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The electric-dipole radiative capture reaction of 'He by a, leading to the ground and first excited states of 'Be, is
considered. The wave functions used are the result of a single-channel 'He + a resonating-group calculation which
yields not only correct 'He separation energies in both of these 'Be bound states, but also a satisfactory description
of the 'He+ a scattering angular distributions in the low-energy region. As in our previous 'Li charge-form-factor
study, the present investigation is entirely microscopic and has the following important characteristics: (i) totally
antisymmetric wave functions are used, (ii) the c.m. motion is correctly accounted for, (iii) bound-state and
continuum wave functions are obtained in a unified manner, and (iv) the wave functions used have correct
asymptotic behavior. %'ith no adjustable parameters, it is found that quite reasonable agreement with experiment

can be obtained. In particular, the behavior of the branching ratio is satisfactorily reproduced. The only discrepancy
is that the calculated total capture cross section is about 20-30 % too large, which is very likely related to the fact
that, for simplicity, only the dominant He +a cluster configuration has been included in the calculation.

NUCLEAR REACTIONS 3Hete, y), E =0.1-4.0 MeV; calculated capture cross
section and branching ratio with resonating-group wave functions.

I. INTRODUCTION

In a recent investigation, ' hereafter referred to
as KLT, we have computed the charge form factor
of Li with a seven-nucleon wave function obtained
from a single-channel t+ & resonating-group
study. ' The results obtained were quite satis-
factory. With no adjustable parameters, it was
found that one can obtain not only a good agree-
ment between calculated and empirically deter-
mined values for the rms charge radius and spec-
troscopic quadrupole moment, but also a reason-
able overall description of the charge form-factor
behavior in the q region up to 7 fm .' En-
couraged by this success, we proceed now to ex-
amine another interesting electromagnetic pro-
cess involving the seven-nucleon system, namely,
the electric dipole (El) radiative capture reaction
of He by &, leading to the ground and first ex-
cited states of Be. It is our opinion that this is
a timely and useful study, because a careful ex-
amination of this particular reaction at very low
energies is important for a thorough understanding
of the solar-neutrino problem, which is receiving
extensive theoretical and experimental attention
at the present moment.

For the analyses of experimental He+ + radia-
tive capture data, ' there currently exist only
macroscopic studies which do not explicitly take

into account the many-nucleon nature of the vari-
ous nuclei involved. Thus, in the calculation of
Tombrello and Parker, " the region of strong in-
teraction is not directly considered, but is only
crudely accounted for by the introduction of two
adjustable boundary-value parameters. To im-
prove this calculation, Kim and Nagatani' have
recently performed another macroscopic calcula-
tion in which the interaction between the He and
& particles is represented by an effective, inter-
nuclear local potential. In view of the fact that
the He+ + effective interaction is known to be
highly nonlocal in nature, "one must consider the
calculation of these authors as overly simplified
and, therefore, must examine their obtained re-
sults with considerable care.

In contrast, our calculation to be discussed
below will be entirely microscopic and contains
the following essential characteristics:

(i) Totally antisymmetric wave functions are
used.

(ii) The center-of-mass motion is correctly
treated.

(iii) Both bound-state and continuum wave func-
tions are obtained in a unified manner.

(iv) The wave functions used have correct
asymptotic behavior.

In addition, there will be no adjustable param-
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eters. The bound-state and continuum wave func-
tions adopted are the results of a single-channel
He+ & resonating-group calculation, which yields

not only correct He separation energies in both
the ground & and the first excited —,

' states, but
also a satisfactory description of the 'He+ &

scattering results in the low-energy region. '
In the next section, we discuss the formulation

of the capture problem and give a brief description
of the He+ & resonating-group wave functions and
results. Only the E1 contribution will be consid-
ered, since in the low-energy region the calcula-
tion of Tombrello and Parker" showed that other
multipole contributions, such as M1 and E2, are
not important. The results are presented in Sec.
III, where comparisons will be made with both the
older experimental values of Parker and Kava-
nagh and Nagatani et al. , and the more recent
experimental values of the MGnster group. Fi-
nally, in Sec. IV we summarize the findings of
this investigation and mention possible refinements
which can be made to improve the present calcu-
lation.

