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The overall two-nucleon-nucleus wave function is decomposed into two parts rp, and |tf,. The coordinates of the

latter are the hyperspherical ones, suitable for the description of breakup, while the former, which contains both the

scattered deuteron channel and additional breakup components, is given in terms of the conventional coordinates f
and R. A basis set of functions in P, are the (continuumj eigenstates of H„and the basis set for P, are the discrete

hyperspherical harmonics. Coupled equations for the coefficients of each basis set are derived. The inhomogeneous

source terms which couple P, to P, are evaluated for a numerical example, and the coupling terms within P, space

are discussed in a separate publication. It appears feasible to calculate the effect of f, upon gP, and vice versa in an

iterative sequence, but the calculation within f, space requires the noniterative solution df coupled equations. Such

a calculation appears possible with the computer power currently available, but has not been carried out.

NUCLEAR REACTIONS Formulation of three body scattering in terms of hy-
perspherical harmonics. Application to deuteron-nucleus scattering.

I. INTRODUCTION

The scattering of a composite projectile on a
target invariably leads to a three body situation,
in view of the possibility of breakup of the projec-
tile during the collision. A certain class of
methods of treating breakup in the description in
deuteron-nucleus scattering, to be called "k by A"'

methods, '-' expands the breakup space into a con-
tinuum of relative neutron-proton momentum
states and the corresponding coupled equations
are then rendered manageable by a more or less
sophisticated discretization procedure. However,
it was found' ~' that the breakup continuum is
quite complex, in that several relative n-p or-
bital angular momenta (f) could be involved, and

breakup energies up to possibly 40 MeV or more
(depending on the energy of the incident deuteron)
could be excited. ~' As a result, it would seem
desirable to find a treatment of the breakup space
which does not suffer from the discretization
errors which are a yet not well understood.

The purpose of the present paper is to investi-
gate the suitability of the use of hyperspherical
harmonics' for such an alternate description.
The hyperspherical coordinate space appears to
be a suitable choice to describe the breakup
process since these coordinates provide a natural
way of introducing a complete orthogonal system
of basis functions which depend on a discrete
set of quantum numbers. Furthermore. , they can
be chosen in such a way that the angular momen-
tum quantum numbers l and L are the same as the

ones which occur in the A by A description, thus
facil. itating comparison between the two methods.

According to Fabre de la Ripelle, ' who gives
extensive references, the hyperspherical (HS)
coordinates were used in physical problems since
1914 (E. Borel) and the HS harmonics (HSH) have
been extensively studied since 1926 (Appel and

Kampe). Since 1952 (Morpurgo) HSH were em-
ployed in the analysis of three nucleon bound

state systems, ' and in l, 959 Delves' formulated
three body scattering problems by means of HSH.
Nevertheless, not much is as yet known regarding
the practical usefulness of the HSH for numerically
calculating the scattering of three body systems. ~"
These functions have also been used, mainly by
Levinger and collaborators, in the description of
the photodisintegration of 'He. "

One of the difficulties in using HSH for the des-
cription of three body scattering processes is that
they do not provide a well convergent basis set
for representing the two cluster channels in which
two of the three particles are bound to each other.
For this reason separate parts of the wave func-
tions are introduced to describe these channels. '-"

In our treatment the method of separating the
wave function into its various cluster pieces
bears a close similarity to the Faddeev approach, "
but is less general in that the stripping channels
are suppressed in order to permit comparison
with the k by k method, in which they are likewise
suppressed. The main emphasis of the present
study is to examine the feasibility of solving the
resulting coupled channel equations, as well, as
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Following an earlier practice, '-' the internal
degrees of freedom of the target nucleus are
suppressed, and the nucleon-nucleus interaction
is described by a phenomenological complex
optical model potential. 'Zhe sum of the neutron-
nucleus and proton nucleus optical potentials at
a nucleon energy half the incident deuteron energy
ED is denoted as V„:

V~(r, R)=V„„(r„)+V„(vq) . (2.1)

The neutron (proton) radius vector measured from
the center of the nucleus is r„(r ), the nucleus is
considered infinitely heavy, and the coordinates
r and R are given as

r = r„—r, R =(r„+r )/2. (2. 2)

The overall wave function describing the neutron
and the proton, in the combined bound deuteron
and breakup states, is P and obeys the equation

(T„+H„~+ V„E)&)&=0. — (2.3)

paying close attention to the number of angular
momenta involved in the breakup description.
It is known that this number increases as the
c.m. energy increases. '" The work is presented
in two papers. In the present one the coupled
equations are derived and the inhomogeneous coup-
ling terms between two cluster pieces and the
three body pieces of the wave function components
are numerically evaluated. In a companion
paper, "hereafter referred to as II, the coupling
terms within the three-body space are expanded
in terms of hyperspherical harmonics and num-

erically evaluated for a special case. However,
the actual solution of the coupled equation is rele-
gated to a future study.

