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We use the formalism of hyperspherical haimonics to calculate several moments for the triton photoeffect, for a

Volkov spin-independent potential. First, we improve the accuracy of Maleki's calculations of the moments n, and

o, by including more terms in the hyperspherical expansion. We also calculate moments o, and a, for a Serber

mixture. We find reasonable agreement between our moments found by sum rules and those found from the cross

sections calculated by Fang et al. and Levinger-Fitzgibbon. We then develop a technique of inversion of a finite

number of moments by mnkwg the assumption that the cross section can-be written as a sum of several Laguerre

polynomials multiplied by a decreasing exponential. We test our inversion technique successfully on several model

poten&»s. We then modify it and apply it to the five moments (cr, to cr,) for a force without exchange, and find fair

agreement with Fang's values of the cross section. Finally, we apply the inversion technique to our three moments

(o „0~ and cr, ) for a Serber mixture, and find reasonable agreement with Gorbunov's measurements of the 'He

photoeffect.

NUCLEAR REACTIONS Triton photoeffects, hyperspherical harmonics, mo-
ments of photoeffect, inversion of moments.

I. INTRODUCTION

The trinucleon photoeffect for electric
dipole transitions has been calculated
using different formalisms and potentials
by various authors. We use the calcula-
tional technique of hyperspherical har-
monics (h. h. ) and a spin-independent
Volkov patential for two exchange mixtures:
a completely ordinary force, and a Serber
mixture. These potentials are known to be
inaccurate and therefore detailed agree-
ment with experiment' is not expected.
Rather, our goal is to obtain consistent
results with the formalism to gain confi-
dence in applying it to mare realistic and
difficult prablems. Far this purpose, the
results obtained herein can be compared
with thase of Myers et al. ~ (NFL) and
Fang et al. ' (FLF) for a Wigner mixture
and Levinger-Fitzgibbon" (LF) for a Berber
mixture.

The cross sections a(E&) for the triton
photoeffect, as calculated by MFL, FLF and
LF use ground state wave functions (i&, and
final state wave functions (f& for a
Volkov potential. A characteristic
problem in photoeffect calculations is
finding good continuum wave functions, ~f&.
A comparison of the energy-weighted mo-
ments of a(E&) calculated from two differ-
ent methods provides a means of testing
the accuracy of the final state wave func-
tions. The moments can be calculated nu-
merically from the curves found by NFL,
FLF and LF, or alternatively using only
the triton ground state wave function (i&
and nuclear sum rules. Another use for
the sum rule moments is to invert them to
find the cross section o(E&) independent
oi' any calculation of (f&. This latter
method of f inding a(E& ) may even prove

superior to the standard method.
The aforementioned work ' ~" on the tri-

ton is characterized by the use of h. h.
The construction of these functions in-
volves eliminating the motion of the cen-
ter of mass, enabling the three-body sys-
tem wave functign to be written in terms
of two vectors ( and g. These two vectors
depend on differences of the coordinates,
and can be further transformed to one
"hyperradius" r, and five angle variables:
A(ei, gi, e2, tt)~, 4 ). Simonov shows' that
finding an explicit form for the h, h, re-
duces to formulating a set of basis func-
tions which realize a representation of
the graup of rotations in ordinary three-
dimensional space, and a group of permuta-
tions of the three particles. An individ-
ual h. h. is given by H I™(0), while

i ~

(0) denotes a particular linear combi-
nation of the h. h. 's giving a definite to-
tal orbital angular momentum L t. The
superscript v refers to the ty)R of permu-
tation symmetry. Note that the subscript
L, which Fabre calls~ the "grand orbital, "
is not the same as Lto+. For more proper-
ties of h. h. we refer %he reader to NFL
whose notation we follow.

