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This study evaluates the amplitude for the pion absorption reaction 'He(~, n)'H to first order in the pion

absorption operator for a pion laboratory kinetic energy of 290 MeV and the associated angular distribution of
emitted neutrons is compared with recent experimental results. The pion absorption amplitude requires the full

elastic scattering wave functions for the n. -'He and n -'H systems and the bulk of this study is the generation of the
n. -'He full elastic scattering wave function in the effective channel approach. The effective channel approach

expresses the m -'He full elastic scattering state in terms of explicit elastic and inelastic channel wave functions. The

input to the effective channel approach is a phenomenological mN separable interaction which satisfactorily accounts

for the n.N 33 resonance and a complex local Gaussian potential which, in conjunction with the separable

interaction, produces the approximate spin and isospin averaged ~N phase shifts and charge exchange cross section.

A judicious choice of the form factor of the separable interaction allows an exact evaluation of the pion-nucleus

potentials occurring in the application of the effective channel approach. These potentials are nonseparable and

couple each partial wave to itself and to its two next neighbors as well as to the partial waves of the other channel.

The complex local m.N Gaussian potential also allows the analytic construction of the associated terms of the

effective channel approach. The resulting two-channel system of integrodifferential equations is solved by iteration.

The parameters of the mN potential are then varied to produce the observed total and inelastic m. -'He cross sections

and an angular distribution in reasonable accord with experiment to study pion absorption.

PACS numbers: 25.30. + f, 24.30. —v, 13.75.Gx

NUCLEAR REACTIONS ~ 4He elastic scattering, 4He(7(, n)3H reaction at 290
MeV, effective channel approach.

I. INTRODUCTION

Protons and pions as medium energy projectiles
are useful probes of nuclei because their wave-
lengths are short enough to sense fine details of
the nuclear structure. At the same time the com-
plications of many-particle production are avoided
in the medium energy range. A successful analy-
sis of the scattering of those particles by nuclei
can assist in the understanding of how the NN and
&N amplitudes change when one nucleon is em-
bedded in a nucleus, and so provide information
about the dynamical properties of nuclei. The in-
formation gained in the analysis of elastic scat-
tering is essential for an understanding of pion
and proton induced reactions.

Either of two theoretical approaches ' are corn-
monly used to analyze the scattering of mesons or
nucleons fro~ nuclei. These approaches are based
on Watson's 'multiple scattering theory' (MST) and
Glauber's maltiple diffraction theory (MDT).

The MDT is a high energy approximation as or-
iginally developed and exploits the assumption that
the projectile's trajectory is not appreciably al-
tered during the scattering. In this virgin form
all the inelastic excitation channels are treated by
closure, and the MDT is not expected to be ap-
plicable at low energies or at large momentum
transfer. Surprisingly, the various corrections~'
to the high energy form of the MDT appear to can-

cel each other and the uncorrected form has en-
joyed a measure of success even at moderate en-
ergies.

Watson's MST, as modified by Kerman, McMan-
us, and Thaler' relies on the careful construction
of optical potentials to express all the effects as-
sociated with inelastic channels. To simplify the
optical potential calculation, Feshbach and collab-
orators' expressed the problem in terms of a fi-
nite set of coupled equations. In this system of
equations the driving term is the on-shell NN am-
plitude and the usual additional simplification is to
assume the impulse approximation. Target ex-
citations are treated in closure and ape accounted
for by one or more effective inelastic channels.
Application of this form of the MST to p- He scat-
tering provided the encouragement that information
about correlation within the target nucleus could
be discerned and that discrimination between the
various off-shell extensions of the NN amplitude
might be possible. That more definitive conclu-
sions could not be drawn was caused by uncer-
tainty in the input NN amplitudes and by the ap-
proximations made to facilitate the calculation.