II. FORMULATION

A. Resonating~oup wave functions

The resonating-group formulation of the He+ o.

problem has been described elsewhere ' ', hence,
only a brief recapitulation will be given here.
Also, since we shall frequently refer to our recent
t+ o' form factor calculation reported in KI T, we

shall use, whenever possible, the same notation
as that adopted in this particular reference.

In the single-channel approximation, the nor-
malized final-channel bound-state 'Be wave func-
tion, labeled by the total angular momentum J&
and its z component M&, is written as

4~ =&~ ~4m~ ~f f f (1)

where 5 is an antisymmetrization operator, C~
is a normalization factor, and

~a

(2)

Since we are concerned with the radiative capture
not only to the ground & state but also to the first
excited —,

' state of 'Be, we need Jz equal to either
—', or —', with /I

——1. In Eq. (2), the function 9&~, zJyfys
is a spin-isospin-angle function, appropriate
for T =-,' and S=-,'. Its explicit form is

'9 ~~, q
——Q C(IPJI, p,yM,'My)Y)~(R)fg~, (3)

with C(f+J&,' p&, M,', M&) being a Clebsch-Gordan

coefficient in the notation of Rose' and $, ~ being
a spin-isospin function having M,

' for the z com-
ponent of the spin angular momentum.

The functions Q„and Qs in Eq. (2) represent
the internal spatial structures of the & and He

clusters, respectively. They are assumed to have
the normalized forms

3 3/4 - 4

4A 4&3 exp —2&g ~ (r& —Rg)
&~1

(4)

exp -kc'sg(r, -R )',
3~ ] &-5

where R~ and R~ are, respectively, the c.m. co-
ordinates of the two clusters. The width param-
eters are taken to be

+~ ——0.514 fm

&~ =0.367 fm 2,

(6)

(&)

which reproduce the rms matter radii deduced
from electron-scattering experiments. The
function Z(R, ) describes the motion of the total
center of mass. It is conveniently chosen as

N~+N~
g(R ) A A B 8

Ce Ilo 7r

x exp[ '(N„+-„—+Na+s)R, ],

with N&
——4 and N~ = 3 being the nucleon numbers

of the & and 'He clusters, respectively. This par-
ticular form is chosen, since we shall employ in
this calculation the complex-generator-coordinate
technique (CGCT)' '" which was specifically de-
vised to facilitate computations of matrix elements
in resonating-group studies where clusters with

unequg/ width parameters are involved.
The relative-motion function f~, (H) is obtainedf f

as the solution of the projection equation

(04&y&pl H- Er
I ~&@&g)

where E& is the total energy of the system com-
posed of cluster internal energies and the relative
energy E of the two clusters in the c.m. system,
and H is a Galilean-invariant Hamiltonian operator
given by

8 N

H= Z Ti+ Z Yi~- 1"..-.
l~f t&J~i

with

(10)

N=N~+N~

and T, being the kinetic-energy operator of the
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total center of mass. For the nucleon-nucleon
potential, we utilize the one adopted in KLT, with
the minor modification that the parameters u, V„,
and V„, are slightly changed in order to reproduce
precisely the He separation energies in the
ground and first excited states of 'Be. Thus we
use

@=0.984,

V„=-38 MeV,

V„,=206 MeV,

(12)

in our present calculation.
The initial-state continuum function will be

labeled by the channel spin S(=-,') and its z com-
ponent M, . It has the form

(+ ) (e) (13)

with

|is's, =4i4s R Q Q [4"(2f(+1)]'"f'

j

xf~, (R)C(l,SJ„'OM, Mi)'JJ ~', z

(14)

The relative-motion function fz, (R) will be nor-
malized such that there is an incident Coulomb-
distorted plane wave of unit amplitude in the as-
ymptotic region, ' that is, outside the region of
nuclear interaction (R &Ro), it will be chosen as

equation subject to the condition that, outside the
region of nuclear interaction, f~,z should become
proportional to the Whittaker function, ' one finds
the 'He separation energy in the ground or the
first excited state of Be.