The organization of this work is as
follows: Section II gives derivations for
the triton's sum rule moments a i thru a~
for a Wigner mixture. Here we improve the
calculations of Maleki and Levinger (ML)
by using a second term in the h. h. expan-
sions for the wave function and potential.
Section III presents calculations of ot)
and ai for a Serber mixture using only the
first term in the h. h. expansions. We
compare these results with expressions
given by Levinger-Bethe (LB), Verde,
Leonardi-Lipparini'o (LL), and O' Connell-
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Prats'' (OP). Section IV outlines a gene-
ral method of inverting moments using
Laguerre polynomials similar to Langhoff's
earlier work with moment inversion for
atomic and molecular photoeffects. We
also test some model cross section curves
for convergence. In Section V we apply
the moment inversion technique to the tri-
ton moments and discuss the results.

II. SUM RULE CALCULATIONS: W'IGNER FORCE

(2.4)

The triton photoeffect is treated by
assuming the photon is polarized along
the z axis and interacgs with the proton
which has coordinates re. The cross sec-
tion for electric dipole transitions from
initial state i& to final state f& in
the triton is'

a(E ) = (4w'/4[c)E l&ilDlf&l'pf (2 ~ l)
where p is the density of final states
and E s the photon energy. The dipole
operator D is given by

D = e(z~- Z) = eq /W3z (2 2)
with Z being a component of the center of
mass of the triton and q a component of
one of the Jacobi coordiRates according to
the notation of MFL.

The moments ap of the photoeffect cross
section a(E ) are defined by

Y

a = f E a(E )dE

or using Eq. (2.1) and changing from the
continuum to a discrete system for lf&
yields

= (4w'/«)EE "l&ilDlf&I* A

P f Y

We use this formula to calculate the sum
rule moments o-~ thru as for a Volkov po-
tential with no exchange in this section,
and a ~ thru a~ for a Volkov potential
with Serber exchange in Section III.

MFL formulated expressions for a-~, oo
and ai without exchange. For p = -1, the
quantum mechanical closure relation is
applied to Eq. (2.4) to give

a r = (4w2/4[c)&ilD2li&
(4w /3)n&ilrr li&

where e is the fine structure constant.
Calculation of oo and o& involves using
the Heisenberg relations

E &ilDli'& = — &il[H, D]lf&
Y

E &ilDlf& = &fl[H, D]li&
where we used the fact that D is a Hermi-
tian operator. The general expressions
for ao and aq are derived by MFL

a o
= (4w' Yc )EE [« ID I

f&&i ID I
f&*1

f Y

(2w /«)« l [D, [H, D] ] l
i&

(2.5)

(2.6)

(2 7)
and

aw = (aw~/3)u(4" /M2)&il 3~v/arr 2 li&.
(2.11)

ar = — (4w'/f[c)&il ( [H, D] ) I
i& . (2.8)

The commutator bracket [H, D] is evaluated
using (P + P )/M for the kinetic energy
operator and by assuming the potential
energy term without exchange commutes
with D. The results of numerical evalua-
tion of these expectation values are given
in Table I.

We now improve the calculations of g~ and
a~ of ML by using a second term in the h. h.
expansions of the wave function and poten-tial. For p = 2, we can write Eq. (2.4) as
a2 = (4w2/f[c)EE '

l
&i

l
D

l
f &

l

'
f Y

= (2w'/«)E([E '«lDlf&] [E «lDlf& ]Y Y

+ [E &ilDlf&][E '&ilDlf& ]).
Y Y

(2.9)
The Heisenberg relation is used to show

a
Y 3$ (2.10)

Ev*'ilDlf' = &«I&y/3n If»
where A = 2e62/&3M. Simi. lar relations hold
for the complex conjugate matrix elements.
Using (2.10) and closure we find

TABLE I. Moments for triton photoeffect.

