass or charge distri-
bution and drift. Its two main shortcomings are
(i) that the time evolution of the neck is treated
nondynamicaiiy, and (ii) that the very considerable
energy losses, below the Coulomb barrier of two
touching spheres, are not accounted for.

In order to remedy the second shortcoming one
has to introduce collective degrees of freedom as
soon as the ions touch, and to study the time evo-
lution of these degrees of freedom. Such a model
has recently been discussed. ' The time evolution
of the collective degrees of freedom has been
studied dynamically. The three degrees of free-
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dom are (i) the size of the neck, (ii) the mass
asymmetry, and (iii) stretching. The model was
used to determine (i} the deflection function, (ii)
the mass drift (this is possible since mass asym-
metry is one of the degrees of freedom}, and (iii)
the energy loss. However, such a generalized
trajectory does not include thermal fluctuations
and therefore does not account for the widths of
the distribution in angle, energy, charge, and
mass.

We have seen that trajectory calculations have
been generalized in two different ways: (i) to in-
clude thermal fluctuations, and (ii) to include col-
lective deformation. The most general version of
a classical trajectory calculation would include
both coQective deformations and thermal fluctua-
tions. Such a model is proposed in this paper.

The collective deformations are the same as in
the previous work. ' Thermal fluctuations can be
introduced in three different ways. First, one can
use a Monte Carlo model and allow random trans-
fer. Such a model, with many degrees of freedom
is not practical from a computational point of view.
Alternatively, one can solve the full Fokker-
Pianck equation for the deep (collective) phase.
This is a partial differential equation with six
variables besides the time, and is also not com-
putationally practical. Finally, one can use the
Fokker-Planck equation, but study only the first
two moments of the distribution. This approach
has been adopted here.

Recently Ngh and Hofmann' have shown that if
the distribution is narrow then it takes the form
of a Gaussian which can be described entirely by
its first and second moments; and the partial dif-
ferential Fokker-Planck equation can be replaced
by first order coupled differential equations in
time for these moments. We have adapted these
equations to the study of the collective coordinates.
It is not surprising that the equations for the first
moments are identical to the Euler-Lagrange
equations without thermal fluctuations. The in-
formation obtained from the time evolution of the
first and second moments allows us the determina-
tion of the widths of the angular distribution, mass
or charge distribution, and energy distribution.

The coefficients in the coupled linear differential
equations require knowledge of the inertial param-
eters, the frictional parameters, and the conser-
vative potential as well as their derivatives with
respect to collective variables. The mathematical
details of calculating these parameters are dis-
cussed in Ref. 4. Here we will recall that (a) ihe
inertial. parameters are evaluated assuming incom-
pressible irrotational flow; (b) the frictional pa-
rameters are evaluated assuming one-body dissi-
pation using the wall formula; (c) the potential en-

ergy is evaluated assuming that the nuclear poten-
tial is proportional to the surface area; and (d)
the Coulomb potential is obtained by numerical in-
tegration over the charge distribution of the two-
nucleus system. These quantities have been cal-
culated previously' (when thermal fluctuations
have been excluded}.

It is important to determine if the collective
shape deformations and associated fluctuations
occur for all trajectories or only for the deeper
trajectories. We therefore consider two cases:
(i) all angular momenta undergoing deep inelastic
scattering enter the phase of collective deforma-
tion; and (ii) only for those angular momenta for
which two ions touch, the collective phase and the
associated fluctuations are established. We find
that the latter model agrees better with experi-
ment. This is reasonable as it may be argued
that collective shape deformations and fluctuations
develop only for small and intermediate impact
parameters, for peripheral trajectories the deep
phase is never reached.

We apply the model to the study of the reac-
tions' ' '~Bi+ Kr at 600 MeV, ' Bi+"'Xe at
1130 MeV, and '"Au+ "Cu at 443 MeV. The the-
ory is outl, ined in Sec. II. Comparison with ex-
periment and discussion are found in Sec. III.

II. THEORY

The classical dynamical model is described in
Ref. 4, and here we give a brief summary. The
collision occurs in three phases: In the initial
phase the ions are sufficiently separated so that
no distortion of the nuclear shape takes place,
and the system can be described by the relative
coordinate between the centers of mass of the two
nuclei. The interaction is given by the Coulomb
potential, and, when the ions are closer, the
proximity potential' and the proximity friction"
are included.