The encouragement generated by the Feshbach
application of the MST persuaded Hahn and Rule"
to undertake an improvement of the theory by
treating the inelastic channels more carefully and

by shunning the impulse approximation. To avoid
treating target excitations in closure they con-
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structed an inelastic excitation pseudostate func-
tion with a single adjustable parameter determined

by the projectile target total cross section. Un-
like the usual distorted-wave Born approximation
(DWBA) calculation, the effective channel ap-
proach (ECA} employed by Hahn and Rule begets
an explicit elastic as well as inelastic wave func-
tion, which are both needed in a careful treatment
of reaction processes. By generating an effective
NN potential which reproduces the on-shell NN

amplitude, the impulse approximation is avoided.
%hat results can be described as a relativistic
potential theory" and is justified as long as the
production channels are closed, which is the case
at the energies under investigation.

The ECA of Hahn and Rule has already been used
to analyze p- He elastic scattering" for protons
with laboratory kinetic energy ranging from 600
MeV to 1 GeV. Uncertainties in the calculation
were small enough to allow discrimination between
the 1974 Saclay angular distribution and that of the
1967 Brookhaven measurements. ' The Saclay an-
gular distribution was in reasonable accord with

the ECA calculation, whereas the Brookhaven re-
sults could not be produced. Subsequent experi-
mental measurements at UCLA-LBL and Argonne
also agreed with the Saclay angular distribution.

MST has also been used to analyze pion-nucleus
scattering, usually in the case of pion energies in
the range of 100-300 MeV so that the mN 33 reso-
nance can be assumed to dominate the pion-nucle-
us scattering. ' The analysis of elastic scattering
of pions with only first-order optical potentials
has enjoyed much success in achieving agreement
with observed angular distributions. There is
reason to believe, however, that higher-order op-
tical potentials are necessary to understand pion-
nucleus angular distributions in the region of the
second maximum, and without inclusion of these
higher order terms agreement with experiment
could be model dependent. ~ Besides the effects of
higher-order optical potentials, questions persist
about the kinematic (angle) transformation, reso-
nance (n) propagation within the nucleus, and pion
absorption during scattering.

The ECA used to study proton-nucleus scatter-
ing has been modified to assist in the resolution of
some of the above questions about pion-nucleus
scattering. This study treats pion scattering at
energies above resonance ranging from 260-310
MeV, so that the rapid variation of the wN ampli-
tude associated with the nearby 33 resonance must
be confronted. The often used technique for deal-
ing with this rapid energy variation is to introduce
a separable isobar model interaction with a Yukawa
form factor. Use of the Yukawa form factor pre-
cludes exact solution of the pion-nucleus scatter-

II. REVIEW OF THE EFFECT CHANNEL
APPROACH

To describe elastic scattering, the ECA (Ref.
10}determines a system of two coupled differential
equations beginning with the assumption that the
elastic scattering wave function can be written as

@(r„r)=u(r, )$0(r) + w(r, )Q (r„r), (2. 1)

with w(r, )p(r„r}called the effective inelastic
channel wave function, r, being the relative coor-
dinate of the incident particle and the center of
mass of the target, and r representing all the co-
ordinates of the target particles as measured from
the center of mass of the target.

The Hamiltonian of the projectile-target system
18

H(r„r) = T(r,) + Hr(r) + V(P~, r), (2.2)

with V(r„r) being a sum of two-body interactions
V=+",.,u(r, -r, ). If the unperturbed wave func-

ing problem in that the associated optical poten-
tials must be determined numerically, introducing
uncertainty about the kinematic (angle) transfor-
mation. If a Guassian rather than Yukawa form
factor is used, the integrations required to gen-
erate the optical potentials of the ECA can be ac-
complished exactly and the kinematic transforma-
tion can be investigated more carefully. This
study makes such a treatment of pion-nucleus
scattering.

The study of the elastic scattering of pions and

nucleons by nuclei assists in the understanding of
the elementary interactions and the resulting nu-
clear structure, but experimental uncertainties
can mask details which must be understood be-
cause elastic scattering can be dominated by the
lowest order density and the single particle struc-
ture, and be only weakly dependent on the off-
shell behavior of the elementary interaction.
Some of the information that could be gained by a
study of elastic scattering is more readily sampled
by a study of reaction processes. The analysis of
these processes imposes additional constraints
on the wave functions describing elastic scatter-
ing. The operator generating the transition be-
tween the two scattering states can be sensitive to
parts of the scattering wave functions which do not
strongly influence a description of the elastic
scattering process. " The pion production and

absorption processes involve a large momentum
transfer, so that a reasonable suspicion is that
these processes occur with the involvement of
several nucleons and so should be sensitive to two
nucleon correlations much more so than the elastic
scattering process.
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tions of the target are defined by