Other three body methods also exist which des-
cribe in configuration space the scattering of a
composite particle in the presence of breakup. "
However, at the present stage of the development
it is not yet possible to draw detailed comparisons
between these various methods.

II. THEORY

of the five angles are the polar angles of r and

R, respectively, and x and y are related to r
and R through the relation

r/2=2 '~'ysinx, R=2 '~'ycosx, (2. 6a)

Z'y, =2l&.(2X+4)y, . (2.6)

The quantum number A, is particular to HS space.
Its values are integer or half integer, increasing
in integer steps ~ from its lowest value A,„

= (I + L)/2, (2.7a)

X=&0, La+I, Ra+2, . . . , A +n, . . . . (2.Vb)

In view of the identity, "which is a consequence
of Eq. (2.6),

(T + T )y,s/2y y-5~2( g2/2~)

&& [d'/&fy' —A (A+ I)/y'Jy, ,
(2.8)

where

A=2&+ g
——l+L+2n+p, (2.9)

one sees that the presence of K' gives rise to
a centrifugal potantial A(A+1)/y', which in turn
is responsible for the convergence in the expan-
sion in the basis of HSH's. Delves' denotes A by
l and calls it the "channel order, " since it deter-
mines the threshold properties of each channel.
The dependence of the HSH on the angles 8„, g„,
8„, and g is given in terms of the usual spher-
ical harmonics Y, (r) and Y~„(R), which are
vector-coupled into bipolar spherical harmonics
'&f«&«(i, R). One obtains"

P, (r, , r, R) = @."'(x,v, R)

=F.( }y„„,„P,R), (2. 10a)

+=tan-'(r/2R), y=(v /2+2R')'~' . (2.5b)

The hyperspherical ha. rmonics &t&8 («, 8„,$„8+/A)
are eigenfunctions of K, the "grand" angular
momentum squared, ' which is the generalization
to hyperspherical space of the orbital angular
momentum

Here
0. -=A, , l, L, (2. 10b)

H = T, +v~(r),

r„= (e'/4m)v„*, T„-=-0'/~)~'

(2.4a)

(2.4b)

where the F (r) is given in terms of polynomials
in sin'x in Eq. (2.6) of II.

The overall wave function is now separated into
two components

e is the nucleon-nucleon interaction in free
space, E is the total energy, and m is the nucleon
mass.

The hyperspherical coordinates will now be
defined. ' " They are given in terms of five
angles 8„, Q„, 8„, Q„, and x and a variable y
which has dimensions of a length. The first four

&t&
= g, (r, R) + g, (y, x, r, R), (2.11)

and g, and g, are defined in such a way that P,
does not contain bound deuteron components so as
to avoid poor convergence of the expansion in HSH.
Gne method of accomplishing this is by requiring
that the g, and g, obey"
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(2. 12)(Ts + T, + vu, + (V])&)
—E) P, =-v„]

(T, +T, +V„E-)q,= [V-, (V-,)14, .

Here (V„) is the ~atanabe or folding potential

&)„]R))=fly, ] )I'v, (,)))a'

(2. i3)

(2.14)

In Appendix A the connection between the Faddeev
equations and Eqs. (2. 10) and (2.11) is estab-
lished. The proof that |t, cannot acquire bound
state components, provided that they are not al-
ready present initially, is given in Appendix B.
The main reason is that v is absent from Eq.
(2.13). The boundary condition on ]()2 is that it
contain only outgoing components in the y coor-
dinate, while g, contains a deuteron channel with

ingoing and outgoing waves in the coordinate R.
Breakup components are also present in tt}, .
Stripping channels should, in principle, also be
present in It},; homever, in the present study the
boundary conditions imposed on g, suppress these
channels. In view of this deficiency, the wave
function &}) obtained by the solution of Eqs. (2. 10)
and (2.11) does not provide a complete descrip-
tion of the physical scattering problem; how-

ever, the stripping channels can be incorpor-
ated at a later stage.