As was mentioned in the preceding subsection,
the experimental 'He separation energies of the
two 'Be bound states are precisely reproduced if
one adopts the nucleon-nucleon potential described
in KLT, with the parameters given by Eq. (12).
In Fig. 1, we depict the magnitudes of the rela-
tive-motion function f3/2, &

or f& of the ground state
and the relative-motion function f&/2 f or fz of the
first excited state as a, function of R =n„(0.24 fm}.
From this figure, one sees that these two func-
tions are very similar in the region of strong
nuclear interaction, but differ substantially when
the value of R becomes large.

At a continuum energy, one solves the integro-
differential equation to obtain the scattering wave
function in each (4„f,) state and the corresponding
phase shift. In Fig. 1, we show the behavior of
the relative-motion function f, &&, 0 or f~ at a c.m.
energy of E=0.1 MeV. Here one sees that, be-
cause of the high Coulomb barrier, this function
has a rather small magnitude in the spatial region
where the two clusters strongly overlap.

Phase-shift values at selected energies are tab-
ulated in Table I. Using these values, one can
easily calculate the scattering differential cross
section. The results (solid lines) at l. 41 and
2.06 MeV are given in Fig. 2, where Rutherford
cross sections (dashed lines) and experimental

f~, (R) = —exp[f(o, + 5~ g )]
1 IOO

x[F, (q, kR) cos5...,
+G, (q, kR) sin5«] (R &R,), (15)

where g is the Sommerfeld parameter and 0 is
the wave number of the asymptotic relative mo-
tion Also E$ 6 ) and gg represent, respec-
tively, the regular C:oulomb function, irregular
Coulomb function, and Coulomb phase shift of the
l, th partial wave, and 5~... (i.e. , 5;, or 5, ,} is the
nuclear phase shift in the (J,, f,) partial wave-
channel. As has been explained previously, this
latter phase shift can be obtained straightforwardly
from the solution of the resonating-group projec-
tion equation.

IO

Ll
O

O.l
V

O.OI

O.OOI

20 40 60 80 IOO
B. Brief description of resonating~oup results

From the projection equation (9), one obtains
the integrodifferential equation satisfied by the
relative-motion function. By solving this latter

n„
FIG. 1. Magnitudes of the relative-motion functions

f& of the ground state, fz of the first excited state, and

fz (or f~ y2 o) of the continuum state at a c.m. energy of
0.1 NeV.
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TABLE I. ~He+ 0, phase shifl;s (in degrees) as a function of E.

E
(MeV) gt

2

0.3
0.5
1.0
1.41
2.06
2.65
3.3
4.0

-0.15
-1.10
-6.93

-12.93
-21.88
-28.89
-35.52
-41,71

-0.088
-0.72
-5.35

-10.82
-19.84
-27.48
-35.07
-42,39

-0.12
-0.94
-6.53

-12.79
-22.79
-31.07
-39,18
-46.90

-OA)05
-0.086
-0.26
-0.72
-1PO
-1,66
-1,91

-0.005
-0.090
-0.28
-0.78
-1.34
-1.93
-2.38

0.036
0.19
1.13
4.19

20.52
137.11

0.031
0.16
0.86
2.67
7,71

23.97

data (solid dots) are also shown. From this fig-
ure, one notes that the agreement between calcu-
lation and experiment is generally satisfactory,
being especially good in the forward angular re-
gion. This is important, because, for a reliable
calculation of the 'He+ & radiative-capture cross
section, one must at least demand that the scat-
tering behavior be reasonably explained.

