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The excitation of a many-body system by a one-body perturbation is considered. The stationary phase

approximation to a functional-integral representation of the many-body evolution operator shows that the optimal

mean field for describing the final expectation values of one- and two-body operators is that given by the time-

dependent Hartree-Fock method. The forced Lipkin model is considered as a test of the mean-field approximation.

NUCLEAR REACTIONS Mean-field approximation, inclusive observables.
Time-dependent Hartree- Fock.

I. INTRODUCTION

The time-dependent mean-field approximation
has recently been proposed as a framework for
the description of large-scale collective motion'
and excitations in many-body systems. This
latter work showed that it is possible to obtain
approximate values for many-body S-matrix ele-
ments in terms of matrix elements of an effec-
tive one-body evolution operator. This is a sig-
nificant improvement over the well-known time-
dependent Hartree-Fock (TDHF) approximation
which, although of a similar one-body nature,
cannot be used to compute elements of the many-
body S matrix. The mean-field approximation
requires the solution of a temporally nonlocal
equation for the evolution of the system with
boundary conditions in the past and in the future.
It has been applied to the schematic forced Lipkin
model, where it was found to give a very good
estimate of the exact S matrix. '

The optimal mean field for a given S-matrix
element depends upon the initial and final chan-
nels and hence must be calculated anew for every
transition of interest. While this might be ac-
ceptable for exclusive (or nearly exclusive) mea-
surements, it is evidently a considerable comp-
lication in describing any inclusive measure-
ment which averages over a large number of exit
channels. In these cases, the full S matrix con-
tains far more information than is needed to des-
cribe the experiment. It is therefore appropriate
to consider an alternative implementation of the
mean-field approximation which calculates di-
rectly inclusive observables, i.e. , the final ex-
pectation values of self-adjoint few-body oper-
ators for a given initial channel. This is the sub-
ject of the present paper. For a many-body sys-
tem with two-body interactions perturbed by a
time-dependent one-body potential, we shall dem-
onstrate that to approximate the final expecta-
tion values of one- and two-body constants of the

unperturbed motion, the appropriate mean field is
that determined by the usual TDHF equations.

The balance of our paper is organized as fol-
lows: Section II is a review of the Hubbard-Strat-
onovich representation of the many-body time
evolution operator, followed by Sec. III, the der-
ivation of the equations of motion for the mean
field in the stationary-phase approximation. In
Sec. IV we test the quality of the approximation
in the forced Lipkin model by comparing with the
exact results. Finally, we offer a brief discus-
sion and conclusion in Sec. V.

II. THE TIME-EVOLUTION OPERATOR

We shall assume that our many-body system is
described by a Hamiltonian containing a static
two-body interaction v and a time-dependent one-
body potential V which vanishes as ~t

~

-~:

H(t)=&+-;f. d '0( ) ( -*')p( ')

+ dhVx, t,o x,

where E is the kinetic energy operator, correc-
ted for the self-interaction,

K =— dx(v(t)')(v[t)) — dxp(x),
1 , v(0)

2m 2
(2)

p(x) = [t'(x)[t(x)

is the density operator. The Hubbard-Straton-
ovich approach''~ represents the many-body
time evolution operator

t

U(t, t) = T exp -idr H(T)- (4)

by a functional integral over evolution operators
for all possible one-body fields

t

U(tt)=fu[rla p
—'

,-s (v(~), m(r)) r)(tt)-,
-t
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with
P

U,(t, -t) =T exp i-drH, (r)
-t

=Texp i-dr[A+(v(r), vp)+(V(r}, p)]
"t

(6)

edy can be had by introducing a nonlocal mean
field v(x, x', t) for the nonlocal density operator
p(x, x') =)t)&(x))}&(x'). Since this is merely a formal
complication and does not change the essence of
our arguments, we shall work throughout with
only the local mean-field representation.

HI. EXPECTATION VALUES IN THE STATIONARY
PHASE APPROXIMATION

In these equations T denotes the time-ordering
operation and we have introduced the scalar prod-
uct notation for the integration over coordinate-
space variables; e.g. ,

(rr( ), p) = fd*&'p(, ) (*-*')p( ')

I et

A= Qy. ypy =—a, p (10a)

The auxiliary field v(x, r) is a scalar c-number
function, and the functional integral in Eq. (5)
runs over all possible 0 fields with the measure'

r (detv) "'
u[v]= »m

2
. «/2 [[o.xn.tdv(x„t, }j .

