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Boson-exchange potentials anil the nucleon potential energy in nuclear matter
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We report a calculation of the nucleon potential energy in nuclear matter based upon a one-boson-exchange

potential which is obtained from a fit to the two-nucleon scattering data. We evaluate the potential energy in the
Hartree-Fock approximation and also perform a calculation which includes the effects of nucleon-nucleon

correlations. We find large correlation corrections and conclude that calculations making use of the Hartree (or
Hartree-Fock) approximation require the use of effective coupling constants which differ from those determined in a
fit to scattering data. These effective constants would include effects of correlations in an implicit fashion.

NUCLEAR STRUCTURE Nucleon potential energy in nuclear matter; one-boson-
exchange potential; validity of the Hartree-Fock approximation.

In recent years there has been strong interest in
developing a relativistic theory of nuclear matter
and of finite nuclei. ' These theories differ from
more conventional theories in thai they directly
relate the potentials felt by a nucleon to the under-
lying process of meson exchange. These develop-
ments are interesting in that one may, in princi-
ple, be able to unify the meson-exchange theory of
nuclear forces with theories of nuclear structure.
To our knowledge, all attempts to construct a rel-
ativistic theory have used the Hartree or Hartree-
Fock approximation. ' Our goal in this work is to
compare the values obtained for the nucleon poten-
tial energy in nuclear rnatter in the Hartree-Fock
approximation and in an approximation which in-
cludes correlation effects. As we will show, cor-
relation effects are extremely important and re-
quire the use of effective coupling constants if use
is made of the Hartree (or Hartree-Fock) approx-
imation in a relativistic theory of nuclear struc-
ture. Of course, the density dependence of such
coupling constants would not be known.

In the relativistic theory there is a problem of
self consistency -which does not exist in the non-
relativistic theory of nuclear matter. For exam-
ple, the spinor representing the bound nucleon can
be expanded in terms of the spinors which are
positive and negative energy solutions of the Dirac
equation without interactions. The amplitudes of
these negative and positive energy spinors must be
determined in a self-consistent manner. We have
studied this question in other works"' and have
found large corrections to the saturation curve
for nuclear matter when we include the negative
energy spinors. ' In this work, however, we in-
vestigate the leading term in the nucleon potential
energy which follows from the use of only positive

energy spinors for the nucleon wave function. This
approximation is adequate at low density; however,
there are significant corrections at kf -—1.36 fm '.
A more complete analysis including the role of
negative energy states in modifying the nucleon
potential energy will be presented at a future time.

All our calculations are carried out in a mornen-
tum-space representation and may be summarized
by reference to Fig. 1. In Fig. 1(a) we depict the
terms calculated in the Hartree-Fock approxima-
tion. The wavy line represents the propagation of
the exchanged meson: m, p, ~, Q, g, ~, 0.' We use
pseudovector coupling for the pion and the q meson.
(The calculation in question requires an integral
over the vector q, where the maximum value of
~q~ is kr =268 MeV(c. ) The second calculation we
have made is indicated schematically in Fig. 1(b).
There the large circle denotes a nucleon-nucleon
reaction matrix calculated using the one-boson-
exchange (OBE) potential of Ref. 4. The reaction
matrix is calculated taking into account the Pauli
effects in the propagators of the particles in the
intermediate states. The energies of the occupied
states need to be specified in the construction of
the reaction matrix and these energies are cal-
culated self-consistently using standard techniques.
The calculational procedure for constructing the
reaction matrix is essentially that described in
Ref. 3. [The reaction matrix is appropriately
symmetrized in our calculations; however, the
exchange term is not shown in Fig. 1(b)].

Before we describe the results of our calculation
we present some formal considerations. Let M
denote the solution of a two-body relativistic equa-
tion

M =K+KGM,
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P P P
where

M, = U, (1+gM) . (6)

The Hartree-Fock approximation consists of set-
ting M,. =U, so that

(a)
U. . (7)

P P For the purposes of this paper we define the po-
tential energy of a nucleon as V(p) =[m/E(p)]Z(p),
where Z(p), the self-energy, is approximated by

where G represents the Feynman propagator for
the two intermediate nucleons. Using fairly stan-
dard techniques, s'~ Eq. (1) may be rewritten as two

equations

M =U+UgM,

U=K+K(G -g)U. (3)

The choice of the propagator g depends on the
problem at hand. In general, g has the same
right-hand cut as G and is chosen so as to reduce
the four-dimensional equation [Eq. (1)] to an
equivalent three-dimensional. equation. In our
calculations the propagator g is chosen so as to
allow only positive energy intermediate states.
This propagator also includes dispersive effects
and Pauli principle restrictions as noted above.