C. The El radiative-capture cross section

In the low-energy region which we are interested
in, the long-wavelength limit (see the discussion
given below in Sec. 111C) of the E1 operator is a
valid approximation. Thus, the cross section of
E1 capture to a final state with total angular mo-
mentum J&, accompanied by the emission of a y

ray of energy E„=I~, is

o~ (E) = ——B(E1),16m 1 cu

Se c (16)

2 2

B(E1}= ~1 Z ~Qg~us ~

f s

with e being the proton charge. In the above
equation, Q»&, hereafter abbreviated as Q,
represents the transition matrix element and is
given by

where v is the relative velocity of the two nuclei
at infinite separation, and B(E1}is the reduced
El transition probability having the form

I I I I I I I I I I I I I I I I I I

400

2.06 IHeV

300

E

b 200

100

I I I I I I

50 60 70 80 90 IOO IIO l20 l30 l40 60 70 80' 90 IOO I IO l20 I30 l40

8 (deg) 8 (deg)

FIG. 2. Comparison of calculated (solid curve) and experimental (solid-dots) He+o. differential cross sections at
1.41 and 2.06 MeV. The dashed curves represent the Rutherford cross sections at these energies.
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g . 1+&j. (.)q= (!)ff((f Z sg((((f)
jaf

N

((» - 1+&„(,)
4f(lf ~P(Y) (P() 2 Is(lg (ls}

where the nucleon spatial coordinate is measured
relative to the coordinate of the total c.m. , i.e. ,

pj rj Rc (19)

For the evaluation of Q, it is convenient to write
it as

N

Q= . lim — Y( (q} (})f (( g exp[(q ~ (r( —R, )] " )})z'„' (f(I.
4ws Oeq . f f (20)

The matrix element appearing in the integrand on
the right-hand side of Eq. (20) is the type which
we considered in KLT. As was done there, the
c.m. function is dealt with by using the fact that
it appears in the wave functions [see Eqs. (1), (2),
(13}, and (14}]as a multiplicative factor; thus,
we can write

(
8 1+yj (,)

(!f (( g exp[~q (r( —R..}] " 4((f f,

8 1+Tj, () 1
exp ig r, ' g~'„, 21

2 ~ F,
where

I.. =&zlexp(~q ..)
I z&/&zlz&

1=exp—
4(N~(r~+ Naos) q

To evaluate the normalization factor C~ of this
bound-state wave function, one uses the relation

l
c

l
N!(Pf (( l8 !(„)f&=1. (23}

As has been mentioned in KLT, the computation
of the factor ($f „ l8$f „&can be straightforward-
ly carried out. It is given by

()I), „ l8&, (( &=Q[c(&fS~f !(f)Mf Pf)Mf)]
Qf

I

RIld

N~

Z(R', R")= Xo(R', R"}+Q 3!,(R', R"), (26)

with x (1 ~ x ~ N((, with Nf( &N„) being the number
of nucleons interchanged between the & cluster
(or cluster A) and the 'He cluster (or cluster 8)
ln Eq. (26}, 3!, and 3!,represent the direct and
exchange parts of the norm kernel; they have the
forms

X0(R', R"}=5(R'- R"},

x,()(', )(")=(-()'( ') —'( )
xexp[-A, (R' +R" ) —C R' ~ R"] .

(as)

(
1+ Tj (y)

(!)f (( Q exp(iq ~ r, ) '
(}'s((jj

The constants A„C„D„DO, a„and c, are func-
tions of N„, O'„, N~, &~, and x. Their explicit
expressions can be found in KLT.

The matrix element

x G~ R' & R',R"

where

x G (R")dR'dR"
Qf

G~(R') = ,ff ( (R')YP f (—R')

(24)

(26)

N

=Cf N! 7)» exp((q ~ r()
'*

)I,'» (29)f f

appearing in Eq. (21) can be evaluated in a parallel
way as Eq. (43}of KLT. Thus, by combining Eqs.
(16), (20), (21), and (29), one obtains

Q =Cf ~N Q Q C(l(SJ(j OM, M()C(l(Scl„l((M,'M()C(fry J'f, pfM,'Mf)'
7j j "j"f

NI

x C(lfll(;!ff M p(} ID(J;f() + p I,(J(l()

=Cff ~N(-1)'f " ' Q [(af(+1)(2~(+ )]'1"
(lC( J(S, OMM )C(Z, 1J,; M„M, M)-

N3

x W(dfff Z(f(', $1) I()(J(l() +g I (J(l()
@sf

(30)
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where W(Z&/z J;/„'Sl) is a Racah coefficient. The quantities I0 and I, are the direct and exchange integrals;
as in KLT, they can be further divided into different interaction types, i.e. ,

