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Assuming time-reversal invariance of the many-body Hamiltonian, it is proven that the kernels in a general
coupled-channels formulation are symmetric, to within a specified spin-dependent phase, under the interchange of
channel labels and coordinates. The theorem is valid for both Hermitian and suitably chosen non-Hermitian
Hamiltonians which contain complex effective interactions. While of direct practical consequence for nuclear
rearrangement reactions, the reciprocity relation is also appropriate for other areas of physics which involve

coupled-channels analysis.
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In several fields of physics, increasing theo-
retical effort is being devoted to solving or ap-
proximately solving the general many-body scat-
tering problem. Because of the rather formidable
nature of this goal, it is quite important that all
symmetry properties of the physical system be
fully utilized to reduce or at least to constrain the
complexity of the problem. To this end, the cur-
rent work presents a proof, based upon time-re-
versal invariance, that the coupling kernels (in-
teractions) in a general coupled-channels scat-
tering problem are symmetric to within a specific
spin-dependent phase. The arguments presen-
ted below are closely related to those used in
establishing the reciprocity of the S matrix first
discussed by Wigner and Eisenbud' and by
Coester®? as well as to the work of Rose and
Biedenharn* concerning the reality of matrix ele-
ments for gamma correlations with mixed multi-
poles and also a recent paper on various coupled-
channels equations by Greben and Levin® The
proof is a generalization of the result obtained by
Ohmura et al.,® who demonstrated, using analyti-
cal methods, that the coupling kernel is sym-
metric for a two-channel, spin-independent three-
body model of (d,p) stripping. Our result, which
is valid for the many-body spin-dependent pro-
blem having an arbitrary number of channels,
shows that the symmetry follows directly from
time-reversal invariance and that the model
Hamiltonian need not necessarily be Hermitian.
Pragmatically, the reciprocity of the kernel is
of important computational value. This is espe-
cially true for coupled-channels descriptions
of rearrangement reactions where additional com-
plications, such as the nonorthogonality®® of the
channel basis states, are present.

We begin by briefly reviewing the properties of
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the time-reversal operator T. Following Wigner®
and Coester,® T is defined such that it transforms
an arbitrary state vector ¥ at time ¢ into the time-
reversed state vector ¥’ at ¢’ =—¢,

Y'=Ty, (1)
=Uy*, 2)
Here U is a unitary operator which acts on spin
and momentum variables. The time reversal
operator is antilinear and also antiunitary

(T*=T"', T'T=TT'=1). For all vectors f and g
we define the adjoint operator T by

f, T'9=(Tf, 2)*, (3a)
=(g, Tf). (3b)

Consider a linear, but not necessarily Hermitian,
operator €. The time-reversed operator @',
corresponding to €, is also linear and is defined
by the requirement

@, Q¥)=0",Q"y"). ()
Use of Egs. (1), (3), and (4) gives immediately

Q" =(1QT"", 6)

=TO'T". (6)

The operator @ is said to be time-reversal in-
variant if @’ =@. This requires

Q=TQ'T', (1)
=TQ'T™, (8)

More generally it can be shown that any complex
function F of a time-reversal invariant operator
is also time-reversal invariant and satisfies

F@Q=TFQ)'T™. ©

With these preliminaries we now address a
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many-body scattering problem and wish to de-
scribe the system within the framework of a
coupled-channels formulation. Introduce a model
Hamiltonian H which may contain complex, non-
Hermitian effective interactions. The set of
coupled, integrodifferential equations is obtained
by diagonalizing H in a truncated model space
which is a subset of the full Hilbert space for the
many-body system. Let{¢,} represent the set of
basis vectors spanning this subspace. The ¢, are
internal eigenfunctions of partition Hamiltonians
H,, which correspond to specific cluster arrange-
ments, more loosely, “channels” labeled by 7,

of the many-body system. In general, the H, are
different and therefore the ¢, are not necessarily
orthogonal. Consult Ref. 8 for further discussion
and details. At issue in this work are the off-
diagonal kernels appearing in the coupled equa-
tions connecting channels @ and B,%®

Kaﬁ(;a’;ﬂ)z (¢w[H-E]¢B)- (10)

Formally, this kernel is a matrix element of
vectors in the model Hilbert space and is labeled
by the channel labels a, B and channel coordi-
nates T,, T, We wish to relate K 4(T,, T to

