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We describe the nucleus by a system of mesons (m. p, ...) and baryons IN,N'Q, ...). Starting from a field theoretical

Hamiltonian for the composite system we derive a Schrodinger equation in a subspace without mesons. In lowest

order approximation we obtain a generalization of the one-boson-exchange formulation of the NN interaction for a

general baryon-baryon interaction. We discuss two possible treatments of the many-body system: (i) nucleonic

degrees of freedom only, and (ii) explicit inclusion of resonance degrees of freedom. In the case of nucleons and

deltas the explicit form of the potentials is given together with a complete new fit of the Reid soft-core potential for

the nucleonic part of the interaction. The coupled equations for the scattering states and the deuteron have been

solved exactly using the complete baryon-baryon interaction in the one-boson-exchange limit. The deuteron dd
contribution is discussed in several limits of the general one-boson-exchange potential.

NUCLEAR STRUCTURE Meson and resonance degrees of freedom, calculated
N-N scattering, and deuteron properties.

l. INTRODUCTION

The importance of meson and nucleon resonances
in the nucleon-nucleon interaction has been recog-
nized for a long time (see for example, Ref. 1-3).
In the past especially the role of the &(33) reso-
nance has been investigated. As this resonance
was seen to be most important for the understand-
ing of the intermediate range of the nucleon-nu-
cleon force, one was tempted to treat the reso-
nance degrees of freedom explicitly in the descrip-
tion of nuclei. During the last few years a con-
siderable amount of work has been put into studies
of the problems associated with such a treatment
of the many body problem. 4 '

Up to the present, essentially two different
methods have been used to derive the baryon-
baryon potentials. In the older one, ' Feynman
techniques are used to determine the M-matrices
for the relevant processes. The potentials are
then given by the Fourier transform of the non-
relativistic approximation of the M matrices. The
second method for determining the transition part
of the resonance potentials has been given by
Durso et al. ' The main idea of this method is to
identify parts of a two-meson exchange graph with
an intermediate resonance with a twice iterated
one meson-exchange process. Such a procedure
leads to a transition potential with a pion propa-
gator which is different compared to the usual
Feynman propagator. This then leads to a change
in the strength (range) of the pion exchange po-

tential. Essentially the strength of the potential
is reduced this way. In the deuteron, for example,
it has been shown that those potentials predict a
very small & resonance probability" "—too small
to be measured at present. This shows that the
identification of the potential is actually an essen-
tial point; however, it is not yet solved complete-
ly.

In the present paper we generalize our concept
developed for the description of meson-exchange
currents in external interactions with nuclei. "
We describe the nucleus by a system of mesons
and baryons, i.e. , meson and nucleon resonances:
m, p, . . . and N, N~, &, . . . . Starting from a
Schrodinger equation with a field-theoretical
Hamiltonian for such a composite system of
particles we apply a perturbation treatment in
terms of the meson-baryon coupling. In lowest
order approximation this corresponds to a gener-
alization of the common concept of one-boson
exchange (OBE) for the N Ninteraction (B-onn

potentia. l,' for example), to the more general ca.se
of one -boson-exchange baryon-bar yon interaction.

The general potential for the baryon-baryon
interaction which we obtain is well defined in the
present concept. The same is true for the meson-
exchange currents concerning external interactions
with the nucleus. In Sec. II we develop our con-
cept of describing the nucleus by a meson-baryon
system. In Sec. III we give an explicit application
of our method to the determination of baryon-bar-
yon potentials in the nonrelativistic limit involving
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only nucleons and deltas. Different approximations
for the meson-propagators are discussed. Con-
cerning the nucleon-nucleon interaction we took
as a working concept the Reid-soft-core potential
including a complete new fit to take care of the
resonance degrees of freedom. The coupled equa-
tions for the scattering states and the deuteron
have been solved exactly using the complete
baryon-baryon interaction in the OBE limit. The
deuteron &4 contribution is discussed in several
limits of the general OBE potential.

II. THE NUCLEUS AS A MESON-BARYON SYSTEM

H = (E"a»a +E" n»a +&a b»b )0 PPPPpeea
Pi+

where the energies are given by

E", =&N(p) IH, IN(p)) =(p'+M')'",

E",* =&N'(p) IH, IN*(p)) =(p'+M")'n,

",=&u(q) IH. I "(q)) =(q'+"')'~.

M, and p denote the masses of the nucleons,
resonances, and me sons, respectively.

The interaction operator can be written as

(4)

H~(i) = Q [F„-„„(i)b»a~»a +F„-„a,„(i)b»as»a

„" sr'+„(c)b» sa.a B'"y

+l„g „,„(i)b„' 'aa„] +Hc. , (5)
tÃ B

where the amplitudes l ~ ~,„are defined by'e B

-~,„(i)=&~ (p )&,(q„)IH,(i)I~ (p.))
=&& (p.)u, (q. ) If' '.(i) IE.(p. )) (6)

We describe the nucleus by a system of me sons
and baryons (i.e. , nucleons and nucleon reso-
nances). For such a system the Schrodinger
equation can be written as

H4, =(E, +AM)4', . ,

where the Hamiltonian is given by

H =HO+Hi; H'= HI(i).
i=

Here 0, denotes the operator of the kinetic energy
and Hi the field theoretical baryon-baryon meson
interaction operator between the particles of the
system. (E, +AM) denotes the total energy of the
system. A is the baryon-number of the nucleus
and M the mass of a nucleon.

