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Breakup coupling potentials for tleuteron-nucleus collisions in the space
of hyperspherical harmonics
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Formulas are derived for expressing the sum of neutron-nucleus and proton-nucleus optical potentials in terms of a
series of hyperspherical harmonic functions and Legendre polynomials. Matrix elements of this expansion between

two hyperspherical harmonics are obtained analytically and given in terms of triple sums of finite number of terms.

The results are evaluated numerically for the breakup space associated with 21.6 MeV deuterons scattering on the
nucleus of nickel. Conclusions are drawn regarding the feasibility of solving the corresponding coupled equations

which describe breakup space in the hyperspherical basis.

NUCLEAR REACTIONS Mathematical techniques for expanding three-body
wave functions in terms of hyperspherical harmonics. Numerical examples.

I. INTRODUCTION

The purpose of the present paper is to provide
the mathematical tools needed to implement a
formulation of breakup effects' which utilizes
hyperspherical harmonics (HSH). ' A description
of the formulas derived in this study is given be-
low.

The HSH functions P&(8} depend on five angular
coordinates 8 and the subscript p represents sets
of five discrete quantum numbers, which will be
detailed further on. The remaining coordinate
has dimensions of length and is denoted as y.

The piece of the three-body wave function, g„
which contains only breakup components, i.e. ,

no two cluster pieces, is expanded in terms of
the HSH's,

y, (y, e) =y '&'g g (y) y (e),
S

and the coefficients ga(y) are unknown functions
which are to be determined by solving a set of
coupled equations. The latter are derived in
another study' where the separation of the total
wave functions g into the components g, and g, is des-
cribed. The coupled equations for the g8 's contain
two types of terms: (a) The potentials V&a. (y) which
couple breakup terms g& to other breakup terms gs &

in the form+8. Vaa (y)gs. (y} and (b) the inhomo-
geneous (source) terms Za(y) which couple the
gq's to the remaining part ljI), of the total wave
function i4I). The part g, contains the incident and
scattered deuteron components, and is written in
terms of the coordinates r and R, which are more
natural for the description of the internal deuteron

wave functions (r} and the motion of the c.m. of
the deuteron relative to the nucleus (R). The in-
ternal coordinates of the nucleons in the nucleus
are not explicitly included.

The main objective of the present paper is to
provide convenient expressions for calculating the
coupling potentials VMi (y) in terms of the sum of
the nucleon-nucleus optical potentials

V = V„„(r„)+ V „(r ), (1.2)

and also to give a numerical example.
The V~.(y)'s are the matrix elements

vm (y) = I g](8)v pg (e)dr (1.3)

and in order to evaluate them one proceeds in two

steps. The first consists of an expansion of V„
in terms of the coordinates y and 8, using for the
8 space the HSH functions,

v„(r„,r, ) = Q vi(y)e-, (e), (1.4)

and subsequently one needs the angular integration
matrix elements

Ms 8= 8 4'y 8 8 8df'

An integral expression for V~(y) is given, and an
expression for the M's are given in terms of ex-
pansions into triple sums which have to be carried
out numerically. The expression for M contains
6-j symbols since 4 of the 5 angular variables are
of the usual geometric type, and the overall result
has the nature of a Clebsch-Gordan coefficient
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since it contains triangular conditions also in the
5th quantum number.

Formulas for evaluating matrix elements of this
type have also been given by Raynal and Revai, '
in terms of transformations of HSH from one set
of HS coordinates, for which evaluation of the
matrix elements are straightforward, to another
set of HS coordinates for which the matrix ele-
ments are actually needed. If harmonic oscillator
functions in the coordinate y are also involved,
then transformations which are similar to Mosh-
insky brackets have also been given. 4 However,
the formulas given in the present paper for V&8.

appear to be simpler and better suited for the

purpose of studying deuteron-nucleus scattering.
Numerical examples are given for the Vz(y) as

well aS for the M's which refer to the case of
21.6 MeV deuteron, incident on the nucleus of
nickel. From these results the numerical effort
required to solve the coupled equations in the g8's
becomes more transparent: i.e. , one sees how

many coupling terms in p' surrounding a given
value of P have to be kept when actually solving
the coupled equations.

The solution of the coupled equations is, how-

ever, beyond the scope of the present work. AB
we intend here is merely to understand the nature
of the V~ (y)'s for the case of deuteron-complex
nucleus scattering.

r =r„+r~, R=(r„+ r~)/2 . (2.2)

The polar angles of the directions ~ and R are
denoted by 8, , P, and 8„, P„, respectively. The
hyperspherical coordinates y and x are related to
r andR by

y= 2 y sing +=2 ycos~ (2 2)

The five angles x, 19„, p„, 8„, and p„are the
hyperspherical angles, which are the arguments
of the hyperspherical harmonic Q z, „(x, 8„,

8s, Qs}. Then f, m, are the angular mo-
mentum quantum numbers for the relative motion
of neutron and proton, L, ML, the same for the
relative motion of the neutron-proton center of
mass with respect to the nucleus. ~ comes in
through the variable y and has integer or half in-
teger values with the lower limit ~,:

X 0
= (l+ f,)/2, X = Ao, Xo+ 1, . . . . (2.4)

T„+Ts = —(g'/2m) [d'/dy'+ (5/y)d/dy —K2/y'].