Hr(r)q„(r) =E„q„(r), (2.3)

then the total scattering wave function can be ex-
panded as

~0

4'( ro, r}=uo(ro}$0(r) +g u„(ro)g„(r) . (2.4)

If the target is initially in its ground state tt, (r),
then the projection operator of the elastic compo-
nent of the total scattering wave function is

(2. 5)

(2. 6)

N N

dr&5 — r~ (I) rp, r ~=1

and with Q = 1 -P the total scattering wave func-
tion may be expeditiously written as 4=P4+ QC.
The ECA replaces the sum of terms in Q space by
an effective inelastic channel wave function
P( r„r)w(r, ).

A reasonable and still convenient form for
P(r„'P} is"

p(ro, r) = [N(ro)7'QV(r» r)P&0(r),

with N(r, ) being an r, -dependent normalization so
that

in which

Q
E —E

C

(2. 11)

where E, is expected to be complex when the Q
channels are open and could be energy dependent.
This replacement of the entire QHQ by the number
E, is a rather drastic approximation in most in-
stances. The approximation is improved for high
energy fast collisions by taking"

Q

E —T(ro) —V(ro) —Er + ie ' (2. 12)

which amounts to the replacement

q(H, + V-E,)q- V(r,)+E, E, .
This approximation rids G~ of the internal target
coordinates r so that only a two body scattering
problem for G remains. The target provides a
distortion V(r, ) and an energy shift Er during the
collision so that this approximation is more plau-
sible for high energy fast coH.isions than closure.

With this approximation of G, the coupled scat-
tering equations become

or

and then

(T + VM —Eo)uo(ro) = —V«w(ro),

(T + V —E~)w(ro) = -V+@o(ro),
(2. 13)

p(H E)pe= -pvqe,
Q(H —E)Q4= -QVP@,

(2.8)

appropriate to the description of elastic scatter-
ing from a target initially in its ground state.
These equations are formally uncoupled by defin-
ing the Green' s function

G = [Q(E+ ie —H)Q]

so that Q4 = G~ VP4', and there results

J (H-E+ vd'v)Pe= o.

(2.9)

Now all complication resides in the determination
of G and the simplest approximation is closure, '

N(r, ) =((q, ~VQV ~q, )P'. (2.7)

The quantity V can be taken to be of the same form
but not identical to V.

The specific coupled equations that embody the
ECA are generated by an approximation of the in-
elastic channel propagator suitable for higher en-
ergy fast collisions, " If 4 =PC'+ QC, where the
projection operators P and Q are as above, then
H4'= E4 becomes the coupled scattering equa-
tions"

where each term is explicitly calculable. The
elastic channel potential is V„=( P, ~

V
~ (,) and the

associated energy is E,'=E -E„with Ep as in
Hzt Pp Epfp The coupling potentials are V~ p

=(p ) V~/, ) and V« ——(P,
~

V~ P), which are identi-
cal if V is a sum of local two-particle interac-
tions. The coupling potentials represent the ef-
fects of two-particle correlations within the tar-
get 15s 16

The effective channel potential includes four
contributions: V= V~~(r, )+ J~~(r,)+Er(r, ) —E~.
The first term expresses up to three particle cor-
relations. The term J~~ exists because the inci-
dent particle cannot propagate without exciting the
target, i.e., T(r, ) does not commute with P(r„r),
so that J« —( P ~

T
~ Q) .