ID(J(/() = 2(Iq~+ I),

I((J(/() =2(If'+If'}+4(I(+If}'

Ip(J(/() =4(I2'+I2 )+ 2(I2+I2},

I3(J(l() = 2(I~q'+ l~q2),

(31)

where the superscript denotes the manner in which the single-particle &1 operator I/(s(i) acts on a par-
ticular nucleon in the clusters. An explanation of the four types of interaction +1, &2, 5, and e with the

aid of the diagrammatical technique introduced by LeMere et al."has been given in KLT. Below we give

only the final expressions of these integrals:
(i) Type ((I The .integral I; is given by

I; (J /)=T, Q (2/ +1)(2/ +1)[3(2L+1)]'I'i"C(/~/ L;000)C(/ /el;000)C(L/ /„ppp)
l olgL

x W(/~/ l, /(); Ll)o(' p ~6(,( P(J(l„l/eL}', (s2)

with

,=((- )*(~' ( ] (33)

(ii) TyPe ((2. As was mentioned in KLT, this
type is similar to type a1. The difference is that
the roles of & and P of Eqs. (36) and (37) are
interchanged, i.e. ,

The quantity P(J(/(; l /()L} is an integral of the form

P(J(l(,' /~/((L)

~=~a +~exy (s8)

(s9)

where

(s4)

(iii) TyPe b. The integral I, is given by

I', = y,i '[3(2l, + 1)]'"C(/, 1/„000}

x)t f~ ( (R)Rf~ ( (R)dR, (40)

1/2
(, (R', R")=4 (-I) )('R"(, „)r

xII (/ ( 2,C'RR)exp[-A (R' +R" )],

(s5)

with A, and C, to be found in Eqs. (39) and (40) of
KLT. The function [((/(2C, R'R "}]'~I~„&2(C,R'R")
is a modified spherical Bessel function of the
first kind. Furthermore, the quantities & and P
can be written as

with

y~ =N((/N . (41)

The integral I~ has the same form as I", , but with
& and P of Eqs. (36}and (37) to be replaced by

(42)

where X„is defined in Eq. (62) of KLT.
(iv) TyPe c. The integrals Io and I; are very

similar to the integrals /o and j',. The integral
Io is the same as Ip~, except for the replacement
of y~ in Eq. (41) by

(s6) y, =-N„/N. (43}

P = ~ax+ waxy (3V)

Similarly, I'„ is the same as I~„but with the 5
and P of Eq. (42) to be replaced by

in which (d,', , "„and A.„are defined in Eqs.
(49)-(55) of KLT. where X„is defined in Eq. (68) of KLT.

(44)
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Using Eq. (30), one can easily perform the
summation in Eq. (17) over the magnetic quantum
numbers M&, M, and M„and obtain a final ex-
pression for the E1 radiative-capture cross sec-
tion o~ (E). This expression isf

x g (2J, + 1)(2'+ 1)[W(J~l~J,l„$1)]'

Ng

x I (J;&,)+Q I (j,f,)
g g

(45)

oAE}= o3i2(E}+oii2(E}. (45)

In macroscopic studies of the capture process,
nucleon-exchange effects are not explicitly taken
into account. For example, if one omits the ex-
change terms in Eqs. (23) and (45), then the re-
sultant expression for o~ reduces to that derived
by Christie and Duck. '

IH. RESULTS AND DISCUSSIONS

A. Comparison with experimental results of Parker and
Kavanagh, and Nagatani ej el.

In Table II we show, at selected energies from
0.1 to 4 MeV, the calculated results for the cap-

TABLE 1I. Calculated results for capture cross sec-
tions and branching ratio.

(MeV)
+3/2
(pb) (vb)

0.10
0.15
0.20
0.30
0.40
0.50
0.75
1.00
1.41
1.70
2.06
2.65
3.30
4.00

0.000 326
0.004 32
0.0190
0.100
0.251
0.448
1.02
1.58
2.41
2.96
3.63
4.69
5.84
7.08

0.000 136
0.001 80
0.007 91
0.041 8
0.105
0.188
0.433
0.676
1.05
1.30
1.61
2.09
2.60
3.14

0.000 462
0.006 12
0.026 9
0.142
0.356
0.636
1.45
2.26
3.46
4.26
5.24
6.78
8.44

10.22

0.417
0.417
0.417
0.417
0.418
0.420
0.424
0.429
0.437
0.440
0.443
0.444
0.445
0.443

in which one notes that the contributions from
different (J„l,) partial waves are summed inco-
herently. In the present case of E1 capture, the
contributing partial waves have (J„l,}equal to
(-,', 0}, (-,', 2), and (-,', 2).