Defining by a, a&, n, a»b„b, (where P, q
denote the properties of the particles, i.e. , mo-
mentum, spin, . . . ) operators which destroy and
create nucleons, resonances, and mesons, re-
spectively, the operators for kinetic and inter-
action energy can be expressed as

/
N p

/

c
N r

/
N%'k

I

Nfx i(

(a) (b) (c)

FIG. 1. Diagrammatical description of the B —BB+p
amplitudes contributing to the interaction H& Eq. (5).

where p, pB, q„denote the momenta of the parti-
cles. 8 stands for nucleons (N) and resonances
(N~) (see Fig. 1).

As we are going to reduce Eq. (1) by a perturba-
tion treatment" of lowest order in H~, we direct-
ly consider physical masses and coupling con-
stants. This is in accord with the widely used
one-boson-exchange treatment for the nucleon-
nucleon interaction which will be obtained as a
special case of our more general treatment. The
reason for considering physical masses and cou-
plings at this stage is taken for practical purposes
only, as it simplifies the discussion considerably.
For the same reason we do not consider a pre-
sentation of the meson-baryon form factors, but
rather take a phenomenological approach. We have
to realize, however, that this is not necessary.
In higher orders of HI, however, one has to be
wary about possible double counting problems.

Equation (1) describes a highly complicated sys-
tem of mesons and baryons. Therefore it seems
reasonable to consider a solution of the problem
in a subspace. " Here one has several possibili-
ties. The most common one is to consider a sub-
space of the nucleons only. This leads to the con-
ventional treatment of nuclear properties by a
Schrodinger equation for the nucleonic states.
Another possibility is to consider a subspace of
baryons, i.e. , nucleons and nucleon resonances.
Still another possibility, which has been considered
in the past is to restrict on a subspace seithout
mesons. This then leads to a coupled Schrodinger
equation of baryons and antibaryons. Such an ap-
proach mould be related to the approach of Gross
who considered coupled equations for nucleons
and antinuc leons. "

In the present paper we are mainly interested
in the connections of the first two mentioned
approaches, namely, (i) subspace of nucleons
only and (ii) subspace of baryons, i.e. , nucleons
and nucleon resonances. The formalism, "how-
ever, is general enough to allow for still other
possibilities. The main aspect of the present
treatment will be to see how both mays are re-
lated. Concerning the interaction of an external
field with our system, the above treatment of the
full Schrodinger equation leads to the introduction
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1 =g+A, Ag =gA =0,
A'=A, n'=n, In, H, ] =0.

(7)

of meson-exchange currents. These are, of
course, different in both approaches. For a dis-
cussion on this point we refer to Ref. 12.

Let us formulate the solution of Eq. (1) by
dividing the total Hilbert space (baryons, anti-
baryons, and mesons) into two subspaces. " We
introduce projection operators q and A correspond-
ing to these two subspaces (later we shall discuss
different physical possibilities for n and A):

if we restrict ourselves to second order proces-
ses in H~. The denominator e is given by

e=& -H 0 s (14a)

(14b)

where E denotes the starting energy. We choose
the free energy of the asymptotically free parti-
cles, namely,

n+ n
n=l

Note that this is a necessary boundary condition.
For all cases under consideration in this paper
we have

According to the projection operators p and A we
can separate our total state 4,. of Eq. (I) as follows: EN (14c)

or

@,. =n@,. +(1 —n)q, =nc,. +Ac, (8) The components X,. and y,. of the total state are
determined by the following equations:

(n+FtF) ' '(n+Ft)H(n+F)(n+FtF) '~'X, =(E, +AM. )X, ,.

Instead of Eq. (1) we now have a matrix equation
for the states (t),.

' and (1),.', namely, (A+FF )
' '(A F)H(A -F-)(A+FF ) '~y

(15)

tUU& fx
(10)

,U2, U22 ~q,.~
The matrix elements U,.f of U can be expressed by
an operator F which connects space g with space
A

F =AFq, Ft =gEtA,

U =(1+FF) '' U =-F U

U„=FU„, U„=(1+FF') 'i',
The operator F is determined by the diagonaliza-
tion condition for the matrix of Eq. (9), i.e. , F
has to be a solution of the following equation:

A[H+[H, FJ -FHF]n=o.

Note that F is independent of energy. A solution
for F is given by

F = F,. + F( +OH13
i=~ f&f

A . A . AF, = HI(i)n+ H, —(i) H~(i)n, ——
A . A

F,, = H, (i) H, (i )n, — —

=(E, +AM) ~' . (9)
MHg AHA.