No exchange
From cross sectiona Sum rule

Serber exchange mixture
From cross section' Sum rule~

o g {mb)
a[] {MeVmb)
g f {MeV mb)
g2 {MeV mb)

g {MeV mb)

2.80
41.0

690
1.43 x104
6.03 x105

2.87~

39.8b

613c 611d
1.19x104, 1.38 xl04
5.62 x10, 6.06 xlO&

2.87
58.6

1566

2.87
66,3

1950

See FLF, Ref. 3.
~ See MFL, Ref. 2.' See ML, Ref. 7; note that here we correct an error of a factor of 2 in the ML value of 03.
~ This paper.

See LF, Ref. 4.
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The derivation of ai is a simple applica-
tion of Eqs. (2.4) and (2.10) which gives

aq (16m~/3)a(4" /I )&i((BV/Bn ) (i&.
(2.12)

Neglecting spin-dependent forces the tri
ton wave function (i& is assumed symmetric
under spatial permutations of any pair of
particles. Simonov selects a linear com-
bination of the h. h. denoted by V( )(Q)
and having total angular momentum zero,
even parity, and complete symmetry (o) for
particle exchange. Even parit excludes
odd L values and Simonov shows that terms
with L = 2 are also missing. The coeffi-
cieqt of a given angular function is
r ~~i u (r) so the triton ground state wave
functi6n is written

r'/ &r, Q(i& u (r)y (Q)0 0
+ u, (r)y( )(n) + . . .

(2.13)

with
x ~ q(r/0. 82); x' = q{r/1.60}

The I (x) are modified Bessel functions.
The expressions for a~ and ae can now be

evaluated using Eqs. (2.13) and (2.15) for
the potential V(r, Q). The spherically
symmetric S ground state of the triton
gives us the identity

«(B*V/Bn, *(1& - 6&1(V*V(i&.

Then Eq. (2.11) becomes

cq (4v ~/9)a(6" /M~ )&1(V2V (
1&. (2.17)

For two terms in the h. h. expansions of V
and (i&, the expectation value (2.17) is
given by

&i(V2V(i& = 3[&u (V~v (u &

+ &ug(V V (u~&0
+2&&u

(
V2V~ (u„&], (2.18)

Substituting this expression into
Schrodinger's equation yields an infinite
set of coupled differential equations for
uL(r), which are truncated at some L
The numerical values of u (r) and
uq(r) were provided in a private communi-
cation by Beiner and Fabre. (Also see
Seiner and Fabre'" and Ballot et al. ' )

The spin-independent Volkov potential
for a two-body interaction is given by2

V(r. ) = 144.86 exp[-(ri /0. 82) ]ig
— 83.40 exp [-(ri /l. 60) ] . 2 14)

This is expanded in h. h. yielding~

m 3/ V(r, n) = 3V (r)y (0)
+ 33/'V„(r)g( )(n) + . . . ,

(2.15)
where the radial "hypermultipoles" VL(r}
are defined by Fabre and Levinger~

V2k(r) = 289.72 exp(-x)Ik+1{x)/x
166.80 exp(-x')I&+1(x')/x'

(2.16)

where orthonormality of the Sf, (Q)'s is
used. Numerical evaluation of the radial
integrals in {2.18) gives for a final
result

a~ = 1.38 x 10" MeV mb. {2.19)
This is about a 14$ correction to the ML
calculation, which truncates at one term
in the h. h. expansion, and is seen to be
in good agreement with the results of FLF
(Table I).

The calculation of a3 From Eq. (2.12) is
considerably more complicated. First, we
write
8V(r, 0)/pR = dr}(Sr/8q )

I

+ ~»' {dV4/dr)(3r/pq )y{ (g}
+ ~»' (V4) ay(4')(n}/Gq

J
(2.20)

Then we f ind'
ay„{ )(a)/aq =(2&2/r) y,

+ {n) -y, (n)z
(2.21)

and substitute in (2.20) to show

(, )/ , = (.)„( )( ) {.)~, ( },+ (+)

where (2.22)

(2.24)

The second term in the h. h. expansions
gives about 7$ of the new moment's value
when compared to the corrected ML calcula-
tion. %e note that (2.24) is in excellent
agreement with the FLF result (Table I),

III. SUM RULE CALCULATIONS: SERBER MIXTURE

Now consider a mixture of %'igner force
(fraction 1-x) with two-body Majorana ex-
change force, fraction x. In our numeri-
cal work below we use a Serber mixture
with x = Q.