The quasipotential U is determined from the
study of nucleon-nucleon scattering. In the OBE
model' U describes the exchange of N different
bosons so that we may write

U=QU, .
i =1

(4)

Note that we may also write
pt

M= Mi, (5)

(b)

FIG. 1. (a) Feynman diagrams representing the nu-
cleon self-energy in the Hartree-Fock approximation.
The wavy line denotes the propagator for the exchanged
mesons. The open circles are vertex functions which

represent the amplitude for finding a particle of mo-
mentum q in the Fermi sea. To obtain the total self-
energy one sums on the various types of exchanged
mesons. (b} Feynman diagram for the nucleon self-
energy in a relativistic Brueckner-Hartree-Fock ap-
proximation. The reaction matrix M is calculated with

positive energy intermediate states and includes binding

effects, Pauli principle restrictions, and dispersive
corrections.

z(p)
4q re

(2v)' E(q )

&&(u"'(p)u"''(q)lM(1 —I'») IM"'(p & "'(q)&.

(8)
In Eq. (8) a trace over the spin variable s' and an

integral over the Fermi sea is indicated. (Refer-
ence to the isospin trace is suppressed. ) Further,
P» is the particle-exchange operator and the u"'
are Dirac spinors. 'The Hartree-Fock approxima-
tion for Z(p) consists in replacing M by U in Eq.
(8).

In evaluating our expression for Z(p) we can use
either the Hartree-Fock approximation [Eq. (7)] or
a relativistic Brueckner-Hartree- Fock approxi-
mation [Eq. (5&]. The calcuiation implied by Eq.
(7) is that depicted in Fig. 1(a). The results for
the contribution to the nucleon potential from each
of the exchanged mesons are given in Figs. 2 and

3. The solid lines in these figures represent the
contributions calculated in the Hartree- Fock ap-
proximation. We note that for the nucleon-nucleon
potential of Ref. 2, the total potential felt by a nu-

cleon is repulsive in the Hartree-Fock approxima-
tion [see Fig. 4].

We now turn to a consideration of the role of
correlations. We realize that once we include
correlation effects it is not possible to separate
the contributions of the individual mesons except
in the manner implied by the use of Eq. (6). We

recall that for the Hartree-Fock approximation,
M", = U, . We also note that the inclusion of cor-
relations leads to M", -M, =U,.O, where is the

wave matrix which introduces the correlation
structure, i.e., A=1+gM.

The dashed lines in Figs. 2 and 3 represent the
contribution to the self-energy of the various M,
of Eq. (6). We see that for the a&, Q, o, p, and 6

mesons the inclusion of correlations significantly
reduces the contributions of these mesons to the
potential. As expected, this reduction is most
important for the more massive mesons of this

group, the cr meson contribution receiving the
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FIG. 4. The total self-energy calculated in the Hartree-
Fock approximation {solid line) and in an approximation

which includes correlation effects {dashed line).

FIG. 2. Contributions of the ~, p, and cr mesons to
the nucleon self-energy. The solid curve denotes the
values obtained in the Hartree-Fock approximation.
The dashed curves represent the contributions to the
self-energy fEq. (8}j of the reaction matrices defined
in Eq. (6).
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FIG. 3. Contributions of the ~, (5, cr, and g mesons
to the nucleon self-energy. (See caption to Fig. 2 and
note the change of scale. )

smallest modification. Of course the very large
correlation effects shown in Figs. 2 and 3 imply

that the Hartree-Fock (or Hartree) approximation
is not useful unless one introduces effective cou-

pling constants.
It is of interest to note (see Fig. 3) that the con-

tribution of the pion to the self-energy changes
sign and is enhanced in magnitude when correla-
tions are included. We believe that we can ascribe
these effects to the tensor correlations present in

the wave matrix . The importance of such tensor
correlations was discussed many years ago. ' It
was shown that the "long range" part of the tensor
interaction when treated in second order gives
rise to an effective attractive central force. Our
study of correlation effects in the pion contribu-
tion to the potential energy also shows that the in-
clusion of correlations leads to a large attractive
contribution to the nucleon potential. [Indeed,
about V(Pk of Z(0) can be ascribed to pion ex-
change. ] Further study of this matter is required
for a complete understanding of the role of tensor
correlations in modifying the calculation of pion-
exchange processes.

We have studied the nucleon potential energy in

two approximations and have determined that cor-
relation effects are very large. We note that the
contribution of the pion to the nucleon potential is
zero in the Hartree approximation, repulsive in

the Hartree-Fock approximation (see Fig. 3), and

is strongly attractive in the relativistic Brueck-
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ner-Hartree-Fock approximation used in this
work. We may conclude that application of the

Hartree or Hartree-Fock approximation for this

problem requires the introduction of effective
coupling constants that include correlation effects
implicitly but whose density dependence is un-

known.
In our future works we will extend our consider-

ations to include a description of the negative en-

ergy components of the nucleon wave functions'

and we will study the saturation properties of nu-

clear matter in our relativistic theory which

emphasizes correlation effects. ' We also hope to
study the role of the negative energy components
in modifying the nucleon potential energy.
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