(2 5)

~ is related to the eigenvalues of K', the
"grand" angular momentum squared which is ob-
tained, when transforming the total kinetic energy
to the hyperspherical coordinates'.

II. THEORY

(2.1}

Continuum-continuum transitions are caused in

this formalism by the neutron-proton interaction
e~(r), as well as by the interactions of the neu-
tron and of the proton with the target nucleus,
which —following earlier calculations' —is taken
as an optical potential at a nucleon energy half
the incident deuteron energy E~:

V„(r,R)=V„„(r„)+V „(r ) .

K is the operator containing the five hyperspheri-
cal angles and has the eigenfunctions P~»xssm, ~~ .

K 4x&c & =2~(2~+ 4)kzsi. g (2.5)

The last term in Eq. (2.5) gives rise to a centri-
fugal barrier of the form 2A(2K+4)/y' in the hyper-
spherical space, which for potentials of finite
range in y provides the desired cutoff in X in an
expansion of the wave function in hyperspherical
harmonics. The latter can be written as

The neutron and proton radius vectors r„and r~
are measured from the center of mass of the nu-
cleus, which is considered infinitely heavy, and
the coordinate vectors r and R are given as Here2 4 ~ 6

=F~,c(x)F,
~
(8„A)Yzs (8„9„). (2.7)

Fg,~(x) Ã~, ~(sinx)'(coax)~, F,[(i+I)/2-X, (l+I)/2+X+2; l+-', ; sin'x], (2 5)

where, F, are the usual hypergeometric functions.
The X~» are normalization constants such that

X/2

F~gJ Fg $J sin x cos xdx = 5gg . (2.{))
0

Some of the functions Fz» are illustrated in Fig.
1.

The general ansatz for the wave function discus-

I

sed in Ref. 1 consists of two parts, the first, g„
describing —asymptotically —the elastic channel,
the second, P„ the breakup channel:

g,(y, x, r, Jt) =y '/' Q g'~'(y)y'~~'(x, r, R),
(2.10)

where a=(A. , f, L), J' is the total orbital angular
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The bracket symbols are the usual Clebsch-Gor-
dan coefficients. ' M~ is suppressed from the set
of quantum numbers e, since it is not changed in
the interaction.

From the Schr5dinger equation one obtains two

sets of equations', the set which is of interest
here is

I2 "P A(A+1)
2m dp'

-E g&„'&++ (y.V,y., )

0

)1

I

I

I

I

I

I

I
—

l

I
I
I

I

1

\iJ
7

3=0
i= l0

g~~~'(y)=S'(rKy/2) H' ' (Ry}/'2i, (2.13)

where ff =(mE/8 )'/2 and where S~~ is the value of
the S-matrix element for deuteron-breakup trans-
itions. For small values of p one has

g(g j (y) M y2k+ 5/2 (2.14)

where Mz» is a normalization factor.

where A = 2~+-,'.
The term Z'~' in Eq. (2.12) is the source term

for the breakup channel, that means the coupling
of g, to g, . The continuum-continuum coupling
terms, that is, the matrix elements (P V~/„i),
are the quantities to be discussed in this paper.
In the asymptotic region they decrease as y ' and

hence, at large values of y, the asymptotic be-
havior of g is that of an outgoing cyl.indrical Bessel
function:

6 —
7

-]'( 6

2 =2
L=8

III. THE BREAKUP TO BREAKUP COUPLING
TERMS (tt) VN g,)

These matrix elements are quadruple integrals,
whose evaluation is facilitated by expanding

V„(r, R) in hyperspherical harmonics

V„(r, R) =Z Vy —, (y)E~» (x)(2T+1)' 'p-, (cos5},
X1

(3 1)

4
0 0.2 0.4 0.6 0.8 I.O

sin~ x

FIG. 1. The hyperspherical harmonics E& &z(x) de-
fined Eq. (2.8) as a function of sin x. The values of/
and L are indicated on top of each panel. The values of
X are written next to each curve.

momentum, and

where 5 is the angle between r and R.
In what follows, equality of the neutron-nucleus

and proton-nucleus optical potentials is assumed,
deferring the treatment of the Coulomb potential
to a later stage. Then one has with e =2sinxcosx
cos5