Equation (2.5) shows that the moment a
depends only on the ground state expecta-
tion value of the squared dipole moment
and is therefore independent of x. On the
other hand, the Majorana force contributes
an extra term to the commutator [H, D] in

f{r) = 3v/'7]'/6 (dv /dr} + ev'6~~{V4/r}
g(r) = 3v'm'/2 (dV4/dr) + 6v'6m'(V4/r).

Now it can be shown'' that
&i([BV(r,Q)/Bn ] (i&

3/2&u ((dV /dr)'(u &

+ 9/2&u ((dv&/dr) (u
36&u ((dV /dr)(V&/r)(u &

+ 36M &u ((dv~/dr)(V~/r)(uo&

+ 6W &u ((dV /dr)(dvq/dr)(uv&

+ 72&u ((dV / rd)(V~/r)(uw&

— 72&&u ((dv~/dr)(v~/r)(us&, (2.23)
where terms with [u4 (r ) ] and [V4 {r ) ] ' are
neglected. Inserting (2.23) into (2.12)
gives the numerical result

a~ = 6.06 x 10' MeV4 mb.
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Eq. (2.7) for the integrated cross sectian.
The resulting increase in ao has been
studied for over forty years with general
agreement amongst various workers:
Siegert '~ LB, I Verde, ~ LL ' OP '' We
sketch the derivation here as parts are
used in the calculation of the moment g~.

We use Eq. (2.2) for the dipole moment
D to show

[H, D] [T,D] + ex[(V(r& z)P12+ V(rq ~)P, q

+ V(r~~)P~, ),zi]
I

[T,D] + ex(V(r)g){zg-z))P)g
+ V(»~) {z.-z~)P»i.

(3,1)
In writing Eq. (3.1) we have nated that
Pi. commutes with the center of mass co-
orflinate and that pqq commutes with zq.
The double commutator [D, [T,D]] gives us
the well known Thomas-Reiche-Kuhn result
used in Eq. (2.7). Addition af the commu-
tator [D, [V,D]] gives the integrated cross
section

go ~ (4g&/3) o, (+~/M) - /gag x
«i[((zq-zs) V(rq i)pq3

+ (zf zs) V(r23)P21) I
i& (3.2)

The totally symmetric ground state allows
us to write

P
&

)
i& =

f
i& . (3.3)

We approximate the two-body potential by
one term in the h. h. expansion (2.15),i.e. ,

V(ri. ) = Va(r) . (3.4)
Chaaging from particle to h. h. coordinates,
we write
(zs-zs) + (z2

{~Vg gv~ q ) + (-q( — 8V/3 8 )
1~( + (3/2)q, (3 5)

We approximate the ground state wave func-
tion with the first term in the h. h. ex-
pansion of Eq. (2.13). Performing the
angular integrations we can then write

&i)V (r)g ')i& = &i)V (r)n '[i&

(1/6)&u (V (r)r~(u &

(3 6)
Now we use Eqs. (3.2) thru (3.6) to write

(4~~/3)g(+~/M) — (2g~/3)g

&u (V (r)r~ )u &

= 39.8 + 26. 5 = 66.3 MeVhnb. (3.7)
In our numerical evaluation we use the

Volkov potential with Serber force (x=$)
and the Seiner-Fabre'" radial function
ua(r). The result given in Table I is 13'
higher than that found from the LF cross
sections for a Serber mixture. They"
four closer agreement using the next term,
Vg(r), in the h. h. expansion of V{r,A);
but here we confine ourselves to the
lowest term in the h. h. expansion for

bath ao and c~.
We calculate a~ by substituting Eq. (3.1)