In principle, one can calculate the states Q,.', P,.
'

and thereby 4',. on the basis of this matrix equa-
tion. However, the states (t),.

' and P,.
' are still

coupled. We decouple these states by performing
a unitary transformation U which diagonalizes
the Hamiltonian matrix of Eq. (9) (more details can
be found in Ref. 13.):

= (E, +AM)(p, . (16)

For states with no asymptotically free mesons,
the component y,. can be set equal to zero. The
total state y,. can then be expressed in terms of
X, by

q, =(n+F)(n+F'F) "*x,.

Up to second order in H, we have

q; =(n+F zF'F)x(—

(17a)

(17b)

A. Nonrelativistic approximation

In the following we shall consider the nonrela-
tivistic approximation for two cases:

(I) projection n on nucleons only;
(II) projection n on nucleons and nucleon reso-

nances.

In both cases we have the following approximation
for the energy of the baryons:

(n ~H,
~
n) =E. = (P.'+M. ')'" =M. +P.'/3M. .

(18a)

This relation we shall use in the following. For
other purposes than those considered in this paper,
a solution of Eq. (16) might be appropriate. An
example for such a case would be pion scattering.

In our further treatment we aim for a solution
of 4,. on the basis of the relation Eqs. (15) and (17).
We shall calculate the component p,. by a differen-
tial equation and treat the operators F, F in an
expansion in powers of the interaction H, . As
long as we restrict ourselves to the one-boson
exchange limit, the second order solution for F
given in Eq. (13) is sufficient.
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For the meson energy we take the full energy

(qR + pm}1/2 (18b)

In terms of the operators F, Ft the equation of
state, Eri. (15), can be expressed for both cases
I and II by

)1

)i

T is the kinetic energy
2

T= T, , T,. =P'

(19) FIG. 2. Contributions to the effective nucleon-nucleon
potential in the one-boson-exchange limit for case I,
i.e., only nucleons in the subspace+„.

and H„„is the intrinsic Hamiltonian,

(21)

(M is the nucleon mass. } The effective interaction

f f in space p is given by

V„,=(q+FtF) '~ (q+F~)H(q+F}(q+F~F) 'n qH, q.-
(22)

In general this is a many-body interaction (i.e. ,
two-, three-, . . .body force).

For the cases I and II the operators F are dif-
ferent, therefore the effective interaction Erl. (22)
takes a different form in these cases.

B. One boson exchange limit (OBE)

nucleon-resonance contributions explicitly (Fig.
2). Such contributions occur in the two-meson
exchange part of the interaction. We discuss those
contributions only diagrammatically (see Fig. 3}.
The explicit form of the two-meson-exchange part
of the potential can be obtained from Eris. (12) and
(22).

Case II: nucleons and isobars (Hilbert space
3C„of nucleons and resonances}.

The interaction is given by Erl. (22). Note that
H„„0. In lowest order of meson-baryon inter-

//
I/

/
I

In the lowest order of meson-baryon interaction
this can be summarized as follows.

Case I: nucleons only (Hilbert space K„of
nucleons only, conventional treatment).

The interaction is given by Erl. (22); H„„=O.
In the lowest order in HI the operator F has the
form

(b)

(g)

F.

F( = Hq(f)q—A

(23)

—p'rrr&rr —g yes(OBE)

V", "(OBE)= g qi'„,„„(I) I' „,„(j—)q.~ A

(24)

(25)

This is the common well-known OBE potential
between nucleons. The OBE part contains no

The summation includes the mesons (p. ) and the
nucleon resonances (N~) In the one.-boson ex-
change limit the second term in Erl. (23) does not
contribute to the effective interaction V,«. The
interaction V,« is given by

h

r

(n)

FIG. 3. Two-meson-exchange contributions to the ef-
fective nucleon-nucleon interaction for case I, only nu-
cleons in the subspaceK„. Not all contributions are
shown but only the different types of processes. The
total two-meson exchange potential is given by Eqs.
(12) and (22). Note the different types of intermediate
states. We have intermediate NN* and N N contribu-
tions (c)-(f) and (j)-(m) as well as NN p and N*N*p
contributions.
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action the operator I is given as

(26)

A
F, = H. ,—(i)ri (b) (c) (d)

or

F; — Z I', ,„(i)q,~ A

fi, ,B,B'
(28)

(g)

where JB,B' sums on nucleons and isobars.
Again the effective interaction is a sum of one-

boson, two-boson, . . . exchange parts:

y —yBB' — VBB'(PHE) +. . .
eff eff iS (29)

V, is given by (P'ig. 4):

yBB' p'Ba Bij B0 B&

B~ B8

yNN NN + yNN 'NN + yNN N N + yNN NN
if iJ iJ g

(n)

VN B NN VB N+ B+ iv+ VB+N+ N+N+ (30)+
~

+ +

Note that compared to case I the nucleon-nucleon
part of Eq. (30) (V"" "") is different. The reason
is that in the present description contributions
such as Figs. 3(c)-3(f) and 3(j)-3(m), which con-
tribute to the two meson exchange part in case
I, are now taken into account via the wave func-
tion.