When the distance between the centers of the
ions reaches a certain separation, & „, the deep
phase is establ. ished and the dinuclear system is
then described by collective degrees of freedom.
The distance & ~ corresponds to the point where
the decrease in potential energy which occurs on
entering the deep phase is maximum. The gener-
alized coordinates are three variables which de-
scribe the shape of the two-nucleus system; the
system moves with constant volume. The choice
of collective degrees of freedom is given in Ref.
4; it allows for an approximation to two tangent
spheres, for neck formation, for mass transfer
(which means one sphere increases in volume
while the other decreases), for stretching apart
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toward a scission point, and for formation of a
single sphere or spheroid (fusion of the iona).
In making the transition to the collective coordi-
nates, matching conditions were applied to deter-
mine the initial values of the generalized coordi-
nates and their velocities. Two models were con-
sidered: the "heat" model in which all the kinetic
energy of the initial phase is lost (transforms to
heat) so that the collective coordinates start with
zero velocities; the "kinetic" model in which all
the kinetic energy remains in the collective modes.
The difference between the models in the trajec-
tory calculation is not great, and in the present
paper we use only the kinetic model. Furthermore,
there is one free parameter in the initial coordi-
nate values, and this is taken to be the radius of
the neck h. We choose h, as in Ref. 4, so that the
scattering angle at the center of the distribution
agrees with the experimental value.

During the deep phase the equations of motion
are solved using the wall formula for dissipation
and using collective inertias derived from the as-
sumption of irrotational incompressible flow.

Finally the system either approaches a single
spheroid, or stretches apart to a scission point.
In the former case we say fusion has occurred.
(We do not have any fusion for the systems studied
in this paper, although the model does predict
fusion for some lighter systems. ") In the latter
case a scission criterion is applied, based on the
idea that the repulsive Coulomb and centrifugal
forces exceed the attractive tensile force across
the neck region. " This scission criterion leads
to the existence of a minimum possible value of
h, such that if h&h then the system will imme-
diately scission, and not enter the deep phase for
all L's up to L,„. After scission the ions travel
to infinity under the influence of the Coulomb
force, and we calculate the final scattering angle,
energy, and mass division.

Tangential friction is simulated by imposing the
sticking condition at the beginning of the deep
phase. The charge transfer degree of freedom is
treated by assuming rapid charge equilibration
for a given mass division. "

If the system is thought of as being in contact
with a heat bath of temperature & then one obtains
a distribution 8' in the classical coordinates and
momenta. The equation for 8' in phase space is
the Chandrasekhar generalization of the Fokker-
Planck equation. " We wish to discuss the form of
this equation for a general classical system, de-
scribed by coordinates, P&', i = 1, 2, . . . . First we
write, for completeness, the classical trajectory
equations for the deep phase. Let the kinetic en-
ergy and the Rayleigh dissipation function be T
and R, respectively, where

T=g Q T„tlap;,

&=z Q ft(gP;P, ,

(2. 1)

and let the potential energy be V. Here T;f and

~&f are the inertia tensor and the friction tensor,
respectively. The quantities T, p, and V are
functions of the P's. It is convenient to express
the fluctuation equations in terms of the momenta
instead of the velocities, and to write equations
for the classical path in Hamiltonian form; and

so we introduce the canonical momenta defined by

Bg
Pg=

~p
(2.2)

where 2 =T —V is the Lagrangian. Then the
classical trajectory is given by

dp] =~ UzfPf
f

(2.3)

dp;, g U, , V g dp,

where U= T ' is the inverse inertia matrix. In

Eq. (2.4) the P, can be replaced according to Eq.
(2.3).

The distribution function W(I3, P; t) obeys the
equation

iiiv E ii (dii; ~ E ii (&P; ii

E~ =E, +~, +'U, —(E„,+'0+K),

where E, is the incident center of mass energy;
g, and g, are liquid drop potential energies of
projectile and target before the collisions; 'U and
K are the instantaneous liquid drop potential en-
ergy and collective kinetic energy of the fused
system; and E„, is the rotational energy of the
fused system. In other words, the collective en-
ergy is calculated explicitly from the known shape
and inertial parameters, and all other energies

Here again, one substitutes from Eqs. (2.3) and

(2.4) into the second and third terms to obtain an
equation in P, P, and t. Inclusion of the tempera-
ture-dependent term on the right side generates
the thermal fluctuations.

For the temperature we use

(Eg/u)1/2

where E* is the dynamically calcul. ated time-
dependent excitation energy. Specifically we may
write
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are assumed to be in the intrinsic coordinates.
In our calculation we take a = (A, +A,)/10 MeV ';

i.e. , the system is treated as a Fermi gas with
temperature small as compared to the Fermi en-
ergy. We are assuming here that the system will
not cool significantly by particle evaporation during
the deep phase.