into the sum rule (2.8). We note that LB'
and Verde~ each obtain three terms: {i) in-
dependent of x from [T,D] , (ii) propor-
tional to x from [T,D][V,D] + [V, D][T,D
and (iii) proportional to x~ from [V,D]
However, LL'~ and OP'' do not find a term
proportional to x. (We do not agree with
the OP argument that such a term should
be absent due to certain "reality proper-
ties. ") We also note that OP and LL dis-
agree on the term proportional to x~ and
that (in a private communicatian) Prats
and Lehman quote still another expression
for the term proportional to x~. Our
result below is in agreement with the pri-
vate communication from Prats-Lehman.

We express the commutator [T,D] in
hyperspherical coordinates:

[T,D] = -(2e%')/(N M)(B/Bn ). (3.8)
The term af order x (denoted by superscript
x) is

a~ = (4m~/4c)(-2'~/&3 M)(ex)
&«&i[ B/Bn (V(r~ & )(z~-zi)P~ Iz

+ V(rgg)(zg-zg)Pg3)
+ ~~{r18 ) (zl z8 )P 1 8

+V(rR s)(z2-zs)P2 8)BIBn I
i& ~ (3 ~ 9)

We evaluate (3.9) using Eqs. (3.3), (3.4),
and the following relations:

SV /8q = (q /r)dV /dr (3.10)
P~~ [8$./8q ] = (QW3 g

— qg )r 'd~i/

P» [&tI]i/&~z1 = — (~W3 &z + ' ~z)r d]I)j/dr

After some algebra we find
o, ~

= — (4m /3)a(4 /M)x
&«&u (rdV /dr + 6V (u &

0 0 0 0
920 MeV3 mb. (3.11)

The term of order x~ (denated by super-
script xx) is
cg = -4v sx &1

( (V(rg I ) (zz-zs )P& s

+V(res)(za-zs)pcs) (i&
(3 12)

We again use (3.3) and (3.4) to shaw

c& = 4w ux )i V (r)[(zs-zs) + (zq-zq)~
+ (zi-z. )*])i&

= 2v ax &u )V (r)r (u &

= 420 MeV~/-mb. (3.13)
We combine Eqs. (3.11) and (3.13) with
the term involvin the squared kinetic
energy commutator to give the value for
o~ in Table I. We note a disagreement af
24. 5% with the LF value.

IY. MOMENT INVERSION WITH LAGUERRE
POLYNOMIALS

Moment inversion entails finding an ex-
pression for a function from its moments.
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P(x) = ) 1 L (x} n = 0, 1,2, . . .
n n

(4.3)
An explicit formula for the Laguerre poly-
nomials is

L (x) = $ ( )(-1) x /k (4.4)
k=O

and the coefficients A, are found to be
n

f exp(-x) L (x}F(x}dx

j a(x)L (x)dx
from the orthonormality relation

j exp(-x)L (x}L (x)dx = b (4.6)
The moment inversion is now accomplished
by expressing the coefficients X in terms
of the moments a . We do this bg inser-
ting (4.4) into (4.5) leading to

) (g)(-1) ah/k'
k=o

(4.5)

Hence, the cross section curve in terms of
the moments is given by'

We outline a technique using Laguerre
polynomials to determine the photoeffect
cross section from the triton moments.

The general shape of the experimental
triton photoeffect curve is characterized
by the threshold energy at 8.48 MeV (for
3-body breakup), a pronounced peak around
14-20 MeV, followed by a steadily decreas-
ing tail at higher energies. Also, ML
find that all moments are finite. These
features prompted the assumption that the
cross section curve cr(x) can be written in
the form

0(x) = F(x) exp(-x), (4.1)
where F(x) and its derivatives are continu-
ous. We discuss the relation between the
dimensionless variable x and the photon
energy Z in the next section.