Kg, (g, T,). Letting @=H - E, we have from above

Ko 5T, Tg) = (0o, T'TQT'To ), (11)
=(To,,TRT'T¢ »)*, (12)
=L ,Q o n*, (13)
=@ "5, 0a), (14)
=(p45,Q" ¢h), (15)
= (¢4, [H - Elpa), (16)
=K (Ts,To), a7

where the notation -7 indicates time-reversed
basis states. Notice the last step follows if, and
only if, H is time-reversal invariant (i.e.,
H=TH'T'). The complex interactions appearing
in typical coupled channel analysis satisfy this
condition. To proceed further, the phase of the
basis states must be specified. In the simplest
case in which spin is neglected and the basis
states can be taken real, we have ¢,=¢,, giving

KaBGa’;B)=(¢B,[H—E]¢a)’ (18)
=Kg, <;B, ;a)' (19)

More generally, including angular momenta will
introduce phase factors. For example, in the
channel spin representation having total spin S,,
projection M,, we have ¢ ,~ ¢ Sy My and the phase is
usually chosen such that

bsu,= (= D375, uy, (20)

which gives

Ky ua,sgug (rq, T
= (= 1)SoMoSTUK oy T, Fa). (21)

Further, in a total angular momentum represen-
tation J, M involving a partial-wave decomposit-
ion the phase exactly cancels from angular mo-
mentum conservation yielding

Ki‘ﬂl('ra”ra)=Kg:(75, Ta)- (22)

This clearly establishes the symmetry relation
connecting the two channels.

As a final comment we stress the importance of
distinguishing between Hermitian and non-Hermi-
tian operators when discussing antilinear trans-
formations such as time reversal. H, asis
usually the case, a physical system possesses
time-reversal symmetry, all computed observ-
ables (i.e., probabilities and expectation values)
must be invariant under the time-reversal trans-
formation 7. Equation (4) therefore completely
specifies the principle of time-reversal invari-
ance and along with Eq. (3) defines the correct
time-reversed operator given by Eq. (6).

Often one deals with Hermitian operators (@
=Q") in which case Eq. (6) trivially reduces to the
more familiar form

Q' =TQT?, (23)

which applies to linear, unitary transformations.
However, Eq. (23) certainly is not appropriate for
the complex, non-Hermitian interaction used in
model calculations of scattering and reaction
problems. These model interactions, we main-
tain, should be chosen so as to satisfy the more
general Eq. (7). The exact Hamiltonian X is
Hermitian and usually is required to be invariant
under time reversal, so that 3¢’ =3¢. An effective
Hamiltonian is defined to act within a truncated
Hilbert space so as to give observables computed
in that space that are identical to those generated
by the exact Hamiltonian in the full space. This
condition leads to complicated, non-Hermitian
operators; nonetheless, Eq. (6) still defines their
time reverses. In practice we introduce model
Hamiltonians H which are intended as approxima-
tions to the exact, effective Hamiltonians. How-
ever, it is natural to demand that the model inter-
actions continue to embody the physical symmet-
ries contained in the underlying exact Hamiltonian.
In particular, we demand that H' =H where H’ is
the time-reversed operator defined by Eq. (6), or

TH'T'=H. (24)

Such a condition, ensures, for example, the
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model scattering matrix will be symmetric. It
has also been used'® to establish the acceptable
types of spin-orbit-coupling operator for particles
of spin one.

Equation (24) is certainly satisfied by the usual
complex optical potential which describes elastic
scattering even though it contains an imaginary
part V, which is often referred to as being “odd
under time reversal.” This reference simply
means that this part has the property 7V,T'=-V,.
However, we see that this is somewhat mislead-
ing; the correct criterion of invariance under time
reversal is that V' =V, where V'’ is given by
Eq. (6), V' =TV'T'. This is satisfied by V, and
leads to an optical model Hamiltonian which is
also invariant under time reversal. This discus-
sion will be further developed elsewhere !

In summary, the symmetry of the channel coup-

ling kernels follows directly from the time-rever-
sal invariance of the coupling interactions and
parallels the reciprocity relation for the S matrix.
From a practical standpoint this relation is quite
useful and important since in detailed numerical
calculations only half of the kernels need be com-
puted and stored. For applicationsrequiring large
numbers of channels the benefits readily become
apparent.
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