An appealing alternate decomposition of g is
given by

i( =y'(R) y, (r) +]}),'(y, x, r,R), (2. 15)

where y' and g~ are defined through the equations

])', +&)',) —)),]x'=-f d' A, )P), (2. i6)

)T, +)' + V + —E]lg —p fd'r g Ug

=- Uy'(R)]b, (r}, (2. 17)

and where

III. THE COUPLED EQUATION

'The functions P, and tt}, are expanded in a set
of eigenstates of H and of K' respectively, as
follows. The bound and continuum eigenstates
of H„~ are &f&(b, r) and p, (k, r), respectively.
They obey

H„~P(b, r) =a~)f&(b, r),
H„, b, &(k, r) =).,)f) (k, r),

(3.1a)

(3.1b)

where e, .=(k'/&u), H is defined in Eq. (2.4), and
A and l are the linear momentum and the angular
moment of the neutron-proton relative motion,
respectively. In the absence of spin, the value
of l for the bound state is set equal to zero. The
boundary condition for the continuum states
]b, (k, r) can be chosen to be standing waves. "
Denoting the radial parts of Q(b, r) and ])tl(k, r)
as u(b, r} and u, (k, r), respectively, '

(k, r) =(1/r)u, (k, r)Y, (r),

advertently appear in f,' in the process of solution
of Eqs. (2.16) and (2. 17) in view of the presence
of v in Eq. (2. 17}. As a result, the convergence
of the expansion of g,

' into HSH's could be jeopar-
dized. For this reason Eqs. (2.12) and (2.13)
are preferred.

The present discussion addresses itself to the
inclusion of breakup space in the solution of Eq.
(2.3). Physical questions which arise due to the
Pauli antisymmetrization of the incident nucleons
with the nucleons in the nucleus are ignored here ~

Such effects would lead, for example, to a den-
sity dependence of v ." Furthermore, the energy
dependence of the nucleon optical potentials con-
tained V„of Eq. (2.1) is also ignored. Since the
nucleons in the broken-up state can share their
energies in various ways, this latter approxima-
tion could be troublesome for large incident deu-
teron energies.

U(r, R) = V„(r,R) —(V„) . (2. i6) (3.2)

The boundary conditions are that y' has ingoing
as well as outgoing waves in the R coordinate,
while ]}),

' has only outgoing waves in the y coor-
dinate. Again the stripping channels are sup-
pressed. The advantage of Eqs. (2.16) and
(2.17) is that the whole breakup amplitude is
contained in &I&,', while in Eqs. (2.12) and (2.13)
some breakup is also contained in g,. It can fur-
ther be shown (Appendix C) that when the system
of Eqs. (2.16) and (2.17) are solved in an iterative
fashion, then if initially no deuteron components
are contained in g2, in principle, the iterations
mill not introduce such components into P2. How-
ever, due to the occurrence of numerical inac-
curacies, a bound deutron component may in-

Q(b, r) = (1/r)u(b, r)/(4v)' ~',
one obtains for the expansion of P,

$,(r, H)= —— f, (k, R)u, (k, r)dk]'jj&&, &«(r, A) .

(3.3)

The symbol g denotes that the bound state com-
ponent u(b, r) f,~z'(b, R) is included in the square
bracket. The 'jj's are the usual bipolar spherical
harmonics.

The expansion of g, in terms of HSH Q is

P) 5/2 g (z&( )@]7&( R)
1 u (3 4)

Upon inserting Eq. (3.3) into Eq. (2.12), making
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use of the orthonormality of the u(k, r)'s, multi-
plying the left hand side of Eq. (2.12) by Rrl(
(k, r)'gf«&~(r, R), and integrating over dQ„dQ~dr,
one obtains the first set of the coupled equations

I

kept fixed.
The l =0 components of X,~~ are the largest, and

they should also have the longest range in R, as
will be discussed in Sec. V. It is shown there
that each A, component of X, for l =0, decreases
like

=-X,',"(k,R), (3.5)

where the inhomogeneous term is given by

X'v'=y) gf r, (r, klv„, (r)y 'I'd', '(ylr, (r)dr .

A similar equation for the bound state component
of g is obtained when k is replaced by 5, I is
set equal to zero, and L is replaced by J.

The assumption that g„ is not dependent upon
the direction of r, together with the orthonormal-
ity of the bipolar spherical harmonics, was used
for the derivation of the above equations. For
the evaluation of the integral in Eq. (3.6), y and
x are assumed to be given in terms of ~ and R
according to Eq. (2. 5b), with the value of R

(3.7)

for R large compared to the range of v„~. The
functions g are oscillatory functions of their
argument with constant amplitude. However,
even if cancellations between the various A, con-
tributions to X do not decrease the range of X,
an R dependence of the type of Eq. (3.7) should
not cause undue mathematical difficulties if the
experience in handling Coulomb integrals, "also
of long range, is made use of. The coupled
equations for the g 's are obtained by inserting
the expansion Eq. (3.4) into Eq. (2.13), making
use of Eq. (2.8), multiplying the result on the
left by y' Q ~', integrating over dO, dQ„, and

d~„and making use of the orthonormality of the
Q's. The result is

{
8' ' d' A(A+1) (~& (g) (g&

gg) (, (y) Q (Ag&I, &d 4&r j'V)gk'&'L (y) v'dlL (y
2m dg )t' f' L'

(3.8)

where

z,', '(y) y'I'I d„,[r=—(r ))d,d)),d)) dr, .