We are interested in heavy ion scattering for
which the classical trajectories have meaning, and
therefore we expect distributions which are fairly
narrow around the classical path. This does not
require that the total distribution be narrow.
Rather the distribution for each incident angular
momentum, or impact parmeter, should be nar-
row. The final distribution is obtained by summing
over all angular momenta.

The condition that the distribution be narrow is
that 7 be small compared to other energies in the
problem. In this case me may assume that the
distribution is adequately characterized by its
first and second moments. We define these, fol-
lowing the notation of Ref. 5, as follows:

p»= d1 p»,

p, = drp, ,

+»j = a &I' P» -P») P; -pj) & (2.6)

—P) j —P

4»j = a ~I' P» -P») j - Pj),

where d1 = 8'dP, . . .dP, . . . . One then verifies
that P j and P'; obeys Eqs. (2.3} and (2.4), respec-
tively. Equations for the time variations of +, P,
and y are derived by multiplying Eq. (2.5) by
(P j -P j) (P, -P,'), for example, and then integrat-
ing by parts. The result is given in Ref. 5, but
we repeat it here for completeness and also be-
cause there is one term which we find below that
has been omitted in that paper.

d(d»j ~ BU)k
Pk ~fl +»kU1k» jdt ~g BP»

B2
+p C ij4jj+iZimp jip j sp jjp

+p j jjj
k kl fft BP BP»

' Uja ~ sRja"+pj "Uw ~0j. +(j-i'f+Rjj (2.7a)

c BUjk 4k B'U» .BU„=~ pj, Irjjj $j J
—RijUjj, j}jj +~ (U»urjj —CjjXjjj) —~ -, pjpj

&
+R,jpj

(2.7b)

(2.7c)

Here Cj, = S'V/SP jSPj, and the functions C, R, and

U are all to be evaluated at the classical values
P» =P». The previously omitted term is the term
containing eR/SP in Eq. (2.7a). [There are also
several factors of & which mere omitted" from
Eqs. (10), (11), and (13) of Ref. 5.]

Equation (2.7} can be thought of as written for
four degrees of freedom, where the first three
are the shape coordinates and the fourth is the
rotation angle.

The above equations are homogeneous in w, P,
and X, except for the temperature term; so if the
distribution does not have any width initially, the
width will evolve only when there is a nonzero
temperature.

In deriving Eq. (2.7) one makes use at various
stages of the narrowness of the distribution. One
retains only second order terms in (P —P') and/or
(P —P'). Also one drops boundary terms in the

I

integration by parts, assuming that, even if the
coordinates P have a finite domain, the distribu-
tion function still vanishes at the boundaries.

Once the second moments of the distribution are
found, given the assumption of a narrow distribu-
tion, it follows that the form of W is Gaussian.
Again following Ref. 5, if a matrix is constructed
out of the submatrices ~, (I), and X,

X

and a column vector is constructed out of vectors
p and P,

x=P

then W is given by



764 S. K. SAMADDAR et al.

LL'= {4s) "A ' ' exp( —4 X AX), (2.8)

where A=det(t4 '), and n is the number of coor-
dinates. (Actually one must take the determinant
of the symmetric part of A ', which is what re-
mains in the quadratic form. ) It is possible to
derive Eqs. (2.7) directly by placing&he form of
Eq. (2.8) into Eq. (2.5) and showing that the partial
differential equation holds only if the ~, g, and g
obey Eq. (2.7). The distribution W is normalized
to unity as written.

If one wants, for example, to find the distribu-
tion in just one variable, for example p&, then one
can integrate over all the other P's and the P's to
find

300

0, 250

~ 2000

K

Z
w l50
LLJ

O

~ l00

Lv{P,) = {4sg,,) ' 'exp-
4Xii

More generally one might want to find a joint dis-
tribution function for a set of quantities y„.. . , y~
(k c 2n) which are known as functions of the P's
and P's. This distribution is discussed in the
Appendix.