V„(r, R) = V[y(1+ e)' ']+ V [y(1 —e}"/2]. (3.2}

As (3, 2) is invariant under the replacement of 5

by (~ —5) only even values of l contribute to (3.1).
A similar argument shows that X must be even.
Both resul. ts follow, of course, from the general
derivation of V17, for which the result is (Append-
ix A)
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Vyr(y) =Kg—, V~(y); 'X and T even,

with

(3.3) target of Ni. The nucleon-nucleus optical poten-
tial has the Woods-Saxon form

V„„(r„)= V, /(1+ e) + & 4W e' /(1+ e ' )',

e = exp [(r„-R)a], e' = exp[ (r„-R')/a' ],
x V„„(ysin-,'n)do. , (3.4)

&p = —50 MeV, W = 15 MeV
(3.7)

K~, --(-)&~ ' &~'2'(2T+1)~i" [P+T)/2]! /[(X —I)/2]!

x[(%+1}(X T)-!/Pi I+1)!]xi (3.5)

v~(y) y '8 'i'f dv„w„'v„„(r„) .
0

(3.6)

Inserting Eq. (3.3) into Eq. (3.1) and carrying out
the sum over I one obtains an expression of the
type given by Eq. (1.4).

For large values of y, V-„decreases as y ', like

R =R'= 5 fm, a = a'= 0.65 fm .

Results for V~(y) are illustrated in Fig. 2. The
potentials V~(y) decrease in magnitude with in-
creasing X, they all have the same asymptotic
form (3.6); the number of oscillations for small
values of y increases with X.

With the exception of X=O, the potentials Vy

provide the coupling potentials between different
continuum states. The potential V,(y) is a diagon-

The fact that for large values of y there remain
regions in phase space where V„does not vanish
is not in contradiction with the result that

(Q,V„Q, ) goes to zero as y '. In fact, the size
of these phase space regions shrinks like (a/y)'.

If VN is not to vanish as y goes to infinity, then
r/2 and R must be such that t'„or r~ remain
small, within the region of the range a of the nu-
cleon-nucleus optical potential. This means that
r/2 and R must have approximately the same mag-
nitude, so that they can nearly cancel in the ex-
pression r„=R+ r/2 or r~ = R —r/2. In this case
x is close to n/4 and the angle 5 between the direc-
tions of R and r has to lie in a narrow region
around zero or ~. Under these conditions it can be
shown that the allowed regions of 5 and x decrease
like (a/y)' and a/y, respectively. Hence the inte-
gration over the angular phase space decreases
like (a/y)' as y-~, in agreement with the result
of Eq. (3.6).

A list of values of Kyr is given in Table I. For
a given value of X the values of T run from 0 to X.
The largest values of K occur for T=X. The po-
tentials V-„(y) are shown in Fig. 1 for a particular
example which corresponds approximately to the
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TABLE I. Values of K&, defined in Eq. (3.5).

10

1
-1 +2.828

1 -2.390 4.276
-1 +2.309 -3.411 +5.571

1 -2.278 3.218 -4.315 6.770
-1 +2.265 -3.138 +4.008 -5.151 +7.901

I i I I I i I i I I ) I I I

0 IO 20 3O

y (fm)
FIG. 2. The potentials V&(y), which are defined in

Eqs. (3.3). The values of X are indicated next to each
curve. According to Eq. (1.4), the T&'s are the HSH
components of the sum of the proton-nucleus and the
neutron-nucleus optical potentials, Vz defined in Eq.
(1.2). The parameters for the optical potentials are
given in Eq. (3.7). The functions 4 in Eq. (1.4) can be
obtained in terms of Eqs. (3.1) and (3.3).
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al distorting potential which is the same in all
channels.

The coupling potentials (P~ V„P .) are obtained
by inserting the expansion (3.1) for V„and (2.11)
for (t}

I I I I I I I I I I I I

IMAG

0 I I I I I I I I I

-20—

where

aa ~J' ~xi
~ "~ kl1, , k J I ~14, )'L' XlL, ÃI'd XT

5=0

(3.8)
-40—

0

is a matrix element of the type given by Eq. (1.5),
where

-20—
4I

) 40

-60—

x ((21+1)(2l+l)(2l'+ 1)(2f,'+1)(2L+ 1))' ',
(3.10)

and where

-80—

-]00
I I I I I I I I I

with

X.gZ„, X' g'I,' ),&I, Xi& 1'r'I, '

(3.11)

dT„= sin x cos xaam .
The integration in (3.11) can be carried out and
leads to a triple sum which can be evaluated by
computer. The quantum numbers ~, &', and &

satisfy the triangular condition (Appendix B).
Furthermore, 2~+ 2X'+ 2X has to be even. This
follows as

X=(l+L)l2, (1+f,)l2+1

~'=(i'+Z, ')i2, (I'+f, ')/2+1 "
X even, L+L' even, I+l' even.