In analogy to Eq. (2.3), the moments of
o(x) are

a = f a(x)xPdx = f exp(-x)P(x)x dx

p = 0, 1, 2, (4.2)
The existence of these integrals allows us
to expand F(x) in a series of Laguerre
polynomials L (x):n

The first model examined is a (x) =(1)
vx exp(-x) where F(x) = w/x and exact con-
vergence for a finite number of terms in
the Laguerre series expansion cannot be
attained. The coefficients are found from
Eq. (4.5) to be

(4 9
Ok k.

Figure 1 displays a comparison of the
model curve a(')(x) with five terms in the
series. The convergence is seen to be
quite good except in the region of x = 0.
This behavior seems characteristic of our
inversion formula since it recurs in all
models.

We choose the second model, a (x) =
x exp{-cx), to examine the consequences of
the constant c in the exponential. For
values of c & y, exp(-cx) is a valid
weightin function for the Laguerre poly-
nomials' (with respect to orthonormality}
and the analysis can be carried through.
The coeffi.cients Xn now contain a c depen-
dence as follows from Eq. (4.5)

)+2
n {-1) {k+1)

k=o c
(4.10)

0.4

We have plotted five terms for c = 0.70
versus the model in Fig. 2. In general,
we find convergence becoming better as c
is increased. '

(3)
We choose the last model, o (x)

x'exp(-x) to demonstrate that five terms
in the Laguerre series expansion will not
always be enough to produce reasonable
convergence. In this case, F(x) = x~ and
exact convergence is aftainable with six
terms. Estimating o(3&(x) by five terms
is equivalent to saying

a (x) = e [x' + 120L5(x)] (4.11)
which is a poor approximation.

Our models indicate that convergence
should generally be good for five terms in
the Laguerre series expansion. The case of

n C-1)ka(x) = exp(-x) $ ) (&) &, a&L (x) .
n=O k=O

(4.8)
Ve now test the inversion formula (4.8)

against some model curves before applyingit to the triton moments. The convergence
of five terms in the Laguerre series is
of particular interest since Eq. (4.7)
shows that the five triton moments can
generate five coefficients of expansion.
It might be noted that since there are no
negative powers of x in L (x), the inver-
sion problem necessitates defining only
positive moments. A method for utilizing
the triton moment 0 ~ is developed in the
next section.

0.2

0.0
0

X

FIG. 1. The solid curve shows model 1;
the dashed curve shows an inversion using
five moments, see Eqs. (4.8) and (4.9).
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0.6,

0.4

0.2

0
0

FIG. 2. The solid curve shows model 2;
the dashed curve shows an inversion using
five moments, see Eqs. (4.8) and (4.10).

(5.5)

function must be dimensionless. The
previous equations for a{x) and T{x) are
now considered with the substitution x =
E&/D. We also facilitate the computations
by translating the axis to locate the
origin at the threshold energy for three-
body breakup (8.48 MeV), denoted by B.
This essentially ignores the small con-
tribution of the reaction ~H + y ~ d + n
from the threshold energy for two-body
breakup to 8.48 MeV. If E is defined as
the energy above threshold, such that E
E + B, we have the following relations

0 : E & B
a(E/D) : E & B

0 ' E & B
v (E /D) =

(E/D)

Now we write Eq. (5.2) for the moments as

= D (p )f E pT(E/D)dE {5.
P 0

and the coefficients become

0 (- ) (x) = x'exp(-x) shows that further
terms would likely be needed to converge
on a sharply peaked curve, since higher
powers of x are involved.

V. MOMENT INVERSION FOR THE TRITON

To apply the moment inversion technique
just developed to the triton moments, a-~
through a3, we must first modify Eq. (4.8).
Recall that (4.8} was derived for non-nega-
tive moments; therefore, we outline a
method for utilizing a-~. Then we consider
the functional dependence of the cross
section on the photon energy.