The individual contributions to the effective
baryon-baryon interaction [Eq. (30)] are given
as follows:

with

A
q&...,

„-wit) —&. -w, „i ) t)
(31)

e=& -H, .

We see that this potential corresponds to a
straightforward generalization of the OBE nucleon-
nucleon potential to the case of a OBE baryon-
baryon interaction. In the OBE limit the NN-N&

and NN-&& transition potentials are exactly those
of Durso et al. ' However, the potential Eq. (31)
is more general in the sense that it describes
all baryon-baryon transitions in the OBE limit,

(q) (r) (s) (i)
FIG. 4. One-boson-exchange contributions to the ef-

fective baryon-baryon potential in case II for a subspace
JC„containing baryons only, i.e. , nucleons and reso-
nances, but no rnesons.

i.e. , not only the NN-N& and NN-44 transition
but also the transitions such as N&-N&, N4-&&,

The two -boson-exchange par t of the interaction
is determined by Eq. (22), together with solutions
of Eq. (12) up to third order in Hz The individual.
contributions are shown diagrammatically in Fig.
5.

The above treatment of the eigenvalue problem
Eq. (1) corresponds to a, renormalized Tamm-
Dancoff (TD) approach T.h"e X,. are renormalized
TD states (y

—=0). As those states were obtained
from the total states 4,. by a unitary transforma-
tion, the ccrresponding Hamiltonian Eq. (22) is
Hermitian. Consequently, different states p,. are
mutually orthogonal and normalized according to

(+, ~+,& =&,, =(X, ~0'U'~X, & =(X, ~X,& (32)

In the following we shall discuss the connections
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(a)

(e) (g)

(k) (~)

This interaction has to be compared with the one
of Eq. (22) for the renormalized state )I,. In con-
trast to the interaction of Eq. (22) for the renor-
malized states we have now an interaction which is
generally not Hermitian. The reason for that non-
hermiticity can be found in the fact that the trans-
formation between the total state 4, and the unre-
normalized state P,.' is not unitary [compare Eq.
(35)]. A direct consequence of the use of such a
nonunitary transformation is the nonorthogonality
of different states Q&'.

&qual q, & =5i~=&e 1(~+F')(~+F}I4,'&

=&4,'I4'&+&4 'IF'FI4 '&. (39}

FIG. 5. Two-boson-exchange contributions to the ef-
fective baryon-baryon interaction of case II (subspace
X„containing baryons only, i.e., nucleons and reso-
nances but no mesons). Only the different types of the
contributions are shown. The total two-meson-ex-
change contribution is determined by Eqs. (12) and (22).

to the unrenormalized TD states.
The total solution of Eq. (1) had been expressed

as

As the last term on the right-hand side is not equal
to zero, the nonorthonormality is directly seen.

In order to avoid the problems arising from the
use of non-Hermitian potentials and nonorthogon-
alities in the baryonic states we shall, always use
the renormalized amplitudes X„ i.e. , we consider
a calculation of the total state 4,. by the use of the
unitary relation Eq. (17). Considering a phenomen-
ological approach to the nucleon-nucleon part of
the baryon-baryon interaction the use of the rela-
tion seems to be necessary.

1 &

X&

rh &

(33) C. External interactions and resonance probabilities

(34)

In the unrenormalized TD approach, the total state
is expressed in terms of P,' (and not in terms of
the normalized states )I,). In that case we have

~i=&i'+ «'=(I+F}&i'. (35)

where U is the unitary transformation Eqs. (10}
and (11}. In the TD approach we have p, =-0, there-
fore the connection between the states f,', Q,',
and X, are given by the following relation [see Eq.
(»)1:

or, as we calculate the states 4,. by the relation
Eq. (17},

T)( =
&)II I (g+ F —~F F)O(q+ F—~F F)

I &I,.&

-&xg I
o.n I xi& (41)

The interaction of our system with an external
field"" as well as the total resonance probability
is defined through the total state +, and not by the
states X,. or P,.'. Denoting by 0 the operator of an
external field, the interesting transition matrix
is given by"

(40)

Note that this transformation 4- fI}' is not unitary.
The relation Eq. (35) has to be compared with the
one of Eq. (17) for the normalized states X,

The equation of state for Q,' is given by

with

O„, = (q+F~- ~F~F)O(q+F —~F F)
= O„,(1) + ,0(msaynbody}. (42)

or

0H(q+ F)Q q' = (E(+AM}Q,.'

(T+ffi.a. + I'~i) «' =«4'i'.

(36}

v.ff =g&ss

where F is a solution of Eq. (12) as before.

(38)

T and H„„are the kinetic and intrinsic parts of
the Hamiltonian [see Eqs. (20) and (21}]. The effec-
tive baryon-baryon interaction is given by

O,f f denotes the effective interaction of the exter-
nal field in space q. The many-body part of that
operator defines what is usually called meson-ex-
change currents. For a discussion on this point
we refer to Ref. 12.