2 4

be cast in the form

{
I2 '2

)'() ) -&}d."()')

+ P(z) y g(&P y — Z(&) y (3.13)

where

0 6 8 ]0 ]2 ]4
y/ J2 ( fm)

FIG. 3. The distorting potential V(y), defined in Eq.
(3.12). The real part of V(y) is compared with the cen-
tral distorting potentials which appear in the k by k
method described in the text. Momentum bin 1 corre-
sponds to a breakup energy interval from 0 to 10 Mev.
The x axis represents y/ 2, since R equals y/ 2 when
x«R, and the k by k potentials are defined in terms of
R.

The latter two conditions follow from Eq. (3.10).
The diagonal distorting potential [ term %= 0 in

the sum (3.8)]

V(z), (y}—
X.—2y 4 ~ ~ ~ ~

Miff v) c, Vd. &) (314}

V(y) = «-"'V (y) (3.12)

is illustrated in Fig. 3 for the numerical exam-
ples given by Eqs. (3.7}. The dashed curves il-
lustrate the distorting potentials which are en-
countered in the formulation of the discretized
"0 by k" coupled equations for approximately the
same nucleon-nucleus optical potential as that
given by Eq. (3.7}, in which case R is identified
withylM. One sees that V(y) is larger, both in
magnitude and in rm)ge, compared to the k by k

potentials.
As a result of Eqs. (3.8)-(3.11), Eq. (2.12) can

Equation (3.13) can be brought to a more elegant
form by the introduction of the column vectors
gZ.

r
gk))L)
(J')

g (&)— (3.15}

The entries L„L, are all the combinations which
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where

+ V"' (y) g '"'(y)+Zi" (y) = o, (3 16)

(3.17)M~x Vx (y) .
&=2, 4. ~ ..

The main usefulness of Eq. (3.16) is to bring out
the central role of the quantum numbers ~. The
Green's functions G„(E,y, y') which resolve the
square bracket of Eq. (3.16) are the same for all
elements of the vector gz.

Whether Eq. (3.16}can be solved by iteration in
a series in G„depends on the magnitude of the
coupling potentials V~~„as will now be examined.
The values of Vz(y} shown in Fig. 2 are suffic-
iently small so that the viability of performing an
iteration depends on the size of the coefficients
M&~~&. . A numerical example of the elements of
M~&~&. is given in Appendix C for the case J=4, for
values of ~ and X' of 2, 3, and 4, and for values
of X of 2 and 4. For X= 2 the values of the ele-
ments of M&~& in this example are not larger than
4.1 (which occurs for A=2, II.'=3). The corre-
sponding maximum value of M'z'&4i ~ V,(y) is 10.25
MeV. This magnitude is similar in size to the one
found for the coupling between continuum states
in the k by k formulation, which was too large for
an iteration to converge. As a result, the itera-
tive solution of Eq. (3.16) is not recommended.
On the other hand, the contribution from the po-
tentials Vz(y) with X& 2 as well as the contribu-
tions to V from large values of y are likely to
be amenable to a treatment by perturbation.

The largest matrix element in M4„'&4i has the
value of 5.3 and occurs for ~= 2, X'=4. The cor-
responding maximum value of M~'~. ~ V,(y) is
3.18 MeV, which is sufficiently small for a dis-
torted Green's function iteration to converge.

The coupling between the various ~ values de-
creases as the difference between ~ and X' in-
creases. This fact is not evident from inspection
of the matrix elements SI „~ivegn in Appendix
C because this example does not have enough val-
ues of X and X'. However, examination of the co-
efficients F„' shows these quantities to depend
most strongly on the difference between the num-
ber of nodes n

n = II. —(f +I.)l2 (3.16)

belong to the same values of ~ and J. The matrix
of the elements M„f~ „i,i~i is called SI~~~i and the
column vector of the inhomogeneous term is Z~z(y).
Then Eq. (3.13) can be written in the succinct
form

I' d' A A+1
( ),~( )2m dy2 y2

of each F„,I, T. he coefficient Fp. Eq. (3.11), is
conveniently expressed as

F~ = ( II.L I, ( Xl (
X' f' L ') . (3.19)

For example, when l=k'=2, I.=L, '=6, l =0,
X =4, and X as well as ~' are variable, then the
plot of E~~y as a function of n' -n shows that
points for different values of X and &' all lie
roughly on the same universal. curve. This curve
is illustrated in Fig. 4.

This discussion shows that the n' has to differ
approximately by 6 units from n before the values
of F decreases by a factor of 3 or 4. Inspec-
tion of other cases reveals a similar type of mean
free path in ~ space of approximately 6.

In conclusion, the various (/, I,) components of
the continuum functions g'z~' are coupled strongly
to each other, and so are the various ~ compo-
nents. As a result, the flux "injected" into an
(o.,J ) component of the g, breakup space via the
coupling to the bound space [ through the inhomo-
geneous term Z'~' in Eq. (3.13)] is expected to
propagate strongly to other (n', J}values. The
distance of propagation is governed by the change
in the parameter X —(1+1,}/2, which could change
by as much as 6 units.