(3.9)

g'~'(y) = S'~'(&(Ky/2)' &2H".', (Ky)/2i, (3.10)

where

(3.11)

and 8 is the asymptotic normalization constant.
Near the origin, A (A+1)/y' dominates and one

The second line in the above equation contains
the breakup coupling terms and the inhomogeneous
third term couples g, to g, . In the asymptotic
region of y, the two last terms in Eq. (3.8) de-
crease as y

' and y
' ', respectively, and hence,

for large distances y where these terms can be
ignored, g~, L is Ky times a combination of regular
and irregular spherical Bessel functions of half
integer index 2X+ & and argument Ey. Asymptoti-
cally only the outgoing irregular spherical Bessel
function is permitted and one obtains

I

obtains

& J&(R) —M(&& 2kvsI~
0(

where M'~' is a normalization constant. The
overall wave function for the two outgoing particles
is obtained when g,d, given by Eq. (3.12), is
inserted into Eq. (3.4) and the summation is
carried over J and o . Owing to an identity for
Hankel functions, one can transform this wave
function from the coordinates y, x back into the
coordinates r and R, or r„and r (Ref. 7), and
thereby get information about the distribution
in energy and angle of the two outgoing particles.
Since here we are interested in the effect of break-
up on the elastic channel wave function, this trans-
formation will not be pursued.

The set of Eqs. (3.5), (3.6), (3.8), and (3.9)
represents the coupled equations to be solved.
In Ref. 14 the coupling potentials (Q V„Q .) are
discussed and evaluated, and in the next two sec-
tions the inhomogeneous terms Z'd'(y) and X,'~'

(k, R) are described.

IV. THE INHOMOGENEOUS COUPLING TERMS Z~~~(y)

By utilizing the expansion (3.3) for (t)„and by expanding V„—(V„) in a series of multipoles described
below, one obtains for Z'~', Eq. (3.9), the expression
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Z'[r'. » = )Iz Zu'i'(k»)dk (4.1)

where
3t (~~

Z„[z~(k, y) =2y '/' g CI~z. ( ~, R dR F„~(X)v-, (r R)u((k, , r)f, ,~~', (k, R) .
ll'6'

(4.2)

In the integral the independent variables (y, x} are changed to (y, R) and the variables x and r are consid-
ered to be functions of R and y according to

sin x —I 2R /y r —(2y 4R )2/ (4.3)

and dr, =sin'xcosRxdx is changed to 2rR'dR/yd. The constants C are angular momentum coupling coef-
ficients

qj(, ~)qg y', R 2l+1 '
Pg cos5&, , ~, ) ~ y', R dQ„dA„, (4.4)

where 5 is the angle between f and R, and where P-, are Legendre polynomials. Expressions for C in
terms of 6-j and 3-j symbols are given in Eq. (3.10) of II. Further, u&(r, R) is the multipole expansion
coefficient of V„—(V„)

V„—(V„)=pe](r, R)(2l+I)'/'P;(cosb) . (4. 6)

The functions F, (x) are parts of the hyperspherical harmonics defined in Eq. (2. 10). The function t)-,

[r(y},R] can be expressed in terms of the nucleon-nucleus optical potentials as

r(r, R) (214 1) i'(Rrl=f [V„„(Z)4 (-)1V „(Z)]P[(Z' —R' —r /4)/Rr]Z dZ —it;(V (R)),
Zmi I

(4. 6)

with Z, ~
——~R —r/2 ~, Z „=R + r/2, and r given

by Eq. (4.3) .
For large values of y, Z„~~ decreases at least

as fast as y-'('

Z(1) (k y}~ -5/2

Z„",,'(b, y) ~y-"' exp[- (If'e, /m)'"y] .

(4.7a)

u(b, r) =[(2y)'+ (2]S)' —2(y+P) '] '

x [exp(- yr) —exp(- f}r)], (4. Sa)

This can be seen from Eq. (4. 2) by noting that
for large values of y, V-, (r, R) is large only when

r/2 is approximately equal to R, to within a dis-
tance of the order of the diameter of the target
nucleus, in which case r/2-R -y/2. For these
distances it follows from Eq. (4. 6} that Vr~ (Rr) '
~ y ', and the result (4.7a) follows from (4.2).
For the bound component, Z„,z(b, y), u, (r)
(z exp(-ay) and (4.7b} follows.