At an incident c.m. energy E, one needs to con-
sider capture processes leading to both the ground

state and the first excited —,
' state. Thus, the

total capture cross section is

ture cross section 0,/, to the ground state, the
capture cross section og/2 to the first excited
state, the total capture cross section e„and the
branching ratio p defined as

p oi—( 2I oar 2 ~ (4V)

From this table, one notes that even though the
capture cross sections increase monotonically and

rapidly with increasing energy, the branching
ratio has a nearly constant value of around 0.43
over the whole energy range considered.

Calculated results for the total capture cross
section are further depicted in Fig. 3, where for
clarity an expanded version at very low energies
is also given in the insert. In this figure, the
data points shown are those of Parker and Kava-
nagh' (solid circles) and Nagatani et al. ' (open
circles). Here one sees that there is an overall
satisfactory agreement between theory and ex-
periment; in particular, the calculated cross
section does increase with the same trend as the
experimental result. However, the calculated
values are somewhat too large. The reasons for
this discrepancy are likely as follows.

(i) For the ground state of the mirror nucleus
'Li, the rms charge radius obtained with a
resonating-group wave function determined in a
similar way as described here is equal to 2.44
fm (Ref. 1) which is about 2 to larger than the
empirical value. "A similar situation is ex-
pected to occur also in the 'Be case. Since the
radiative capture takes place mainly in the per-
ipheral region, even this slight disagreement in
the rms radius will result in a noticeable over-
estimate of the capture cross section.

(ii) The resonating-group wave function used in
this investigation has a single 'He+ n cluster
configuration. For simplicity, other cluster
configurations are not considered. Although it
is anticipated that, at low energies, the 'He+ n
cluster structure should play a major role, the
omission of other cluster structures will cer-
tainly affect the calculated result to a significant
extent.

Both of these deficiencies mentioned above can
be corrected by adding specific distortion effects
into the present formulation. Within the resonating-
group framework, ' a proper consideration of such
effects can be readily incorporated and has been
made, for example, in the 'Li system by many
authors. '2 ~

In Fig. 4, a comparison is made between cal-
culated and experimental values for the branching
ratio p. Here again, the experimental data shown
are those of Nagatani et al. ' (open circles) and
Parker and Kavanagh' (solid circles). As is seen,
the property of near constancy is also exhibited
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K
D
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FIG. 3. Comparison of calculated and experimental total capture cross sections. The experimental data shown are
those of Parker and Kavanagh (solid dots) and Nagatani et al. (open circles). The insert represents an expanded view
of the comparison at very low energies.

by the experimental result. However, the cal-
culated value of about 0.43 in the low-energy
region of 0.2 to 1.4 MeV does seem to be some-
what higher than the measured values.

At very low energies, a more convenient way
to compare calculated and experimental capture
cross sections is through the so-called S factor
S(E), defined as'

S(E)=Eo, (E)exp(163.78/WE), (48)

07

where E is expressed in units of keV. This is
shown in Fig. 5. By using the calculated S(E)
values, one can make a reasonable extrapolation

to yield a value of about 0.61 keVb for S(0). This
latter value is the same as that determined by
Nagatani et al. 'by a second-order polynomial fit
of the empirical data, but is larger than the value
of 0.47+0.05 keVb quoted by Parker and Kava-
nagh. '

B. Comparison with experimental results of the
Miinster group

Recently, the 'He+ o.' radiative capture problem
has been experimentally reconsidered by the
Munster group. " In view of the fact that there is
some substantial difference between their data,
covering the energy range of 0.116 to 1.688 MeV,
and the data of Parker and Kavanagh, and Nagatani
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FIG. 4. Comparison of calculated and experimental
branching ratios. The experimental data shown are
those of Parker and Kavanagh (solid dots) and Nagatani
et al. (open circles).
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resents an extrapolation of the calculated values.
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ef a/. , we shall make in this subsection a separate
comparison of our calculated values with the
MGnster result.

