
PHYSICAL REVIEW C VOLUME 23, NUMBER 1 JANUARY 1981

Relativistic effects in the three-nucleon bound-state problem
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We calculate the binding energy of tritium using two relativistic versions of the Faddeev equations with separable

potentials, and compare with the nonrelativistic results. We find that the relativistic effects increase the binding

energy by less than 0.5 MeV. We do our calculations considering only S waves for the two-body interactions, but

take into account the tensor force for different values of the deuteron D-state probability.

Relativistic effects in the three-nucleon bound-
state problem are not well known although they are
expected to be small since the binding energy of
tritium is much smaller than its total mass. How-

ever, it is important to have exact calculations in

which one can check how important these correc-
tions really are.

The first estimates of relativistic effects in the
three-nucleon problem' were performed within the
framework of the standard Faddeev equations by
simply considering corrections to the kinetic ener-
gy and two-body potentials up to order (tt/c)2 which
lead to an increase in binding energy of 0.5 MeV.
Since the corrections to the kinetic energy and to
the two-body potentials are of opposite sign, it
was found in later calculations' which neglected
the kinetic energy piece that the relativistic effects
due to the potential alone decreased the binding
energy by 0.3 MeV.

Two calculations based in relativistic formula-
tions of the three-body problem with local poten-
tials have been performed' ' which, however, lead
to quite different results. While Jackson and
Tjon4 found that the relativistic effects increase
the binding energy by 0.25 MeV, Bawin and La-
vine' on the other hand, using Vinogradov's rela-
tivistic formulation, ' obtained an increase of 0.7

MeV.
Our calculations differ from those of Refs. 1-5,

in that we perform the angular momentum decom-
position using the full relativistic transformation
that relates the momentum coordinates of the
three-body system in the configuration i to those
of the configuration j. Also we use separable po-
tentials and perform our calculations with several
values of the deuteron D-state probability.

The nonrelativistic Faddeev equations for the
bound-state problem are'
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where t, is the off-energy-shell T matrix of the

pair j, k, and G, is the Green's function for three
free particles,
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where p, is the relative momentum between parti-
cles j and k, and q,. that between particle i and the
center of mass of the pair j, k, while g, is the re-
duced mass of the pair j, k, and v, that between
particle i and the pair. ' If the two-body T matrix
t, is separable with only the S wave, that is,
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then the Faddeev equations (1) for the case of total
angular momentum J=0 are
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where 6 is the angle between q, and q, , and'

One can obtain the relativistic analog of the Fad-
deev equations' "by summing all partial sets of
diagrams in which only two particles interact while
the third particle acts as spectator, which leads to
equations identical in form to Eq. (1) but which de-
pend on four-component relative momenta. In or-
der to eliminate in a covariant way the fourth com-
ponents of the relative momenta, one replaces the
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relativistic propagafors of the three particles by
their delta function parts and evaluates a disper-
sion integral in the total energy of the system. "
This leads to the relativistic Faddeev propagator

2W(d((dj(d~ W, —((d;+(dj+(d~)'+is'

while ~
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where &d; =(k; + m, )' j', and Wo isthe external total
relativistic energy of the system. One can write
the integral equations in terms of the relativistic
relative momenta p, and q, by applying the Jaco-
bian transformation"

and the functions o, f and o f, are defined in terms
of q, , qf, and 6, as"
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where W0 is the invariant mass of the three-body
system and (do(q() that of the two-body subsystem,
which is given by

(o,(q;) = [W,' + m —2 W, (d;(q;))' j'.

If we use Eqs. (8)-(14) in Eq. (1), the Faddeev
equations for the case of total angular momentum
J=0 are given by Eq. (4), where the kernels are
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where again e is the angle between q, and q„

The momentum p; is the relative momentum be-
tween particles j and k measured in the center-of-
mass frame of the pair, and q, is the relative mo-
mentum between particle i and the pair j,k mea-
sured in the three-body center-of-mass frame.