In order to obtain some insight into the X, l, I.,
and y dependence of Z z'(y), the expression (4.2)
was evaluated for a numerical example. The
bound channel case was taken, k-b, l' was set
equal to zero, and the Hulthkn form for u, (r) was
used

y =0.231 fm-', P = 1.199 fm ' . (4. Sb)

&Oft 52 016 MeVy R:4 529 fm a =0.75 fm,

S~ ———9.886 MeV, R„' = 4.877 fm, a„'=0.58 fm,

V+ ——-54.248 MeV, R =4.529 fm, a&
——0.75 fm,

Wo&
——-9.514 MeV, R~= 5.110 fm, a~=0. 534 fm.

(4.9}

In addition, a small volume Woods-Saxon potential
with S'0= —0.816 MeV, R=4.877, and a=0.58
was present in the neutron channel ~ The above
potential corresponds to the Greenlees paramet-
ers" for the 10 MeV nucleons incident on Ni".
The Watanabe potantial (V} was calculated from
Eq. (2.14) using Eq. (4.6) for u, and the deuteron
radial wave functions f «~&gb, r) were calculated
solving a homogeneous Schrodinger equation dis-
torted by the above-mentioned Watanabe potential
to which a Coulomb potential was added. This
Coulomb potential is due to a uniform charge
distribution of radius R =4 fm. The incident
deuteron energy was 21.6 MeV.

The resulting function Z,Z (b, y) is complex, the

The nucleon-nucleus optical potentials were taken
of the Woods-Saxon form V= V,/(I+e)+i4We'/
(1 + e')', where e = exp(r —R)/a and where
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real and imaginary parts are oscillating functions
of y. The absolute value of the Z'~'(b, y), but not

including the factor C,'~~. ,~,

(4. 10)

is plotted as a function of y/~ in Figs. 1 and 2

for J=3 and 10, respectively. The oscillation
results from the fact that the real and imaginary
parts of Z'~' are reversing sign in between lobes.
For /=0 the curves for the smallest value of X

(1.5 for J=3 and X = 5 or 6 for J= 10) have the
largest value of Z/C. When A, increases by 4

or 5 units, the corresponding value of Z/C is
reduced by a factor of 2 or more. The maximum

value of /Z/C~ is about 3.5 MeV for J=3 and

less than 1 MeV for J=10. Such a magnitude

is comparable to, if not less than, the value of
the coupling potential between the bound and

continuum components in the k by k method. ~'
The results for l =2 are shown in Figs. 1(b)

and 2(b). Of the several combinations of X and

L only the ones which give the largest values of

/ Z/C/ are displayed. Comparison between Figs.
1(a) and 2(b) shows that the l = 2 values of /Z/C/
is comparable to the l =0 value, but is displaced
to larger distances in y. For J= 10 the l = 2
value of /Z/C/ is even larger than for l =0. The
l =4 results for /Z/C/ are smaller than the l =2
results, but the decrease is less pronounced the
larger the J value.

Again there is some resemblance to the k by k
results, ~4 where it was found that the l =2 break-
up continua are excited as strongly (if not more
so) than the l =0 breakup continua and the l=4
breakup played a negligible role.

In summary, the bound to continuum coupling
terms are of the order of a few MeV, and in the
numerical case illustrated here the values of
l =0 and 2 play the largest role. Both features
are similar to what was found in the k by k method.
Further, the X dependence of Z,~'(y) appears to
be determined by n= X —(l + 6)/2, the number of
nodes in the hyperspherical function E«(r),
/Z/ decreasing by a factor of 2 or 3 as n increases
by about 6 units. A similar n dependence is
found' for the breakup to breakup transition
potentials (Q V„p,), but the magnitudes of these
potentials are much larger, of the order of 10
or 20 MeV.

v. ms coUPI.ING TERM xiL

This term, which is defined in Eq. (3.6),
couples the breakup function g, to the function g, .
For values of R large compared to the range of

V„, it will now be shown that X,~~' can be approxi-
mated by

IO

5—o)J =0

I

I

/

I

O. l
—

/
g i t I

1 I

i
g

II

II

b) 2=2
3.5, L=5

= 2.5, L=I

O.I—

//

JJ

r,'.; ii'
I

tIL
I II j

/' I „';!/

( Iti(
(

I

~= 1.5, L=I

O.I—

i( l

) =55, L=5
I )j

X= 45 L=I

c) 2=4 I

I

X= 2.5
L=I

/I+I y

I

y j/2 (fm)
FIG. 1. The absolute value of the inhomogeneous term

2& & ~ (y) which couples the deuteron component of g to the
breakup components of P~ for a total angular momentum

J=3. The term is defined in Eqs. (3.9)and (4.2). The bound

state component f&~z,(b, 8) is used in Eq. (4.2). In this case
l'=Q, L, =J, andl=l, hencethesum inEq. (4.2) contains
only one term. The corresponding value of C is divided
out, and only /Z/C[ is Plotted. Panels a, 5, and c illus-
trate the l =0, 2, and 4 results; the values of X andL are
indicated next to the curves. The real and imaginary parts
of Z change sign from one lobe of /Z/C/ to thenext one.
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0 5

0.2—

of the order (r/2R), and y equals 2'~'R to within
terms of order (r/2R)2, according to Eq. (2.5b).
As a result of the smallness of x, the function
F (r), given in Eq. (2.8} of II, can be approxi-
mated by (r/2R)'N, and the result in Eq. (5.1)
follows.