Calculated and experimental branching ratios
are compared in the upper part of Fig. 6. Here
one sees that the data points, which have gen-
erally uncertainties of about + 0.03 (not shown in
the figure, except for the typical point at 1.688
MeV and some points with particularly large un-
certainties), lie on the average above the cal-
culated curve. This is somewhat surprising, be-
cause our comparison with the results of Parker
and Kavanagh, and Nagatagi et al. , described in
Sec. IGA, showed just the opposite. However,
one must note that both sets of experimental data
exhibit rather large uncertainties and, hence,
there may not be any serious inconsistency be-
tween them. On the other hand, it is clear that,
for a better understanding of this important cap-
ture problem, there is the need of some data with
higher accuracy.

The Miinster group has so far not measured
the absolute value of the capture cross section

and, thus, only relative S factors at different
energies were obtained. For a comparison with
our calculation, what we do is, therefore, to
normalize the experimental result to the theo-
retical value at 1.688 MeV. Kith this procedure,
the resultant comparison is shown in the lower
part of Fig. 6. As is seen, there is a rather sat-
isfactory overall agreement; although it should
be mentioned that, here again, more definitive
conclusions can be drawn only when higher-quality,
absolute cross-section measurements become
available.

C. Contributions to the capture cross section

At very low energies, the radiative capture
takes place mainly in the region outside of nuclear
interaction but under the Coulomb barrier. To
show this, we compute the quantities o», (R „) and

o, &,(R„), obtained by setting the upper integration
limits in Eqs. (34) and (40) as R „instead of in-
finity. In Fig. 7, we depict at 8=0.1 MeV the
behavior of the quantities rI, &, [curve (a)] and rI, &,
[curve (b)], defined as

0.9
n, g. = o.g.(R„)/o» „ (49)

(50)
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where o,&, and v, &, are given in Table II. From
this figure, one finds that the values of R„at the
l~ and 9~ points are, respectively, equal to
7.4 and 21.5 fm for the capture to the groundstate,
and 8.6 and 25.2 fm for the capture to the first
excited state. In comparison, it should be noted
that, at this energy, the classical turning distance
has a large value of about 58 fm.

As the energy increases, the capture occurs
more in the region where the nuclei are closer
together. For the capture to the ground state, for
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FIG. 6. Comparison of calculated and experimental

branching ratios {upper part) and S factors g.ower part).
The experimental data {see text) are those of the Munster
group {Ref. 10). For clarity, experimental errors bars
are not shown, except for the typical point at 1.688
MeV and some points with particularly large uncertain-
ties.
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example, the R „values of the 5(@ points at E
=0.1, 0.3, and 0.5 MeV are equal to 13.0, 11.9,
and 10.9 fm, respectively, while the St„values
of the 9l@ points are equal to 21.5, 19.2, and 17.3
fm at these energies.

Even though at a very low energy the capture
takes place predominantly at large separation dis-
tances, it is important to point out that the long-
wavelength approximation for the E1 operator is
still valid. This is indicated by the fact that the
value of &oR/c, with R being the separation dis-
tance at which g, /, =0.5, is still much smaller
than 1. For instance, at E=0.1, 0.3, and 0.5
MeV, &oR/c are equal to 0.111, 0.113, and 0.115,
respectively.