Note that the effective interaction O,«depends
on how we calculate our total state 4, . Choosing
a different transformation we obtain different ex-
change currents. We exemplify this in the case
of unrenormalized states 4,'. Choosing instead of
Eq. (17) the nonunitary transformation of Eq. (35),
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the transition matrix T&,. is given by

=(4,'
~

(„+F')O(a+F)
~ 4,.'& . (43)

We assume the baryon-baryon-pion coupling to
be of the form (Fig. 1)

(45)

The effective operator of the external field is then
given by

with

0„,= (q+F')0(r)+F) . (44)
B =N, 4, & = (q'+ p')" ',

The differences of Eqs. (42) and (44) are given by
the renormalization contribution

-QF F, 0},.
In the static limit of the baryons, for example,
this contribution cancels exactly the recoil con-
tribution contained in EtOE. In the case of un-
renormalized states Q,.', where there is no renor-
malization contribution to 0,« the recoil contribu-
tion will fully survive. Of course the T matrix has
to be independent of the choice of transformation.
This means that the effect of the nonorthonormality
of the states P,." is of the order of the recoil con-
tribution. This contribution has been shown to
be non-negligible in Ref. 15. To emphasize this
point: In the case of considering renormalized
amplitudes we have recoil and wave function re-
normalization contributions (they cancel in the
static l.imit); in the case of the nonrenormalized
states we have a recoil. contribution which sur-
vives also in the static l.imit.

Similar to the case of external interactions, the
resonance probability is not simply given by the
states X,. or P,.' but by the total state 4,

Denoting by 0 a projection operator on certain
resonances of interest, the probability for finding
such resonances in our system is also given by
the relations Eqs. (42) and (44). Exactly, as in

the case of meson-exchange currents we obtain
different expressions for that probability. In the
present paper we use throughout renormalized
states, so the expression for calculating resonance
probabilities is the one of Eq. (42). Note that this
probability is the total one, i.e. , it also includes
the contributions from the mesonic part of the
total state.

where q denotes the momentum of the pion and v

the pion state. The spin and isospin operators are
defined by the following reduced matrix elements:

&-'ll o„,II-'& = &-'llew„„ll-.'& = v'&,

&Clio~„lie& =(~all&, ~ll2& =2,

(allo ll2& =&2117, 112) =2~&.
(46)

@sass" s'a% =-gs s, ,gs s„(os s, q)(os ~ q)
0: a g 8 g

"(rs s s s)fs B 8(8&-)'
g g 0. 0 a 0

B, . . . , B~ denote nucleons or delta resonances.
The propatator function f(q) has the following form
for the different processes B B~—B'B'~. Note
that these expressions are also valid for heavier
meson exchange (compare Fig. 6):

1
fNN NN (48)

1 1 1
(49)

1 1
~NN» h, d (50)

1 1
fNb, Nb, (51)

1 1 1
2~ v ~+2a (52)

We discuss the explicit form of the baryon-baryon
interaction in the static limit; i.e., we use the ap-
proximation (p,.'+re,.')"'= m,. for the in and out
particles (nucleons and deltas). Within this appro
ximation we obtain directly from Eqs. (31) and (45)
the following form for the interaction B B~—B' B~
involving the exchange. of a single pion:

III. APPLICATION

A. Baryon-baryon potentials involving nucleons and deltas

In this section we give the expressions for the
baryon-baryon interaction Eq. (31) in coordinate
space. We consider only nucleons and deltas (A
1236) and the exchange of ~ and p. The one pion
exchange will be discussed in detail concerning
several approximations of the pion propagator.
For p exchange we give the final results for the
total potential.

1 1 1
NA (53)

1 1
x ~+2g (54)

~ denotes the mass difference of delta and nucleon:
A=M~ —M. In Fig. 6 we summarize the relation
of the propagator function to the individual pro-
cesses.

While the full potential Eq. (47) is valid only for
the v (or y) exchange, the propagator functions

f(q) [Eqs. (48)-(54)] are more general. They are
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(a)

1 1

2' ~~h

(b)

2aa'&
1

(c)

Q9-

0.8-

1 1

2 4l 4l+2h
1 1

2 lU

1 1
2 4l ul+2h

07-

0.6-

(e) QS-

Q4-

1 1

2 tsl Ql+2h
1 1

2 ul lait h
Q3-

Q2-

NN~~~ (c) +
(g) (h)

pr agator fun ti f ~ (stat c lcmit)
f the different b-resonance contributions to the one-or e

2+ 2 i/2boson exchange potential of case II (Fig. 4). u (q + p )
denotes the energy of the exchanged meson (x or p .. .)
and 6=M~-Mz the mass difference between delta and
the nucleon.

q f&m'] 4

FIG. 7. Comparison of the different approximations
of the propagator function f(~) in the case of NN bb,
interaction. Note that f x (d is shown, co @2+~2)1/2

is the energy and p the mass of the exchanged meson
(&,p, . . . ) under consideration.