For R very small compared to the range of
V„one obtains

X ~'(k R) - Y N M (2) ~-('»R~kk
l L y ~ ji,lL Xl L

)t

0
0)

I—
O

N

O.I—

OI—

b) j. =

X=5,L=

c)l=

&=5,

y/J2 (fm)
l5

x y+ gl* kg P y P/2+2R
0

x,F,[a, b;c;r'/(r'+4R'}] (fr .
(s.4)

In the above, u is the number of nodes in F»~(x),
M is the normalization of g, «(y} near the origin,
Eq. (3.12) and a, b, and c are defined in Eq.
(2. 8) of II. The integral in Eq. (4. 13) is of the
order of D,'"'"'(k),F,(a, b, c;1) and one sees that,
for small values of R, X goes to zero like RL":

X ( Pk)-2'~ '' 'R~"~F (r=w/2)M D" "'(k}lL 1/L 1 lL l

(s. s)

The integral over k of f(k, R) u(k, r) is required
in the calculation of g„according to Eq. (3.3}.
This procedure can be simplified if the f 's and
u's are averaged over momentum bins by means
of a discretization procedure described in Hefs.
2 and 22. Each momentum bin is denoted by
s (s =1,2, . . . ) and it has a width d k. The cor-
responding functions f(k, R) and u(k, r) averaged
over their respective bins and multiplied by
(bk)'~' are denoted by f(s,R) and u(s, r}. As a
result F~~(s, R) is obtained from Eq. (3.5) if

X,~~'(k, R) is replaced by X~(z(s, R}:

FIG. 2. Same as Fig. 1 for J=10.

X,',"(k,R) =2'~'(2R}-'~"'D,")(k)g(,"(R), (5.1)

where

X'„(s,R) = (Ak)'~2[X,',"(k,R)]„,...,.„... , (S.6)

and E, is replaced by a bin averaged value E, .
Likewise, one can obtain X(s, Ft) from Eq. (3.6}
if u(r, k) is replaced by u(r, s). Also, if in Eq.
(5.1), D,

"' is replaced by"

and

q,',"(R)=g N„,g„",'(y = MR) (s.2)
D',"'(s)= (Ak)"'[D,'"'(k)]„„„...„... , (s.v)

D(k) fr"",k, (k, r)r„,(r)k=r .
0

(s.3}

The N 's are normalization constants which occur
in the definition of the hyperspherical harmonics,
Eq. (2.8) of II, the functions u, describe the
neutron-proton relative motion, and are de-
fined in Eq. (3.2), and the corresponding inte-
grals D,'"'(k} are also defined and tabulated in

Ref. 22. The derivation of Eq. (5.1) is based
on the fact that when R»~, the angle x is small,

one obtains

X,'f'(s, R)-2'"(2R)"~' D"'( )sY", ~( R). (5.8)

A rough estimate of X,'~~'(sP) based on the above
equation will now be described for s =b, 1, and
2. Bins 1 and 2 correspond to breakup energies
~~, which range from 0-10 MeV and 10-40 MeV,
respectively. The value of D,"(s) for s=b, 1,
and 2 is 36, 20, and 25 MeV fm, respectively,
according to the table of D," (k) in the appendix



630 G. H. RAWITSCHER AND W. ZICKENDRAHT

of Ref. 22, while D,"(s) for s = 1 and 2 is approxi-
mately equal to 5 to 25 MeV fm"~', respectively.
In view of the extra factor of R ' in Eq. (5.8) for
E=2 as compared to l=0, the X,'~' values for
l =2 are expected to be smaller than those for
l ==0 for bins 1 and 2. However, the values of
D22' rapidly increase with k (and hence with s)
and hence the I = 2 components of g, may become
important for the higher bins.