For the first purpose, we define a new
function x(x) by

T(x)—: a.(g)/'x, (5.1)
where a(x) is the cross section curve dis-
cussed previously. The power moments of
v(x) are defined, in analogy to Eq. (4.2),
to be

f T(x)x dx = f a(x)x dx (5.2)
for p = 0, 1, 2, . . . . Comparison of Eqs.
(4.2) and (5.2) identifies the moments a-q
through a~ as the first five moments x
through t~ of the function v(x). Fo118w-
ing the procedure developed in Section IV,
we write T{x) in terms of its moments

t(x) = exp( x) ) X L (x)„0 n n

where the coefficients are given by

ln = f T(x)L (x)dx = $ (h)
(5.4)

If T(x) is calculated in this manner, we
can determine a(x) from Eq. (5.1).

We now introduce a parameter having the
units of energy and denoted by D when
considering the functional dependence of
the cross section on E . This is because
the arguments of Ln(x)~and the exponential

h n
Using

version
section
moments

D f T(E/D)L (E/D)dE
Eqs. (5.1) through (5.7), our in-
formula for the photoeffect cross
in terms of the five triton
is

(5.7)

4
a(E/D) = (E+B)D 'exp(-E/D) $ A L (E/D).

n=o " '
(5 8)

The coefficient (E+B)D ' arises from the
initial substitution x = E&/D in Eq. {5.1),
while the product of the exponential func-
tion and the Laguerre series represents
the expansion of the function ~{E/D). The
moment inversion is accomplished by ex-
pressing the coefficients h in terms of
the moments T . Eqs. (5.6) and (5.7) show
that for n=O P

A = D f v (E/D)dE (s.g)
since L~(E/D) = l. We calculate higher co-
efficients by substituting E = E -B in the
argument ol' the Laguerre polynomial; for
example, with n=l,

Az = D f ~(E/D)Lz[(E -B)/DidE0

'f v(E/D)[1-(E -B)/D]dE0

(B+D)z /D-zg. (5.10)0
We use expressions'' for h[) through A~,

We now apply the inversion formula (5.8)
to the five triton moments for a Volkov
potential with no exchange, which were de-
veloped in Section II, The value D = 7.3
MeV is chosen for our parameter since it
gives best agreement with the known thres-
hold behavior, a(E=O)=0. Figure 3 compares
our result with the calculation of FLF. We
feel that the discrepancy occurs for reasons
indicated by our third model of the previous
section; i, e. , more terms are needed to con-
verge toward such a sharply peaked curve.
Additional moments would probably also rem-
edy the negative portion of the inverted
curve arising at higher energies.

The moments of Section III are calculated
for a Volkov potential with Serber exchange
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FIG. 4. Triton photoeffeet cross section
in mb vs photon energy in MeV. The solid
curve uses Eq. (5.8) with three moments
from Table I for a Volkov potential with
Serber exchange. The crosses with error
bars are Gorbunov's measurements
for 'He, Ref. 1.
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FIG. 3. Cross sections for triton photo-
effect in mb vs energy above threshold in
MeV. Fang's curve, dashed, is from Ref. 3,
for a Volkov potential with no exchange.
The solid curve uses the five triton mo-
ments from Table I, in Eq. (5.8).

moments calculated with one term in the h. h.
expansions, and completely neglect spin-
dependent forces.

Future work in this area entails finding
a~ and a~ for the potential of Section III,
and extending moment calculations to a
second term in the h. h. expansions of V and
1i&, We could also use a more accurate nu-
clear potential. Another direction, having
less priority in our opinion, is to utilize
an inversion technique other than that
developed in Sections IV and V.

neglecting spin. We invert these moments,
even though we have only three (a g, ap, ay),
and obtain very promising results. The
value D = 8, 8 MeV was chosen to minimize
a(E=O). The inverted cross section versus
Gorbunov's experimental data' is displayed
in Fig. 4. We extended the calculation out
to E& = 300 MeV and found that the inverted
curve remains positive (barely) although it
does fall below the experimental data. We

feel our results are almost too close to
experiment considering we use only three
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