The equivalent expression to Eq. (3) in the rela-
tivistic case is

Wj(P(qj) = (d (q )

+ (m, '+ q, '+ q, '+ 2q, q,. case)'",
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where M is the mass of the nucleon, and the argu-
ments of the two functions are related as

(o
' = 4M(M + Z ) . (2V)

We should point out that this theory is Lorentz
invariant, since we have used a covariant pre-
scription" to reduce it from eight to six continu-
ous variables. Also, as we will show next, it has
the proper nonrelativistic reduction. We first
notice from Eqs. (19)-(24) that in the nonrelativ-

The function r(((q, (q,.)} in Eq. (16) is obtained
by solving the two-body Blankenbecler-Sugar equa-
tion, "while the function 7, (E —q('/2v() in Eq. (5}
on the other hand, is obtained by solving the non-
relativistic Lippmann-Schwinger equation, so that,
if one uses the same form for the relativistic and
nonrelativistic separable potentials, one has to
fit the low-energy nucleon-nucleon data twice. A

much simpler way to proceed is to use instead
relativistic form factors which are related to the
nonrelativistic ones by

g("' (p() = (m, ' +p(')' 'g( "(p() .

In this case the Blankenbecler-Sugar equation for
separable potentials becomes identical to the
Lippmann-Schwinger equation, and the functions
7, are related to each other as
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TABLE I. Binding energies obtained by solving the relativistic and nonrelativistic equa-

tions.

Deuteron D -state
probability

PD

Nonrelativis tie
calculation
Eg {MeV}

Relativistic
calculation
Eg (MeV} ~E (MeV}

0%
4%
7%

10.77
9.07
7.99

11.06
9.37
8.14

0.29
0.30
0.15

istic limit B (3S —S )=B (S —Si)=-e (35)
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so that comparing with Eq. (27) we get

z =z--~=z- —'3 Cf

4 M 2v, '

(29)

(30)

which is just the argument of the nonrelativistic
function v,. in Eq. (3). Finally, from Eqs. (10)-
(13) and (25), one can see that
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so that using in addition Eq. (26) we see that the
kernel (16) reduces to the kernel (5).

In order to take into account the two S-wave nu-
cleon-nucleon channels, we introduce spin and
isospin Racah coefficients, so that, for the case
of total angular momentum J= ~, the kernels must
be multiplied by coefficients 8, where

B ('s -'s)=B ('s -'s)= —' (34)
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so that Eqs. (17}and (18) become identical to Eqs.
(6) and (7). Next, from Eq. (15) we can see that
since W, =3M+ E,

We solved the integral equations (4} with the
kernels (5) and (16), using Yamaguchi form fac-
tors which reproduce the low-energy nucleon-
nucleon data. ' We also considered for the 'S,
channel the effect of the tensor force by using
Phillips potentials" with 4/0 and 7/c deuteron D
state probabilities. We present our results in
Table I, where we see that the relativistic correc-
tion lies between 0.15 and 0.30 MeV, which is in

very good agreement with the value of 0.25 MeV
found by Jackson and Tjon.4

As we mentioned in the Introduction, a larger
correction to the binding energy was found by
Bawin and Lavine' using Vinogradov's f'ormulation'
of the relativistic three-body problem. In that
formulation, one uses instead of the propagator (8)
the form

G, (w, ) =—1 1 1
4W (d -(d &(dk +0 —(d; —

CO
—

COk + t&
(36)

in both the two- and three-body equations. The
corresponding relation between the relativistic and
nonrelativistic form factors given by Eq. (25) is
for this case

( )
2~(p')W(pq) '/' .
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(37}

in terms of the definitions of Eqs. (10)-(13). The
reduction to the nonrelativistic limit follows using

TABLE II. Binding energies obtained by solving the relativistic and nonrelativistic equa-
tions using Vinogradov's formulation of the relativistic three-body problem.

Deuteron D —state
probability

Pg)

Nonrelativis tie
calculation
E, (Mev}

Relativistic
calculation
E, (Mev} 4E (MeV)

0%
4%
7%

10.77
9.07
7.99

11.25
9.51
8.24

0.48
0.44
0.25
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the same steps as before.
W'e show the results of our calculations using

Vinogradov's formulation in Table II. We see that
the corrections are indeed larger than those of the
previous case, although not as large as the 0.7

found by Bawin and Lavine. '
To conclude, we have shown that the increase

in binding energy due to relativistic effects de-

pends on which relativistic formulation is used as
well as on the strength of the tensor force. Our
results indicate, however, that the correction is
less than 0.5 MeV.
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