« le 7f1 j
dig h, t 0

In the mean-field approach to the many-body
S matrix, the matrix elements of Eq. (5) (or ex-
pressions similar to it) between given initial and
final states (]i) and

] f})are evaluated in the sta-
tionary phase approximation, where an optimal
field vo(z, t} is determined by making the phase of
the integrand stationary as a functional of 0.
Thus, in the case of Eq. (5}, one demands
5P/Ger=0, with

(/) [o)= —,
' ' dr(g, v(r) + arg(f U,

~

i}.

No exchange (Fock) term is obtained in this
formulation. However, a straightforward rem-

8= dydee)p y 5 y, y p y =(p, bp (10b)

by one- and two-body operators, respectively,
in the Schrodinger picture, which commute with
the Hamiltonian as

~

t
~

—~ and are therefore as-
yrnptotic constants of the motion. If the many-
body system was initially prepared in state ]i}at
time f, = Tp -~ the constant expectation values
of A and B at a late time T -+~ are given by

&d&*= f dv '&y& &'] i) (»»)p(v)U(» ro) ]i)

(1 la)

(B) fdy dy P(y, y)&'=] ll'(» T )p(y)p(y) (lie)

x U(T, T,)]i}.
It is thus sufficient to know the expectation value
of the density operator, p, and its correlation
pp. Kith the functional integral representation
of U(T, To), as given by Eq. (5), we can express
these as

d'

r
&p(v)&„=f Ivy]fe'rl vepvee dr](r, e) —( ', rr')]I& ]rr, &»r»)p(v)r)(»»&] '),

Fo
(12a)

(12b)
Z

&p(v)p(i)& = fer(plrrfe le p
— d l(e') —( ', ')]I('](),rdy»&p(v)p(v& &r(TT,,) ]

') . ,
To

If we were to make the stationary phase approx-
imation at this point, the variation of U Up with
respect to cr, a would result in stationary equations
containing matrix elements having an additional
factor of p. Thus, we would have to evaluate ex-
pectation values of a two-body operator for Eq.
(12a) and of a three-body operator for Eq. (12b).
This complication is avoided by the well-known
technique of replacing U, by the evolution oper-
ator in the presence of an external source func-
tion 5:(x, t)

U, (Tv Tp)
T

= T exp -i dT K+ 0, vp + ~, p + 8 T, p
TQ

(12)
and introducigg factors of p in the matrix elements
by functional variation with respect to 5(x, r).
Note that this procedure produces a simple re-
sult only if the variation is made with respect to
F taken at time T or Tp otherwise

5'$(yv t)
U (T, To) = iU (T, t)p(y)U, (t,-To) . (14)
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With this method we find

(i ~Up)T, Tp)p(y)U (T, Tp) ~i)= lim —. — „r) (i~ U,, (T, Tp)v, (T, Tp) ~i).
~ ~. p 2i 55y, t) 55(y, r (15)

The symmetrization in 5 and F' is not really
required for the expectation value of p but we

shall need it for pp, as will be seen below. If

we now make a linear change in the functional
integration variables of Eqs. (12(a), o-o —v '5
and similarly for 0', the influence of the source
is shifted from the evolution operators U to the

Gaussian weight functional. The functional dif-
ferentiation required in Eq. (15) is then easily
performed and upon letting 5, 5'-0, we obtain

(e(v)i = fvbiy)vb(e'le v
— f'«((yy)-(y', , ')i
2 TQ

x-,'[o(y, r)+ o'(y, T)]

&&(i
( U,gr, Tp) U (T, T()) (i). (16)

The stationary phase approximation in lowest
order requires that the phase of the integrand be
stationary with respect to small variations in rr

and g', and takes the value of the integral to be
the integrand at the stationary point. The cal-
culation proceeds in the same way as that for the
S-matrix elements' and yields the two coupled
equations of motion

(p
~

U t~(T, Tp)U, (r, t)p(x)v, (t, rp) ~i)

(;iv', (r, r,)v (r, rp)i;&

(17)

,
( )

(i
~

U t (t, Tp) p(x) U, (r, t) U, (T, tp)
~

i)
(iivp, (r, rp)v (r, rp)ii)

In general, these equations may have many dif-
ferent solutions with OQ WOQ which will depend upon
T and are therefore ignored in the following.
However, for a well-behaved interaction V the
T-independent solution

op(x, t) =op(x, t) =(i ~U (t, T())p(x)U, (t , T()). i).

(18)

will always exist, since Eq. (18) is local in time
with a boundary condition only at t = TQ. This is
precisely the TDHF equation of motion (the ex-
change term is absent, as discussed above). Sub-
stituting this relation into Eqs. (lla) and (16)
we obtain the TDHF expression for the expec-
tation value of the one-body observable A&.'