IV. SUMMARY AND CONCLUSIONS

The main content of the present work is to pro-
vide the mathematical background needed for the

0
U

2
~e ~

I~

/I

8

10

-2 I I I I I I I I

-8 -6 -4 -2 0 2
{n'- n)

PIG. 4. The quantity E(&a &, z plotted as a function
of the difference between the number of nodes n' —n.
Here E represents the integral of the product of three
hyperspherical harmonics E»z(x), as is defined in Eq.
(3.11), and the corresponding number of nodes is given
by Eq. (3.18), and n =X-T. The E's contain the A, and A,

'
dependence of the coefficients M ~~ „,~. according to
Eq. (3.9). The latter, which are tabulated in Appendix
D, are needed in the calculation of the overlap integrals
(y V„y ), Eq. (3.8).
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formulation of deuteron breakup in terms of hyper-
spherical coordinates. The sum of the proton-
nucleus and neutron-nucleus optical potentials is
expanded in a basis of hyperspherical harmonics
functions as a first step for the calculations of the
matrix element of this potential between initial
and final HSH functions. The next step for the cal-
culation of this matrix element then involves the
integral of the product of three HSH functions.
This integral is expressed in terms of a triple
sum involving factorials and gamma functions in
a form suitable for numerical evaluation. The
above chain of steps differs from a method devel-
oped by Raynal and co-workers. '' The present
method suggests that the coupled equations between
the breakup functions g'~~, '~(y) be written in a form
of coupled matrix equations which underlines the
dominant role played by the HS quantum number ~.
The matrices in this formulation act on column
vectors g'z~' (y) which are formed by the functions
g(~z'(y) for all the combinations of l and L which

belong both to the given value of X and of the total
angular momentum J.

Numerical evaluation for the case of 21.6 MeV
deuterons incident on a nucleus of nickel shows
that the two steps needed in the calculation of the
matrix elements discussed above can be carried
out without much loss of accuracy. The size of the
coupling potentials (10 to 20 MeV) is so large that
iterative solution of the coupled equations between
the functions g'z~,'~(y) is not recommended. By
contrast, the coupling between deuteron space
(g, ) and breakup space (P, ) evaluated in Ref. 1

appears to be sufficiently weak, of the order of a
few MeV, so that iterations for going from g, to

g, and back promise to converge.
The strong coupling between the function g'~~, '~(y)

shows that many values of l (the relative neutron-
proton orbital momentum values for the breakup
states) are expected to be required in the descrip-
tion of breakup space, regardless of the formula-
tion in terms of which breakup is expressed.
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TABLE II. Values for N&,I, .

N)g~, L =0

n2 L=O L=1 L=2 L =5 L=10 L =19

y2 =0
1
2
3
4
5
6
7
8
9
10

2.257
4.513
6.770
9.027

11.284
13.541
15.797
18.054
20.311
22.568
24.824

3.191
5.528
7.818

10.092
12.361
14.425
16.888
19.149
21.409
23.669
25.928

4.037
6.474
8.809

11.112
13.398
15.675
17.947
20.216
22.483
24.747
27.010

6.286
9.058

11.564
13.972
16.332
18.665
20.980
23.283
25.577
27.865
30.148

9.531 14.604
12.880 18.945
15.699 22.338
18.316 25.352
20.828 28.163
23.277 30.849
25.685 33.451
28.065 35.994
30.424 38.492
32.767 40.957
35.097 43.394

L=0
N)gr, 1=2

L=5 L =10 L =19

n=0
1
2
3
4
5
6
7
8
9
10

m=0
1
2
3
4
5
6
7
8
9
10

4.037
15.105
37.000
73.336

127.725
203.779
305.108
435.324
598.037
796.858

1035.397

L=0

5.572
30.176

101.774
266.51
593.44

1179.15
2 152.30
3 678.25
5 963.62
9260.87

13872.93

27.54
67.03

126.21
208.83
318.51
458.88
633.55
846.13

1100.24
1399.48
1747.47

Nz&I. , l =4

L=2

21.53
85.35

238.37
548.93

1112.83
2 057.99
3 548.98
5 791.65
9 037.69

13 589.23
19803.46

66.40
146.52
256.37
396.79
574.42
791.84

1052.66
1360.47
1718.87
2131.47
2601.87

259.2
760.5

1685.3
3 227.21
5 624.63
9 166.45

14 196.5
21 118.05
30 398.80
42 575.02
58 256.42

169.64
350.47
577.22
853.81

1183.64
1570.15
2016.79
2527.07
3104.50
3752.65
4475.06

L =19

1 047.0
2 818.0
5 789.9

10368.5
17022.3
26 289.8
38 785.0
55 201.7
76 319.0

103 304.0
136 219.0

' Defined in ~. (A2).

the helpfulness of both being also much apprecia-
ted. Support from the U. S. Department of Energy
was provided through Contract Nos. EG-77-S-02-
4444.A002 and DE -AC02-76E R03069.