5

1. NN-LLQ

Let us first consider the transition potential
SÃ-b, h and discuss a series of approximations to
Eq. (50}.

(a) 1
~NE d4 ~(~+ h) &

(55)

valid also for the exchange of the heavier mesons
if ~ denotes the energy of the exchanged particle.

We note that our formalism gives an easy pre-
scription for the interaction between nucleons
thereby creating a delta, however, al.so for the
interaction between resonances. It is a simple
matter to reproduce from Eq. (4V) various poten-
tial approximations which are popular in the liter-
ature. In the following we shall discuss several
baryon-baryon potentials in comparison with ap-
proximations which are common in the literature.

numerically.
In Fig. 7 we discuss the different expressions

relative to the usual OBE result. To this respect
we plotted the function fx &u' for the expressions
(a)-(c) of Eqs. (55)-(57). Curve (c), i.e. , ur'f
= (I/uP) x uP, corresponds to the Feynman OBE
result. Curve (b) shows the quality of approxima-
tion Eq. (56}. We realize that both approximations
(b) and (c), respectively, are not too good.

In addition to the q dependence of the function f
the potential Eq. (47} stili contains a q' dependence
from the baryon-meson couplings. This one has to
realize when the explicit form of the potential is
discussed. In order to see how the differences
in the function fs @ ~ affect the totaL potential

8we give its form in coor inate space (see Figs.
and 9). As expected from Fig. 7 the approxima-
tions (b) and (c}are not reasonable.

(o) 1
~NN dh

(c) 1
~NN dk

(56}

(57)
10.

Vc(r) [MeVj
(b)

Equation (55) is the exact expression of the pro-
pagator function in the static limit as given in

Eq. (50). This is exactly the form derived by Dur-
so et gl. ' in a perturbation approach to the two-
pion exchange. [Compare the discussion following
Eq. (32)]. The form Eq. (56} is an approximation
to Eq. (55) as given by Durso et af. Approximation
Eq. (57}arises from the neglect of the mass dif-
ference 4 between nucleon and resonance, This is
the common QBE form. ' Since the Fourier trans-
formation for case (a} cannot be done easily by
analytic integration, we evaluated the integrals

-10.

4 r ffm]

FIG. 8. Radial dependence Vc(r) of the central part of
the NN bb interaction for the different approxima-
tions (p)-(c) in the propagator function f((d). (Vr ex-
change. )
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the neglect of the mass difference 6 in the propagator leads to very large deviations from the exact
result. Again this approximation (c) is not usuable.

B. Explicit form of the potential B B&~B 'B&'

Taking into account vector mesons as well, we obtain the full baryon-baryon interaction in coordinate
space by a Fourier transformation. The total potential. can be summarized as follows:

+BB +NN( Rej dmodif led) + @AN sd + yNs kk + ONE krl + ONE NA + ykh 46 + yNE KN
elf f yp rap rap ryp ryp r,p (61)

As already mentioned, we use for the NN part of the interaction the form of the Reid soft core potential.
In the case of an explicit treatment of the a degrees of freedom (case II), the nucleon-nucleon part of the
potential has to be modified according to the phase shift and deuteron binding energy requirements ~ The
explicit form of the parametrization of the Reid potential. is given in the Appendix.

The explicit form of the resonance part of the potential. reads

(62)

The functions Vc, V» and Vs are defined in the
following way:

B D Bsss, +( )C

2fB B

3 m 4m

4'
)

y a a B s'~(&)

m „2fs.s.'f s, ~8.
3 n' 4m

G

I

y u n B 8' (r)

yn„2 gB B'&~BsaBI
3 m 4m

I

Ec", E~, Es denote form factors required for the
regularization of the potential:

~'-m' '
+Q

(a. — „)
s

(66)

(A, =5.815 fm ', A, =7.167 fm ', x=2.0 fm ').
The matrix elements of the spin and isospin oper-
ators are the usual ones and are summarized in
the Appendix. 'The various meson-baryon coupling
constants are given in Table I. 'The factors n, and
o'. , occurring in Eq. (62) are summarized in Table
II. The propagator functions fs s @s.(q') are
those of Eqs. (48)-(54).

he two-nucleon problem has been solved in the
coupled channel approach [Eq. (19)). In the center-
of-momentum frame the two-body wave function X

has the form

with

0

c

B B' BI3+
~ 1 «2

B s' ospss

x =x"(r)
JT

8(r
~

n; [L(s,s,)S]j;(t,t,)T),
n I S

(67)

TABLE II. The factors af 02 pf p2 pf p2 of
Eqs. (62), {A6), and (A7) for the different resonance
potentials.

B2 BfB2 +f +2 Pf
TABLE I. Baryon-baryon-meson coupling constants

used in this work.