Although there is some friction in the initial
phase, in this model, and hence a nonzero tem-
perature, we neglect fluctuations in the calcula-
tion of this early phase. Fluctuations begin with
the deep phase and continue until the scission
point. Some complications occur because the
scission time t„ is determined by a criterion

I 50
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FIG. 2. Kinetic energy loss versus incident angular
momentum for the reactions as in Fig. 1.

given in terms of the coordinates. Since the coor-
dinates have a distribution, there will also be a
distribution in t„. Thus, if we ask for the distri-
bution at scission of a given quantity, for example
0, the rotation angle, then the width 60 is deter-
mined by two quantities: (a) the width in 8 that
has evolved up to t„, and (b) the width M„. De-
tails are given in the Appendix.
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FIG. 1. Scattering angle {deQection function) for
(+LBL+ LL Xe), (0 Bi+ sLKr), and (

L Au+ LLCu) reactions
at laboratory bombarding energies 1130, 600, and 443
MeV, respectively.
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FIG. 3, Projectile-like final fragment mass versus
incident angular momentum for the reactions as in Fig.
1.
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IH. RESULTS AND DISCUSSION

The model described in the previous section
has been used to calculate experimentally ob-
served quantities: angular, mass, and energy
distributions for the reactions '~Bi+~Kr, '~Bi
+ "'Xe, and '~Au+ "Cu at laboratory bombarding
energies 600, 1130, and 443 MeV, respectively. ' '
The deflection function, energy loss, and final
mass of the projectile-like fragments are sho~n
in Figs. 1-3. The results for Kr and Xe induced
reactions are taken from Ref. 4, and represent
the first moments of the distributions for these
variables. They are the predictions of the classi-
cal, nonstatistical theory calculated for incident
angular momentum from 0 to L,„, where L,„ is
the maximum angular momentum which can reach
the distance& ~. The kinetic model is used in
all the calculations. The parameter h, the initial
neck radius, is chosen so that the minimum of the
deflection function occurs near the experimentally
observed peak in the angul. ar distribution, as dis-
cussed in Ref. 4. In this way the calculated cross
section do/d8 has a maximum at this angle. It is
shown in Ref. 4 that this maximum shifts toward
more forward angles with the increase of the
initial neck radius. We have used for h values of
4.9, 3.5, and 3.0 fm for the Xe, Kr, and Cu in-
duced reactions, respectively. We note from the
deflection function that our model predicts no
fusion for any of the systems considered here.

In Figs. 4-6 we show the second moments of the
scattering angle 8, final kinetic energy E&, and
final mass Af of the projectile-like fragment as a

b 1

15
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I

100
I I I I

200 300
L (ANGULAR MOMENTUM )

FIG. 5. Second moment for energy loss |variance
=2azz2) for the reactions as in Fig. 1.

function of incident angular momentum L. We
have plotted &„versus 1. (with x = 8, Ez, or h1),
where o, =~X„.

As outlined in the previous section, the final
width is determined by two factors: (i) the in-
trinsic width caused by fluctuations developing up
to the time of sci.ssion, and (ii) the width t„ in the
scission time. This latter turns out to be about
one-fourth of the reaction time and broadens the
width considerably. In particular we observe that
the intrinsic width for F'~ or M is comparabl, e to
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FIG. 4. Second moment for scattering angle (variance
=20ee ) for the reactions as in Fig. 1.

FIG. 6. Second moment for final mass (variance
=20~~2) for the reactions as in Fig. 1.
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FIG. 7. Angular distribution for (Bi+ Xe) reaction:
The solid line with circles represents the experimental
result; the dashed line corresponds to calculation using
Model I; the solid line shows the calculation under Mod-
el II.

the final width, but the intrinsic width for 8 is an
order of magnitude less than the total width. The
intrinsic width in the rotation angle 8 vanishes for
head-on collision as shown below. Since in the
collective phase R„.= R~, = 0 for i = 1 to 4 (this is
due to angular momentum conservation, specific-
ally the total angular momentum is conserved if,
andonlyif, L =P, =(d/dt)(W/Be) =R4,P, +R42p,
+R4$2+R448 =0 identically since 8 is a cyclic coor-
dinate) and T„=T,4=0 fori = 1 to 3, it canbe seen
from Eq. (2.7) (remembering that the stiffness tensor
C, the friction tensor ~, and the inverse inertia
tensor U are independent of 8) that ~«, ~4,-, and

$«(i=1, 2, 3, 4) satisfy a closed set of first order
homogeneous differential equations. As the initial
values of (v&4, &4, , and $4~ vanish, they have zero
value at all time. From Eq. (2.7c) we find that for
i =j=4, the second term on the right hand side
drops out and that dlt«/dt is proportional to p,
which is the angular momentum L. Thus for L=O,
the intrinsic part of the fluctuation in 8, g«, &~e'
=0. The contribution to 0'ee due to fluctuation in
scission time is given by At„8„, where 8„ is the
angular velocity of the system at the classical
scission point. Since for L=0, 8„=0, the total
width in scattering angle vanishes for head-on
collision. Now At„decreases as the incident
angular momentum increases; but 8„ increases.
This explains why ac& starts with the value of
zero, attains maximum, and then decreases, for

TABLE I. Maximum angular momentum L~~ taking
part in damped collisions, and the maximum angular
momentum L„going into the calculated deep phase.