In what follows we wiH restrict ourselves to
the case l =0. The values of N and g in Eq.
(5.2) need to be known before the magnitude of
X, can be estimated. The value of g, (y) is
obtained from the solution of Eq. (3.8). Since
Z, (y) has a magnitude similar to what is found

in the k by k method, and since in that method
the breakup functions were found ~ to have an
amplitude not larger than 0.3, we will assume
for g, (y) a magnitude of 0.3. The values of N
are tabulated in Appendix A of II. For l =0,
and assuming the number of nodes n is not larger
than 5, one finds that N ranges from 2 to 31 as
L increases from 0 to 19. Choosing an average
value of 10 for N, and assuming that in the sum
over X in the second line of Eq. (5.7) only one
term contributes, one obtains for Xo~~'(b, R) at
R = 5 fm the rough estimate

Xo~z'(5, R)-2'&' x(10 fm)-'~'x(36 MeV fm'~')xi0xD. 3

-4 MeV . (5 g)

This value is quite reasonabl. e, in that it is
comparable to, but somewhat larger than, the
coupling term found in the k by k method between
the continuum and the bound channel wave func-
tions, and hence the effect of breakup on the
elastic deuteron scattering shouM be of the same
order of magnitude in the two methods of calcul. a-
tion. According to the discussion above, the
value of D,' (s) for bins 1 and 2 is comparable
in magnitude to that for the bound value, D,"(b)
As a result, X,~~'(s, )Rfor s= 1 and 2 is compar-
able in magnitude to the value of Xfz(b, R), and
hence the amount of l =0 breakup amplitude
contained in g, is comparable to what it is in the
A by k method, and non-negligible amounts of
l =0 breakup should exist both in parts |t), and g,
of the total. wave function.

However, it should be kept in mind that the
above estimates depend strongly on the degree of
cancellation which occurs in the sum over A. in

Eqs. (5.2). A more accurate estimate of the
effect of the breakup wave |t), on g, requires de-
tailed numerical calculations.

VI. SUMMARY AND CONCLUSIONS

The method described in this investigation con-
sists in using simultaneously two sets of coordin-

ates: (r, R) and (y, x). The former is suitable for
the deuteron space g„ the latter is a hyperspheri-
cal coordinate system suitable for the breakup
space P,. The expansion basis functions in either
space are not orthogonal to each other, hence in-
homogeneous terms appear in the coupled differ-
ential equations for the functions in each space.
The magnitude of these inhomogeneous terms ap-
pears to be small enough so that the propagation
of the wave function from one space to the other
can be treated iteratively. By contrast, the coup-
ling among the various g„'f~(y) components of g~
is too strong' to be amenable to perturbative
treatment. This coupling involves not only differ-
ent X values, but also different sets of l and L
values belonging to the same J value. As a result,
one of the conclusions of the present study is that
the coupling between different l values of breakup
components is expected to be strong also in dif-
ferent representations of breakup space, such as
the k by k representation, or that used by I averne
et al." Even if many l values are excited in
breakup space during a deuteron-nucleus colli-
sion, it could nevertheless turn out that the effect
of breakup on the bound deuteron part of the over-
all wave function does not depend sensitively on
such complexity and that the inclusion of a few l
values might suffice. This point, as well as a
numerical study of the coupled equations des-
cribed in the present approach using hyperspheri-
cal harmonics, awaits further investigation.
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APPENDIX A: CONNECTION WITH THE FADDEEV
FORMULATION

The three coupled Faddeev equations are
usually written as



FORMULATION IN TERMS OF HYPERSPHERICAL HARMONICS. . . 63 I

[H, —E+ V (x ()]g" ) +V((x&) Q &{)(~)= 0, i = 1,2, 3 .
gf j

(AI)

&{)i- &{)(,X(+0, ,

4,-~.+4. .
(B1)

(B2)

Here H, = T„+T„represents only the kinetic op-
erators, xj is the radius vector between particles
j and k, and g = g"'+f' '+g"' is the total wave
function. Each ){)"' contains the cluster compon-
ent corresponding to the bound state solution for
each respective square bracket in Eq. (Al) as well
as three body breakup components. If one identi-
fies the particles 1, 2, and 3 with the nucleus, the
proton, and the neutron, respectively, then &'y

=v„~(r), V, = V„„(r„),and V, = V~„(r~), and the
three equations (Al) become

If r is kept finite and A goes to infinity, then
asymptotically g, and g, vanish" as A ' ', and

X, and X, vanish as R '. If one inserts Eqs. (Bl)
and (82) into Eqs. (2.12) and (2.14), still keeping
r finite and ignoring terms of order 8 '~', and
making use of Eq. (3.1), (T, +v„P&t),= e,p„one ob-
tains

[Tz+ (V„) —ED]&t)p, +v„~&t'i, X2=0(R '~2), (B3)

[T„+V„—v„—E ]&t) X + [V —(V„)]&t)(X,=O(R '& ),
{B4)

(H, E+v„,))}—)")+v~[4") + &})"']= 0,

(a, E+ V-„„}q(')+V„„[q("+q&*)]=0,

(If R+ V )q(&) + V [&{)(&) +&}())3] 0

If one sums Eqs. (A3) and (A4) and defines

&{)
(&1+q(s)

y(1)

(A2)

(A3)

(A3)

(AS)

(A6)

[T„+(V„) (p„,) —@]X,(R}= O(R-'~'}.