~NNII fNNP gNNP fDNff fb, NP fb, 6 7t &2 6P fb, h. P
2 2 2 2 2 2 2 2

4x 4 x 4m 43' 4x 4x 4m

0.077 4.5 0.55 0.35 13.0 0.003 0.55 0.18

NN

Nd NN
NA
NA

NA ND

0 0
1 0
0 1
0 1
0 1
1 1

SI
S'+ 1 60
S' 2~6
S' 4~15
S/ 4
S' 6~10

S+ J 4vgp
S+ J 60~30
S+ J 12~5
S+ J 60~2
S+ J+ 1 4vsP
S+ J 60~3
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3.5.
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0
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where 8 is an antisymmetrization operator. The
index n stands for the different possible baryon-
baryon configurations (NN, Nn. , h4).

With the potential Eq. (61) we obtain the follow-
ing system of coupled differential equations from
Eq. (19):

d L(L+1)-2 „( M„-E) U~r ( )dr 2 y

=2&Z Z Vfs ~ s U~ (r) (68)
m Z, ' ~

S'

denote s the reduced mass of the configuration
n

bAf =M '+M —2M (69)&n ~ i+~ 2 i n n + n

is the expectation value of the intrinsic Hamilton-
ian [Eq. (21)]. The matrix elements V~55 ~.s. of
the interaction [Eq. (61)] are given in detail in the
Appendix. The boundary conditions of Eq. (68)
are different for scattering states and the deuter-
on. For scattering states they read

U~r (r) = r™for all n;nLs

U~r (r) ——sin(kr - aLv+ 5~ ) for n = I;rIL S
y'w eo

U~r (r) = 0 for n&1.

For the deuteron we have

U'r (r)=-r~" for all n;

(70)

FIG. 13. Integral N = fdr [Ui E.e(r)]2 Of different partial
wave contributions to the NN scattering in dependence
of scattering energy according to Eq . (72) . In paren-
theses the corresponding nucleon-nucleon partial wave
quantum numbers are given.

-00t
3Q

-0.02
0 0.8 1.5 2,4 32 4O r tfmj

FIG. 14. Radial dependence U (r) for the different 4b,
partial wave contributions to the deuteron state X,
calculated with the full propagator function.

As a numerical example for the contribution of
the & states to the solution X we give the values for
the integrals of the partial wave contributions de-
fined by the relation

TABLE III. The total integrals N& (= sum of the four
contributions) of the deuteron for the different a pp-

roximations of the propagator function [Eqs. {55)-(57)].

dy U~~ (72)
0

Note that the relation between the integral N and
the total & probability is not trivial because of the
relation between )( and the total solution + Eq .
(17b).

For the scattering states the integrals N for
some partial w aves are shown in Fig. 13 in de-
pendence of the scattering energy (compare with
Ref. 17). The deuteron nn partial waves calcula-
ted with the full potential Eq. (61) are shown in
Fig. 14.

In the case of the deuteron we discuss the differ-

entt

approximations to the prop agator functions
f(q') corresponding to Figs. 7 and 12. In Table ill we

give the total integral N&, i.e., the sum of the four AA

partial wave integrals . 'The total integral N, for
the full propagator functions corresponding to curve
(&) in Figs. 7 and 12 has a value of N, = 0.22 & 10 '.

U& (r) (M ~ Es)' 'r ~ Y~[(M ~ Es)' 'r] for n= 1; (a ) (b ) (c)

U (r) 0 for n& 1. (71) Ntx 10 0.22 0.43 0 e54
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The crude approximation(b) of Figs. 7 and 121eads
to a. value of N& =0.43 ~10 ', which is larger thanthe
exact value by a factor of 2 as expected from Figs.
7-9. This seems to be a general result also for
other baryon-baryon potentials. The Feynman
approach (c) leads to a value which is even larger
than approach (b).

IV. SUMMARY

In the present paper we investigated nuclear
properties by describing the nucleus by a meson-
baryon system. Starting from a field theoretical
Hamiltonian for such a composite system we for-
mulated the eigenvalue problem in a subspace of
baryons only. 'The total state of the system had
been expressed in terms of such baryonic states.
We have shown that there are different possibili-
ties in describing the total state in terms of pure
baryonic states. Explicitly we have considered
two approaches: (i) reduction of the total state to
a solution of the nucleonic component, and (ii) re-
duction of the total state to a solution of the cou-
pled nucleon and nucleon resonance states. In the
one-boson-exchange limit we have given the ex-
plicit expressions for the effective Hamilton oper-
ator in the subspaces (i) and (ii), respectively.
Thereby, we have restricted our treatment to uni-
tary transformations as such transformations lead
to the conventional description of the nuclear
states by a Hermitian Hamiltonian of the nuclear
subspace. The difficulties which arise from a

nonunitary transformation have been discussed.
As an important point we have shown how the
transition matrix of the interaction of an external
field with our system has to be calculated. The
same expressions apply for the resonance proba-
bilities of our composite system. The exchange
currents as well as the resonance probabilities
are not only given by the baryonic states of the
subspace but there are additional contributions
according to the transformation into the subspace
under consideration. This means that one has to
be very careful in what is given as resonance pro-
bability.