System E) b(MeV)

Bi+ Xe
Bi+ Kr
Au+ Cu

1130
600
443

375
200
125

450
250
175

the Xe induced reaction. (For the Kr and Cu in-
duced reactions only the maximum is reached as
L increases )Th. e other two widths &«and &„„f f
are monotonically decreasing functions of L.

In Fig. 7 we compare the calcul. ated angular dis-
tribution with experiment for the reaction Bi + Xe.
The dashed line is our first calculation and the
solid line with circles represents the experimen-
tal result. We observe that the calculated distri-
bution is significantly broader than the experi-
mental distribution.

We find that if all L's enter the deep phase we
get distributions broader than observed distribu-
tions (in particular for the scattering angle). Up
to this point we assumed that system always enters
the collective phase if the ions reach the distance
&„~&, that is, for L's up to L,.„. It seems likely,
however, that not all these L's enter the collec-
tive phase, forming a neck and undergoing shape
changes as described above. Therefore, we now
assume that the system does not enter the deep
phase unless & reaches the value of R, +&„ the
sum of the radii of the nuclei. This gives us, for
each system, a quantity L~, the maximum value
of L which reaches the deep phase, which is
smaller than the previously used L,.„. Table I
lists these values of L.

The reaction is thus divided into two parts: one
for L = 0 to L= L„, treated as we have discussed,
and one for L~ to L „, to be treated by a more
peripheral model. We note also that such a divi-
sion is necessary in order to obtain the high ener-
gy part of the spectrum, since formation of the
deep phase produces an energy loss ~100 MeV,
even for the maximum angular momentum.

For trajectories from L, to L,„ the appropriate
degrees of freedom are & and 8, but it is clear
that mass transfer continues to play a role in
these more peripheral processes. In principle,
one could carry out calculations of thermal fluc-
tuations for r, 8, and mass asymmetry coordi-
nates. Instead of this we have decided to use (only
for these higher L's) the stochastic model used
earlier by De et aE. ,

' based on classical. trajec-
tories of & and 8, and random transfers of nu-
cleons between the ions. We call this hybrid cal-
culation, with collective coordinates used only for
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FIG. 8. Z distribution of projectile-like fragments
for Qi+ Xe) reaction. The dashed line corresponds to
calculation under Model I and the solid line represents
the calculation with Model II.

L's from 0 to L„Model II. The original model,
with collective coordinates used for all L's, will
be called Model I.

Model II produces widths in 8 significantly
smaller than Model I. The calculation with Model
II is shown by the solid l.ine in Fig. '1. We ob-
serve that the width for Model. II is in better
agreement with experiment; in fact, it is some-
what too small. On the other hand, the widths in

E& and M are not very different for the two mod-
els.

Before discussing the mass distributions we ob-
serve that our model allows calculation of the
final mass only. For the Bi+Xe reaction, only
the charge distribution is measured. Therefore
we use the relation &„'= (Z/A)'&„„', which is
consistent with the strong correlation between
neutron and proton transfer. This correl. ation is
discussed in Ref. 13, and there is experimental
evidence" that it is valid for large energy loss.

In Model II, when the stochastic calculation is
used, the width of the charge distribution for the
peripheral trajectories is determined directly.

In Fig. 8 we have compared the calculated charge
distribution with experiment. The dashed line
corresponds to Model. I and the solid line corre-
sponds to Model II. We note that for both cases,
though the calculated widths are somewhat large
as compared with experiment, the agreement is
good. In Fig. 9 we display the kinetic energy dis-

ROIQ j +I36Xe

a

K
Ct
K

Kl
K

300

1

I i I i L I

400 500 600
TOTAL K INETIC ENERY (MeV)

700

FIG. 9. Relative yield for fragments with fixed Z (as
labeled at each curve) versus final total kinetic energy.
Notations are the same as in Fig. 8.

tribution for various atomic numbers (labeled at
each line) of the projectile-like fragments. The
dashed and solid lines have the same meaning as
in Fig. 8. We note that Model I gives significantly
low cross sections as compared with experiment
for small mass transfer and small energy loss.