(d)',"= fdy (y), (y, y)

dpi' y (i U T, TQ p y U T, TQlj

(19}

For the expectation value of pp, Eq. (12b), a
second variation in 5 is required. The calcula-
tion proceeds in precisely the same way, but now
explicit symmetrization in 5 and 5' is required,
lest terms such as iv '(y y)5(T-—r) appear which
violate self-adjointness of the operators. One
finds

(d(y)e(i)), =f dyielxy(, ') exp dyi(e, vy)-(y', .e')i
TQ

&& p[o(y, T)o(yv T) + o'(yv T)o'(y, T)](i
~

U (T, Tp)U (T, Tp} ~i) . (20)

The phase is the same as in the one-body case and the stationary phase approximation yields Eqs. (17)
for ap, o(I. Again we always have the solution (18) with op = o,', yielding

(B) = fdy dvb(y, j)y (y, y) (v, yl . (21)

Note that this is not the same as the expectation value of B taken with the state U,p(T, Tp) ~i) The diffe.r-
ence is, of course, the neglected exchange terms, which cannot be expressed solely in terms of the local
single-particle density p(y).

The derivation above does not apply to the Hamiltonian, because H cannot be written in the form (10b}.
One alternative is to introduce the nonlocal mean field o(x, x', t), but there exists another, simpler meth-
od which we shall employ. Making use of the equation of motion for the time-evolution operator U,
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i —,v(t, r, ) =H(t) U(t, T,),8

we can write

(H) = t' ————,) (') U (t T',,) U(t, 1' )
)

') .
t, V- T

Representing each operator in the matrix element by the functional integral (5), we arrive at the ex-
pression

T

(H&, = f)tftt)S)( ')e U ) dtl(rr, vrr) —( ', t)))t])j( )Ut(Ttt, )TU)( , T)T)')
TQ

1
((IU'.(T, T, )IH tT)+H(T))U(T, T)

)

'&,
(( ) ~(, ,

)j j(i
l
Upper, Tp) v,(r, Tp)

l
i)

(22)

(23)

(24)

The symmetrization in t and t' is necessary here
to retain the explicit self-adjointness of the oper-
ator at every stage of the derivation. As a con-
sequence the term in curly brackets is real for
real g fields and does not contribute to the phase
of the integrand. Going through the same steps
as before, we find the same equation of motion for
the o fields in the stationary phase approximation,
and for 0'p = 0'p the energy expectation value reads

IV. THE LIPKIN MODEL

To illustrate and test these ideas, we consider
the forced Lipkin model, ' which was previously
treated as an example of the mean-field approx-
imation to the S matrix. ' The I ipkin model is
particularly interesting in that it exhibits a phase
transition from a "spherical" to a "deformed"
ground state when the coupling parameter X is
+1 (see below), and the Hartree-Fock approx-
imation may be expected to provide a poor des-
cription in this region. We shall only state the
necessary equations here and refer to the treat-
ment of Ref. 2 for all details.

The Hamiltonian for the forced Lipkin model
can be expressed in terms of SU(2} quasispin
operators J:

H(t) =J,+ 1(&,'- J,')+f(t)

Here f(t) is an arbitrary vector function defining
the one-body perturbation and mill be assumed to
vanish for lt l

—~. Without the external pertur-
bation, the Hartree-Fock ground state is given

y 10»)=
I

=' J.= 'N) when lxl-1

(26)

(H) Pv" = (i
l
U, (T, Tp)H, (T)U (T) Tp)

l
i)

[()'p(T), vip(r) J . (25)

This is precisely the Hartree-Fock expression for
the total energy, without the exchange term as
discussed in Sec. II.

lf
l
x l

&1, there are two degenerate Hartree-
Fock ground states which are obtained from

l O„F)
by rotation in opposite directions around the x
axis (for X &1) or y axis (for X (-1) by an angle
q = cos ' (1/

l
x l).

The mean field is conveniently defined as

(27)

which is independent of N if
l
i) is a Hartree-

Fock state. The effective Hamiltonian is

H, =J, +2X(gg, —o J„)+f(t) ~ J —= F(t) ~ J . (28)

It is easy to show that the mean field evolves
through

—
, o(t) = F(t) x o(t)

with the initial condition o(rp) =(ilcTli)/N The.
final expectation value of the Hamiltonian, Eq.
(25), is given by

(H)r "=Nb,(r) + X[o,'(T) —o„'(T)J, (30)

where we have assumed that f(T) =0. Of course,
Eqs. (28) and (29) guarantee that Eq. (30) is in-
dependent of T when f(T) =0.