In a practical application we considered the two-
body system with the inclusion of 4 resonances.
The deuteron properties as well as the K-1V scat-
tering have been calculated in the given frame with
the use of the phenomenological Raid soft core
potential for the pure nucleon-nucleon part. This
potential has been adjusted to reproduce the N-N
scattering data.

Starting from the general expressions for the
baryon-baryon interactions we have discussed
several approximations which have been used in
the literature. As the different approximations to
the full potential lead to substantial differences in
the resonance probabilities, a, consistent treat-
ment is very important.

This work was supported by the Deutsche
Forschungsgemeinschaft (Ga 153/6).

APPENDIX

The modified Reid potential [V"" (Reid modified) in Eq. (61)] has the following form:

T=1
X e~ Vx

V, (x) = —h —1650.6a» + 6484.2a»
0

X 2x e~ VX

V (x) = —h —12.322a„—1112.&a~2 + 64&4.2a2~1D2 X 21 X 22 X x

4 4 „16 4 e~ e~ VX

V (x) = —h 1+—+ —e * ——+ —e '~ x+ 27.133a —790.74a + 20662a
P0 "x 32 x 33 x

2 2& „8 2 e~
V, (x)=h 1+-+—,~e

* —-+ —,e x —100.0a„+1000.0a,2 + 5000.0a„x2] x x

(A1)

V~, (x)= Vc(x)+ Vr(x) ~ S»+ Vie(x)L ~ S,3P2 3F2

he' e~ e~
Vc(x) = — —933.48a„+4152.1a„

3 x
' " x x

1 1 1 „4 1
V (x) = h -+ —+ —e * —-+—e ~

T — 3xx —
x

e -sc

Vl, e(x) = —2074.1a„ x

3x
—34.925a53 x
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T=0

V, (x) =3h
1

2X 3X

—634.39a„+2163.4a„"x "x
2 2 x 8 2

V (x)= —3h 1+-+—e "- -+—e ~
x x x x

e~ 3X

—220.12a» + 871.0a»"x "x
V, , (x) = Vo(x)+ Vr(x) ~ S„+V~s(x)Z, ~ S,

X 2X e~ e -6X

Vo(x) = —h + 105.468a„-3187.8a„+9924.3a„x x x x

3 3 x 12 3 e~ e~
V (x) = —h 1+-+ —e " ——+ —e x+ 351.77a —1673.5aT =

x x2 x x2 8 x
— s5X

e-Gx'

V~ s(x) = 708.91a„—2713.1a„"x x

Here,

h= 10.463 MeV,

x=0.7 ~ r.
The parameters a,. &

determined for the total potential Eq. (61) are given in Table (IV). The usual Reid-
soft-core potential is obtained from Eq. (Al) with

a„=1.3525,

a42 = 0.47281,

a~3= 0,
a,.~= 1 in a,ll other cases .

(A2)

The matrix elements V„'~s ~.s, of the interaction Eqs. (62)-(65) which occur in Eq. (68) are defined in
the following way:

V~~z, ~ gN ~, ~. = +&; L 22 p; zz T V,ff, L' s,'s2 ' p; t,'t2)T 4 1- -1 ' 1 —-1 ' ' A3)

with

s' —s' —t' —t'=
1 2 '1 2

1
2

3
2

(A4)

TARLE IV. The parameters a;, of the modified Retd potential [Eq. (Ai) of the Appendix j.

0.599 50
-0.014 21

1.324 01
0.57765
0.49746
1.059 13
1.063 24
0.974 51

0.724 21
0.830 78
1.065 96
0.842 32
0.959 73
1.083 59
1.106 83
0.933 75

1.771 29
1.209 06
0.381 33
0.36526 1.179 59

0.973 54 0.976 56 0.984 27 0.992 66 0.989 55

's,
iD

3po
3p

1

ip
3D2

3Si -3Di
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with

s' —s' —t' —t'—
1 2 1 2

j.
2

7

3
2

[L(-.'-'. )S]j;(-.'-', )T
I
P';;, IN~; [L'(-.'-', )S ]j;(-.'-', )

+ (AN/ [L(pg)S]j; (
—', g )T

I
v IN&; [L'(2 ,')S']—j;(-,' —', )T)(-l) +r+' (A5)

In the calculation of the right hand sides of Eqs.
(A3)-(A5) the following expressions will occur:

(B,'B,'; (LS)j I(os s, ~ os', )IB,B„(L'S'j))

(BIBz. (LS)~
I
S B&Bfe2@

I
B B ~ (LiSi)j}

I

The factors p] p2 py and y2 are listed in Table
III.

For completeness we also give the baryon-baryon
p-meson couplings which are necessary for the
calculation of the potential Eqs. (62)-(65):

1 BBO ~ P Pf as n= g2-~ m &~as "&)res'Pi

-",—,Il. l. '

2j Il S jj ~ BB'~BB'p BB' P4 (AS)

S~ S2 S

s& s2 S~

1 1 2

(A f)

with

1 for BB' =NN, b,a
&BB =

0 for BB' =Nb, .
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