The calculation of Model II shows dips at around
500 MeV final kinetic energy. This is an artifact
of the model, due to the sharp transition, at L
= 1.~, from the collective calculation (using the
deep phase) to the stochastic calculation.

In Fig. 10 we show the angular distributions of
projectile-like fragments belonging to different
energy groups —using Model II. The low cross
section for the 525 MeV energy group is again due
to the sharp transition from the collective to non-
collective model. The basic feature that the
widths of the distributions decrease with increasing
final kinetic energy is well reproduced.

In Fig. 11 the angular distribution for the ' Bi
+ Kr reaction at E„b =600 MeV is shown. The
same comments as in the case of the Xe induced
reaction are al.so applicable here. In Fig. 12 we
show the mass distribution of the Bi+Kr reaction
for Oh,b =34' and 59'. The basic features that for
the larger scattering angles the mass transfer is
greater and that the peak to valley ratio is greater
are well reproduced. The calculated most prob-
able mass transfer is about 5 units more than the
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collisions are capable of reproducing the widths
of the observed distributions in mass, energy, and

angle. If one assumes that all the trajectories
which are damped enter a deep (collective) phase,
then the calculated widths, especially for the angu-
lar distribution, are too large. Also one obtains
no cross section with relatively small energy loss
(&100 MeV). On the other hand, if one assumes
that some of the peripheral trajectories do not
enter the collective phase, the predicted distribu-
tions are in agreement with experiment.
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y[x', (I'.,), . . . , x„(f,', }]=0.

The width 6 t„ is given by

r I„=d.y/j(t'„),
where

(A2)

Now let 8'be given by

W= p exp —g Z [x( —x( (t)][x) —x~(t)]A(q
$j

(A4)

where theA~; are time dependent, as in Sec. II.
Integrating over t„explicitly, we find W„ takes
the form

detAS0
(4x)"

xj

the eQ/&x& are evaluated at x~x,'. , and all the x and

are evaluated to t;, . The quantity dP is the
width in P given the width of the x~'s at t'„. The
calculation of such quantities is discussed in the
latter part of this Appendix.

The distribution at scission is now given simply
by the folding

W„(*„.. . , *,) = fdt IV(*„.. . , „*„;l )ptt„) . „
(A3)

APPENDIX

] t tC 2+

P(t„)=
~4 exp-

4n At„~t„ (A1)

The superscript c refers to quantities evaluated
for the classical path (or first moment of the dis-
tribution). t,', is given by solving

We consider a system described by parameters
x„x„.. . , x„where the x's may stand for coor-
dinates and momenta. The system is described
by a probability distribution W(x„x„.. . , x„; t) at
time t. If this system undergoes scission (or
some other event which causes it to be described
subsequently by a different set of coordinates) at
time t, the question is: What is the distribution
at scission, W„(x„x„.. . , x„)'? The time, t„ is
determined by a condition on the coordinates,
which can be written in the form

(P(x„.. . , x,) =0.
We are restricted to the case of narrow distribu-
tion, wherein W' is a Gaussian and the widths of
distributions are small. Then there is a Gaussian
distribution in the scission time:

xexp —
& x, -x', t'„) x,. —x,'t'„) A„„.

Sj

(A5)

The matrix A„ is given by

Asc, ij =A~j—
at„'

1+?)),t„'Q x~x;A), (
»1

x x»A» x)A (A6)

1 1 +x At

Once the distribution at scission is known we
may calculate the distribution in closed form at
t =+ ~ since only the Coulomb force acts after
scission. Thus the various quantities, such as
the final kinetic energy, scattering angle, and
mass, are given in closed form as functions of
these quantities at scission.

We wish to determine, in general terms, the

where the x and the A are evaluated on the classi-
cal path at t'. As a special case we have, for
one coordinate x,
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distribution of a set of quantities, yy
which are functions of the x's, with p, ~ v. We
again treat deviations from the classical path to
lowest order, letting

e M ~P» cy(=y(+ Z (&(- &()
j ~Sf

the partial. derivatives evaluated on the classical
path. Let us introduce the transformation matrix

(which need not be a square matrix). We may find
the distribution in y by multiplying W by factors

and integrating over all the x's. By diagonalizing
A this procedure is carried out explicitly, and we
find the following simple result. If 8 is a p. x p
matrix given by

(& ')((=Q &a(((i '4(y((

then the distribution in y, W (y„.. . , y „), is given
in terms of the elements of &, as

detB~' '
W'=, , (( e~ —4 (y; —y() (y( —y()B((
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