Next, we consider the individual contributions
o~ (J„l,) [see Eq. (45)] from the incident (J„l,)~y f& i
partial-wave channels. For this purpose, we
define the quantities

= o, (J, f,)/c~, (51)

where o~ at various energies are listed in TableJ'y

II. The results for f~,/, and fJ'] $/2 are shown
separately in Fig. 8, where the curves labeled
(a), (b), and (c) refer to the cases with (Z, , l, )
equal to (-,', 0), (-,', 2), and (-,', 2), respectively.
Here one sees that, as is expected, the contri-
bution at very low energies comes mainly from
the l, = 0 channel. On the other hand, it is clear
by examining the behavior of these curves that
the E, =2 channels cannot be omitted from the cal-
culation; already at E=1.0 MeV, the contribution

from these channels amounts to more than 2.
A finding similar to this has also been reported
by Tombrello and Parker. "

Another interesting feature is that, for the
ground-state capture, the l, = 2 contribution comes
predominantly from the ~, = & state. For the cap-
ture to the first excited Jz = —,

' state, the (&, 2)
channel does not, of course, contribute to the E1
transition and, hence, only the (&, 2) fractional
contribution is shown.

IV. CONCLUSION

In this investigation, we have considered the
electric-dipole radiative capture of 'He+ a to the
ground and first excited states of 'Be. 'The results
show that, with no adjustable parameters, quite
reasonable agreement with experiment can be ob-
tained. In particular, the behavior of the branching
ratio is satisfactorily reproduced. The only dis-
crepancy is that the calculated total capture cross
section is about 20-3+ too large. As has been
discussed, this is very likely related to the fact
that, for simplicity, we have included only the
dominant 'He+ & cluster configuration in the cal-
culation.

The zero-energy S factor S(0), obtained by an
extrapolation of our calculated results at very low

energies, is equal to 0.61 keVb. As in the case
of the total capture cross section, this value is
likely also 20-30% overestimated. To obtain a
more realistic value, it will be necessary to carry
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FIG. 8. Fractional contributions from various incident partial-wave channels. The curves labeled (a), (b), and (c)
refer to the cases with (J&,l&) =(~,0), (+&, 2), and (~, 2), respectively.
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out a more refined calculation taking other cluster
configurations also into account. This will be a
rather tedious task but, in view of the important
nature of this capture reaction in the solar-neutrino
problem, is certainly worth performing.

The rather successful conclusions of both the
present investigation and our previous study of
the 'Li charge form factor' indicate to us that
the resonating-group wave functions used do yield
a reasonable description of the essential behavior
of the seven-nucleon system in the low-energy
region. Therefore, one should proceed to examine
other problems in this system, such as the elec-
tron capture of Be, the M1 and M3 form-factor
study in 'Li,"the 'He+ & bremsstrahlung, ""and
so on. In addition, of course, it will be interesting
to extend the present calculation to include other
multipole transitions such that one can further
study the angular distribution of the y rays emitted
in this capture reaction.

Note added. A recent article by Bahcall et al.
fJ. ¹ Bahcall, S. H. Lubow, W. F. Huebner,
N. H. Magee, Jr., A. L. Merts, M. F. Argo,
P. D. Parker, B. Rozsnyai, and R. K. Ulrich,
Phys. Rev. Lett. 45, 945 (1980)) summarizes
the present status of the solar-neutrino problem.
In view of this, we wish to add some further, per-
haps somewhat speculative, remarks based on our
understanding and experience with the seven-
nucleon system. Our extrapolated value of about
0.61 keVb for the zero-energy cross-section fac-
tor S(0) is very likely an overestimate, the reason
for this being clearly stated in Sec. IIIA. To ob-

tain an improved value, one needs to first per-
form a more extensive resonating-group cal-
culation, taking specific distortion effects properly
into account. At present, we (together with
T. Kaneko) have nearly completed such a cal-
culation which should yield an even better de-
scription of the behavior of the seven-nucleon
system in the low-energy region. Indeed, using
the resultant bound-state wave function, we do
find that the calculated values for the 'Li charge
form factor agree very well with empirical result
at both low-q' and high-q' values. The 'He+ n
radiative-capture calculation, using this improved
description, is planned for the immediate future.
Prior to this latter calculation, we cannot, of
course, state in any definitive manner about what
the resultant value for S(0) may turn out to be.
However, considering the dominant nature of the
He+ o. cluster configuration in the low-excitation

region of 'Be, we would venture to speculate that
S(0) will probably have a value around 0.45 keVb
or somewhat higher. The low value of 0.34 keV b,
a possibility discussed in the article of Bahcall
et al. , is in our opinion not too likely.
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