( fnt++ -*, )( +If +n+1}! «~
1'(n+L, +-*.) n! (A1)

APPENDIX A

Values of the normalization constant N»L, defined
in Eq. (2.8):

N„, = 2(x+ 1) /I'(l + -', )
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n =! -(I+ I,)/2.

Specific values for N»I, are given in Table II.

(a2}

APPENDIX B: THE POTENTIALS VQ&y)

Expanding the potential V[y(1 —a)'~ /2] in Eq. (3.2), abbreviated as V below, in the form (3.1), one
obtains for Vrr(y):

r 2/2

Vr!(y) = (2T+ 1)' 2 'N~~ d5 sin5Pgcos5) dr„(sinx cos}!)'2E,(T- X, l+X+ 2; T+ —'„' sin X)
0 0

x V[(y/2)(1- sin2xcos5)'i ].
The following transformation will lead to a simplification (reduction to a single integral in the end):

cos2X = sin& sinP, sin2g cos5 = cos&, sin2X sin5 = sin& cosp .

V~ is now
T er /2

Vri =(2T+ 1}'~ (16} 'N~ da dp sin acosp
0 -g /2

x Pr[cosa(l —sin asin p) 'i ]2 '(1 —sin asin p)'i

x2Ei[l —X, 1+7+2;T+—„'(1—sinasinP)/2].

(B2)

(B3)

The following discussion shows how to reduce (B3) to a single integral: The kinetic energy operator for
three particles for total orbital angular momentum 0 is

8 5 8 g 8 cos2g 8 4 g cosg 8
T„+T~ ———

2m By y By y BX sin2g BX sin 2g Bt)2 sin5 85 . (B4)

The eigenfunctions of the }!,5 dependent operator in (B4) are the functions F~(}i) P-, (cos5) employed
in the expansion of V. Performing the transformation (B2) one has

2m By' y By y Bu sinu Ba sin~& Bp' cosp Bp
(Bs)

The +, P dependent operator has the eigenfunctions

P,(sinp)N, !i2 '(sina)'2F, [l-X, i+X+2; l+ —,';sin (a/2}].
The functions Errr(}!)P,(cos5) are linear combinations of (B6) with the same X:

N~PI(cos5)(sing cos}!)'2F(l-X, I+X+ 2; l+ 2; sin «)

(B6)

a,.N, .,~P,.(sinp)2 ' (sina)' 2F|(l' —X, I'+X+2; f'+ —,';sin2(a/2)) . (B7}

(B8)

because

Only the term I'=0 in (B'f) will contribute to the integral (B3}. So only ao is needed, which is found from
(B7) by setting a=0 (sin2X=1, cos5=1). One finds

go
—(N~NO~)w i 2 'I'(T+ —)(I'[(I-X)/2+ —']I'[(l+X)/2+ —]}

E,(T- X, T+ X+ 2; T+ —,'; —') =v'i21'(T+ —')(I'[(T—X)/2+ —,']r(7+X)/2+ —,']}-'.
The following replacements are now performed in (B7) and (B8):

N~ = [2(X+1)' "/I'(T+ -,')][(X+l + 1)!/(X- l }!]' ',
2E,(-k, X+ 2; 2', sin a/2) = sin[(X+ 1)a]/(X+ 1)sina,

I'(n+ —')=(2n)!s'i /(2" !),
I'(-n+ —,') =ni 2'"(-)"v' "/(2n)! .

(B10)
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With (B10) one obtains

Vr&-(y) =[(1+(-)» ')/2]11 ' (-)+ ' ' 2r '[(27+1)/()(+1)] [()[-l)!/()&+ l + 1)!]

x[[(X+()/i(!I(i—(&/i)!& f alms' asin[(i+1)tM)V(vs' (v/2)) .
0

(B11)

(B12)

For V»r(y) one obtains the same expression with V[y sin(&2/2)] replaced by V[ycos(&2/2)]. As a conse-
quence one obtains for V»I (y) of Eq. (3.1)

V»T(y) = V»T(y)[1+ (-) ][1+(-)']/2

APPENDIX C: INTEGRALS OVER THREE FUNCTIONS F~rL (x)

The integrals in question are the ones in Eq. (3.11}which, apart from normalization factors, are

r/2
f= d r(Is&i !(n)"' ' (cos}() ' ' 2F [(l+L)/2 —!(,(1+L)/2+)(+2;1+2;Sin!(]

0

x2E([(l'+ L')/2 —A. ', (l'+ L')/2+ )('+ 2; l'+ -'„' sin2}[2F&(l —y., l + )&+ 2; l +-,'; sin')() .