Here (()„~) is a negative constant defined as

&I & f&,„„,,&=,u'r

Likewise, one obtains from Eq. (B3)

(BS}

where E~=E —e, is the physical deuteron kinetic
energy. Multiplying Eq. (B4) by &t), (r) and integrat-
ing over d'r, the second square bracket cancels
exactly and one obtains

and if one makes use of the definition, Eq. (2.1),
of V„, one obtains the exact result

{lfo—E+v„~))I),+v„~$2 = 0,

(R,-E+ V„)g, V„+g, =0.

(A7)

(As)

APPENDIX B: DOES Q2 HAVE DEUTERON
COMPONENTS?

Let us assume that not only f, but also g, has a
bound state component. If they are denoted as
$,(r)X,(R) and ()e),(r)X,(R) respectively, and if &t,

and g, denote the purely breakup components of

g, and g„ then one has

Finally, if one adds to Eq. (AV) the term (Vz)&c,
and subtracts it again from Eq. (AS), one obtains
the "distorted" Faddeev equations (2.12) and (2.13)
written in the text. The main difference from the
usual Faddeev treatment consists in ignoring the
stripping (two cluster) components present in both
g"' and g"'. These components could arise if in
Eqs. (A3) and (A4) the nucleon optical potentials
V'„„and V~„were real and admitted bound states.
Because they are not, g ' and g' ' has onlybreak-
up (three body) outgoing components, and hence
their sum, Eq. (AS), does also.

(B6)[T„(V„) E]X, Q-„QX, =O(R ' ') .
Thus, according to Eq. (BS), if X, exists it be-
haves asymptotically like exp(-iKaR)/R, where

K~ is an unphysical wave number

K' = [(2m/}I')(E + (()„g)]'~'.

APPENDIX C: DOES It/2 HAVE DEUTERON
COMPONENTS?

The basic coupled equations are now Eqs. (2.16)
and (2.17). If &{),

' had a bound deuteron component,
given by

A, &r)*,'&kl gf g(r)&'&r, R))'r, =

According to Eq. (B6), X, must also have such an
unphysical component, in order for it to cancel
(v„F2 to order R '~2. However, if the calculation
of g, and g, is performed by successive iterations
of Eqs. (2.12) and (2.13), starting with &}[0)=&f,X,(0),

$2
' =0, where X,"' is a physical distorted deuteron

optical wave function, then X,'" does not have un-
physical components to start with. The boundary
conditions on P, do not introduce such unphysical
components into &})no) (only breakup components)
because the Green's function in Eq. (2.13) does
not have bound deuteron components. Hence
does not acquire unphysical components, and so
forth.
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then it would have to obey the equation

[r„+(V„) Z,]x,'(H) = 0.
This can be seen by multiplying Eq. (2.17) by

g(x}, integrating over d'r, and remembering
Eq. (3.1). One obtains

(C2)

(T„—E ) f P lk dr'+ f P V g'd'r —IgVg,'d r= 0.
(C3)

Making use of Eq. (2.18}for U, a cancellation oc-
curs between the two last terms in Eq. (C3), and

Eq. (C2) follows rigorously. Had U been replaced
by XU in Eqs. (2.16) and (2.17), then g given by
Eq. (2.15) would still obey the overall Schrodin-
ger Eq. (2.3), but the cancellation mentioned
above would no longer take place. Since Eq. (C2)
is a homogeneous equation, the solution x,' must
have both ingoing and outgoing components. How-

ever, in view of the boundary conditions imposed
on g,', x,' should have only outgoing components.
Hence x2 must vanish. Even if g2, in the process

of solving Eq. (2.17), inadvertently did acquire a
small bound component, that component would
not affect x' via the inhomogeneous term in Eq.
(2.16), because fP,U+d'r= 0. —

A possible difficulty with Eq. (2.17) is that the
term in square brackets contains v„~. Hence, the
Green's function which resolves the square brac-
ket contains (bound) deuteron components. If the
function g,' is expanded in hyperspherical harmon-
ics, this expansion may converge poorly as it tries
to represent the presence of a deuteron compon-
ent. Due to inaccuracies in the numerical calcu-
lation, the cancellation mentioned after Eq. (C3}
may not take place and the amount of deuteron
components may increase with each iteration.
This danger does not appear to be present in the
set of Eqs. (2.12) and (2.13), which is also simp-
ler in that no integrals occur, but the disadvan-
tage is the slow decrease with B of the inhomo-
geneous term in Eq. (2.12), explained near Eq.
(3.7), as well as the fact that g, contains breakup
components.
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