We have solved numerically Eqs. (28)-(30) for
excitation of the HF ground state by the perturba-
tion 7(t) = exp(-t')(1, 1, 1). The figure shows the
mean-field approximation for the initial and final
expectation values of the energy per particle, (H)/
N, over a range of coupling strength -0.1 ~ X ~ —10,
covering both the weak and strong coupling
regions. These results are independent of N.
For weak coupling (X ) -1) we compare these re-
sults with the exact treatment starting from the
exact ground state. As can be seen, the agree-
ment is excellent for N=30 particles. In the
strong coupling region, X &-1, me consider the
following three cases

(1) and (2) The mean-field calculation and the
exact treatment starting from both deformed HF
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FIG. 1. The expectation value of the final total energy
per particle, (H)/N, of the forced Lipkin model with
perturbation f(t) =e & (1,1,1). Plotted as functions of
the coupling parameter are the results for the following
cases: 0, exact evolution of the exact ground state for
N=30. x (in the strong coupling region y&-1, exact
evolution of each of the two deformed HF ground states
~1) and ~2) for N = 30. ——,TDHF evolution of each of
the above states ~1) and ~2). , in the weak coupling
region (-1&g&0), TDHF evolution of the HF ground
state. In the strong coupling region (y&-1), TDHF
evolution of the symmetrized HF ground state (the
average of the two dashed lines). The light solid line
describes the HF ground state energy.

ground states ~1) and ~2). Depending on the or-
ientation of the deformation with respect to the
external perturbation the amount of excitation
is quite different. Nevertheless, the agreement
is within -10%.

(3) The exact evolution of the exact ground state
in comparison with the mean-field evolution of
the initial state with positive parity, ~+) =( ~1)
+ ~2))/W2. Here we neglected all matrix ele-
ments of the type (1~2) and (1~U'HU ~2), which
should be a good approximation (of order

~ g
~

")

except in the immediate vicinity of X= -1. Thus,
the mean-field result is the average of cases (1)
and (2) above. We find also here, that the mean-
field calculation is able to reproduce the exact
results quite well. This also holds true in the
region y- -1, where fluctuations in cr might have
been expected to induce a larger error.

V. CONCLUSIONS

We have obtained expressions for one- and two-
body inclusive observables in the framework of
the time-dependent mean-field approximation.
For excitation by a time-dependent one-body oper-
ator, we found that the mean field which defines
the stationary point of the full functional integral
over auxiliary fields obeys the time-dependent
Hartree (-Fock) equations. Expectation values of
one- and two-body operators, in particular of the
total energy, can be expressed solely in terms of
the mean field. For the forced I ipkin model with
30 particles we found excellent agreement between
the mean-field expression for the excitation en-
ergy and the exact solution, even in the region of
coupling parameters where the phase transition
to a deformed ground state occurs.

Although we have considered only a schematic
model, our results have implications for more
realistic situations. This work is the first step
toward a rigorous justification of the TDHF meth-
od for computing inclusive observables in heavy-
ion collisions, although a number of the difficul-
ties discussed in Ref. 2 prevent us from making
a direct statement about the full many-body scat-
tering problem. However, it may be plausibly
surmised that TDHF is the correct mean-field
theory for such one-body observables as fragment
changes, masses, angular momenta, and kinetic
energies, although the accurate evaluation of the
dispersions in these quantities wi1.1 most likely
require consideration of the fluctuations of the
field about its mean value.

ACKNOW( LEDGMENTS

This work was supported in part by the National
Science Foundation (PHY77-21602 and PHY79-
23638). Y. Alhassid is a Chaim Weismann Post-
doctoral Fellow and S.E. Koonin is an Alfred P.
Sloan Foundation Fellow.

Permanent address: Institut fur Theoretische Physik,
Robert-Mayer-Strasse 8-10, D-6000 Frankfurt am
Main, West Germany.

~S. Levit, Phys. Rev. C 21, 1594 (1980); S. Levit, J. W.
Negele, and Z. Paltiel, ibid. 21, 1603 (1980).

Y. Alhassid and S. E. Koonin, Caltech Report No. MAP-
14, 1980, Phys. Rev. C (to be published).

3J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).
R. L. Stratonovich, Dokl. Akad. Nauk SSSR 115, 1097

(1957) [Sov. Phys. —Dokl. 2, 416 (1958)j.
~J. Schwinger, Proc. Natl. Acad. Sci. U. S. A. 37, 452

(1951) [also in: Quantum Electrodynamics, edited by
J. Schwinger (Dover, New York, 1958), p. 379].

~H. F. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys.
62, 188 (1965); N. Meshkov, A. J. Glick, and H. F.
Lipkin, ibid. 62, 199 (1965); D. Agassi, H. J. Lipkin,
and N. Meshkov, ibid. 86, 321 (1966).