These l, l', l are connected by the triangular condition, as are L, L', l [see Eq. (3.10)]. l +l'+ l and
L+L'+ l are even. With sin!( = (x+ 1)/2 and

(C1)

„g+e(-)" 211(-n, n+ o&+ p+1; &2+ 1; (x+ 1)/2) = [(-)"/2"n!](x+1) (1 —x) 2(d/dx)"[(«+ 1)"'5l —x)"'~] (C2)

one finds

I=2 "' ' ' '2 ' (2l+1)!!(2l'+1)!!(2l+1)!![(22[—I-+1)!!(2!('—L'+1)!!(2X-l+1)!!]
+i

(1 + )-1-&I+I'v& &/2(1 ) ( &L+L'vr)/2-{(d-/d ))&I+L)i/2[(1 + )&i+(I-L+I)/2(1 )2+(L-I+1&/2)
-1

x((d/d )vx-( '+LI' )/2[(1 + x)
'&(+(I' L'~ &) /2( 1 -)vt( ' LI'+1)/2]) ((d/d )T I[(1~ -)»+(I/2)(1 «)T~(1/2)]]

(C3)

The existence of the triangular condition for A., A. ', X can be proved in the following way: One integrates by
parts several times in such a way that the (d/dx)" ' is removed. One obtains

+i
= (-) r d«(1 «2)T~(/2(d/d«)T r ((1+«)-(-(I+v+T & /2(1 «)-1-(L+L'+I ) /2

-i

x(d/d ) «(I~X)/2L[(1 + )1 (I-L 1)/2(1 )&(+(L-I+1)/2)

x (d/d )&(' (I +L &/2 [-(1 'y «')x'+ (!' L+& & /2(1 )
'+&((-'-L+II ) /2] } (C4)

The expression in curly braces is a polynomial in x, the highest power of which is A. +A. ' —l. The
(!(-l )'th derivative of this polynomial is nonzero only when

A, —T»A, +X —l or X~ X+l'.
On account of the complete symmetry of (C3} in X, )(',T. one also has

(c5}

X ~ X'+X, X'~X+X, (c6)
which proves the triangular condition.
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TABLE III. Values of M~»~z &, .&..

(0,4) (2, 2)

A, =2, J=4, A. =iY =2

(4, 0)

(o, 4)
(2, 2)
(4, 0)

-1.451
2.369

2.369
2.418
2.369

2.369
—1.451

~=2, J =4, a=2, V =3

(o, 4)
(2, 2)
(4, 0)

{0,4)

-2.328
-2.851

{2,2)

1.489
0

-1.489

(4, 0)

2.851
-4.054

{2,4)

-2.603
-3.188

{4,2)

-3.188
-2.603

A, =2, J=4, A, =2, X'=4

(o, 4) (2, 2) (4, 0) (2,4) (4, 2) (2, 6) (4, 4)

(0,4)
{2,2)
(4, 0)

-0.981
0.962

0.311
-1.553

0.311
0.962

-0.981

-0.657
1.264 -1.264

0.657

3.551
1.749

(o, 4) (2, 2)

~=2, J=4, ~=3, V =3

(4, 0) (2, 4) (4, 2)

(o, 4)
{2,2)
(4, 0)
(2, 4)
(4, 2)

-0.681
0.403

2.435

0.403
0.580
0.403

-0.902
0.902

0.403
-0.681

-2.435

2.435
-0.9Q2

-0.910
0.774

0.902
-2.435

0.774
-0.910

(0,4) (2, 2)

A =2, J =4, A. =3, A' =4

8, 0) (2, 4) (4, 2) (2, 6) (4,4)

(0, 4)
(2, 2)
(4, 0)
(2, 4)
(4, 2)

-1.757
-2.473

-0.079

1.534
0

-1.534
0.539

-0.539

2.473
l.757

-0.079

-1.793
-2.275

0.244
-0.558

-2.275
-1.793
+0.558
-0.244

-2.543

-1.990 -2.572
-2.572

A, =2, J =4, A, =4, A, '=4

(o,4) (2, 2) |4,0) (2,4) (4, 2) (2, 6) (4,4)

(0,4)
(2, 2)
(4, 0)
(2, 4)
(4, 2)
(2, 6)
(4, 4)

—0.946
-0.517

2.478

-0.701

-0.51V
-0.207
-0.517
-1.262

1.262

-0.493

-0.517
-0.946

-2.478

2.478
-1.262

-1.702
0.276

-0.179
1.158

1.262
-2.478

Q.276
-1.702

-1.158

-0.Vol

-0.179

3.022
0.179

-0.493

1.158
-1.158

0.179
0.862

(0, 4) (2, 2)

A, =4, J =4, A =2, A.
' =2

(4, 0)

(0, 4)
(2, 2)
(4, 0)

0.054
-0.263

0.860

-0.263
0.483

-0.263

0.860
-0.263

0.054
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TA BLE III. (Continued)

A, =4, J=4, A, =2, A,'=3

(0,4) (2, 2) |4,0) (2, 4) (4, 2)

(0,4)
@,2)
8, 0)

0.635
-1.296
-1.693

-1.489
0
1.489

1.693
1.296

-0.635

0.710
-1.255
-1.893

-1.893
-1.449

0.V10

(o, 4) (2, 2)

g =4, J =4, A =2, A,
' =4

(4, 0) (2, 4) (4, 2) (2, 6) (4, 4)

(0, 4)
(2, 2)
8, 0)

1.874
0.437
1.438

-2.447
-2.134
-2.447

1.428
0.437
1.874

2.174
1.514
1.876

-1.876
-1.514
-2.174

-1.614
5.272

2.596
3.444
2.596

A, =4, J=4, A=3, A, '=3
(0,4) (2, 2) (4, 0) {2,4) (4, 2)

(0,4)
(2, 2)
(4, 0)
(2,4)
(4, 2)

1.918
-0.916
-2.483

1.456
3.184

-0.916
-2.042
-0.916

0.409
-0.409

-2.483
-0.916

1.918
-3.184
-1.456

1.456
0.409

-3.184
3.064
2.375

3.184
-0.409
-1.456

2.375
3.064

A, =4, J =4, A, =3, A.
' =4

(0,4) (2, 2) (4, 0) (2,4) (4, 2) (2, 6) (4,4)

(0,4)
(2, 2)
(4, 0)
(2,4)
8,2)

1.325
0.951
0.793

-0.695
-1.854

0.220
0

-0.219
2.204
2.204

-0.793
-0.951
-1.325
-1.854
-0.695

0.273
1.033
1.539

-0.836
-1.712

1.539
1.033
0.273
1.712
0.836

-1.956
2.294

-3.169
-0.437

—3.736
0
3.736
0.110
0.110

(o, 4) (2, 2)

A, =4, J=4, A. =4, A,'=4

(4, 0) (2, 4) (4, 2) (2, 6) (4 4)

(o,4)
(2, 2)
(4, 0)
(2, 4)
(4, 2)
0,6)
(4,4)

0.937
-0.775
—1.624
-0.304

1.381
0.990
1.286

-0.775
-1.212
-0.775
-0.057

0.057
-1.126
-1.951

-1.624
-O.VV5

0.937
-1.381

0.304

1.286

-0.304
-0.057
-1.381

2.446
3.123
1.234
0.443

1.381
0.057
0.304
0.066
2.446

-0.417
-0.443

0.990
-1.126

1.234
-0.416

0.129
1.679

1.286
-1.951

1.286
0.443

-0.443
1.679

-0.878

(cv)

When carrying out the derivatives in (C3) one gets a triple sum for the integrand. Apart from the bi-
nomial coefficients originating from the derivatives one has the x-dependent factors (1+x)~'~t(1 —x)"'~',
with p and q integers, for which the integrals are known:

r
«f

dx(1 + x) (1 —x)~' = x(2p + 1) t l (2q + 1}i!/(p +q + 2) I

Denoting

x=(f+Z}/2, x'=(f'+I, ')/2,

and remembering that I' denotes the usual gamma function, one obtains the final result

(CB}
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)t-x )t™g'

g„,~.~e(. le N——„,qN„. (.I,.A~((n' Q Q (-) ' 2'&[k)!kt!kp']
Qf sQ }!t2OQ 3$Q

(~- «}! (~'- «'}! (i —I)!
(! -«-k, )!(! '-«'-k, )!(! - I-k,)!

(X + «+ k &
+ I)! (X '+ «'+ k& + 1)! (X+ 1+kp + 1)!

(X+«+1}! (X'+ «'+1)! (X+ l+ 1)!

r(l+ ,') -r(1'+-,') I'(I+ p)
I'(l+ —'+k, ) I'(1'+ —'+ k ) I'(l+ —'+k )

x [2(k(+k2+kp}+ 1+l+ l'+l]!(1+L+L'+l)!
x {[k(+k2 + kp+ p(l+ I'+ l )]![p(L+ L'+ l )]!

x [k&+k2+kp+2+I+ p'(I'+L'+l+L)]! }'

x 2 exp[-2(k, +k2+ kp) —3 —2l —l —l' —L -L']

when X=O, C in Eq. (3.10) reduces to l!„.5~~, , K=1, and &=(Nppp 4/v«=2. 257) x3„„,.

(C9)

APPENDIX D: VALUES OF N„"i~z,),I'I '

Table III gives the values of M„I„„,I, which was defined in Eq. (3.9). The values of (l', L') are indicated
in the top row, the values of (l, L}are indicated on left column.

«On leave of absence at the University of Connecticut
during the academic year 1978-1979.

)On leave of absence from the University of Connecticut
at MIT during the academic year 1979-1980.
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