Finally, the energy Er (ro) = ( P ~
Hr —Eo

~ P) and
becomes, asymptotically, Er lim, „Er(ro), so-
that E~ =E -E~ is the energy associated with scat-
tering in the effective channel. As is clear from
the discussion above, our approach does not
a priori introduce a model for the target He, such
as He=p+t. We have in fact explicitly avoided
precisely such approximations in order to study
the kinematic effects and the center of mass cor-
relations.
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III. APPLICATION OF THE EFFECTIVE CHANNEL
APPROACH TO g -4He ELASTIC SCATTERING

A. mN potential parametrization

In view of the proximity of the 33 resonance" to
the energy at which pion absorption is to be stu-
died, an explicit inclusion of this mN p-wave reso-
nance is essential, and in customary fashion is
represented by use of a separable nonlocal inter-
action

(3.I)

dence given only by the energy denominator E -E„
was made simply because better fits to the re-
ported" ~N l= 1, I= —,', and J= —,' phase shifts 633
are possible in this model in which the parame-
ters y, E„, and b„are taken to be independent of
energy. This decision requires a ratio of rela-
tivistic kinematic factors A, /A, „when producing
the corresponding n -4He potentials.

The separable interaction allows an exact solu-
tion. If u, is the incoming wave and 6 is the free
Green' s function satisfying outgoing wave bound-
ary conditions, then

where the Gaussian form factor

f(r)=My r ke 'e", (3.2)

where k is arbitrary, and to facilitate the calcula-
tion is chosen to be a unit vector in the direction
of the incident pion beam. This form factor vio-
lates time reversal symmetry except for forward
scattering, but does allow an exact treatment of
the angle transformation of the m - He problem.

Obviously, the form (3.2} is very restrictive,
especially when we have chosen the arbitrary 0
vector in the direction of the incident pion. In
general, a more flexible form of f with both 8 and

y dependence should be used. However, for the
present purpose of crude analysis for a prelimi-
nary study, the form (3.2) should provide a use-
ful model. Besides, the more general case can
be added later, together with other important
modifications.

This interaction is input to a Schr5dinger-like
equation that incorporates relativistic kinematics"

(3.3)

so that the elastic scattering amplitude is

(3.6)

where u~ is the plane wave e~'", with lkl= lk'l
for elastic scattering and k '~k'= cos8.

For the Gaussian form factor chosen, all indi-
cated integrals needed to evaluate the scattering
amplitude can be done analytically. The shift
operator, proportional to the strength y, is

m

&flGlf& I 24 b„

~2 k I kX ]+
bR . b„ ' 2 '

where

where

1 6 —tplg

2p I+ /me„
is the degenerate hypergeometric function. Then

e = (m„'+ m, '+ 2m„(1; + m, ))'"—m„

and p is the reduced mN mass.
Notice that the usual method of producing a

Schrodinger equation from a, relativistic equation
with interaction results in the corresponding
Schrodinger potential

(3.4)

so that the potential parametrization made here
is that for V(r) and not for the potential V(r) that
appears in the relativistic equation. The decision
to parametrize V(r) so as to have energy depen-

(u
lf) = -~y — e ~ ~s cos 8 and

2b„

su
&u, lf) =-vy — e ' ~~R.

2bR bR

(3.8)

The normalization is such that the elastic differ-
ential scattering cross section is given by do/dQ
=

~
p(8) l

and (y, = (4v/k) Itng'(0').
The three parameters of the form factor f(r)

are chosen so as to produce the 5~ over a range
of pion energies. For the Gaussian form factor,
as ba is increased the integral (fl G lf& /y de-
creases rapidly. Since the observed 33 reso-
nance is elastic, so that energy denominators of
the E -E„+iF/2 are precluded, the entire width
of the resonance, observed to be about 90 MeV,
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must be produced by the shift operator. So as b„
is increased, the strength y must increase to
maintain the rather broad width of the resonance.
As y is increased, the energy parameter E„must
also increase, as it is constrained by the require-
ment that the interaction produce a resonance at
the experimentally observed energy E = E„
+ Re&f I~ If&

To parametrize the nN form factor, the range
b„was varied arbitrarily and the energy parame-
ter E„and strength y were adjusted so as to pro-
duce the 533 at the resonance energy T~ and at T~
= 270 MeV. Table I gives the values of E~ and y
for a range of b„with TI, = 193 MeV.

Best fits to the reported 633 for T, (TR occur
for b~ = 0.9 fm ' if T~ is chosen to be 270 MeV.
For T, )T~ and T~=270 MeV, the reported 533
is most successfully produced for b~ = 1.3 fm '.
Unfortunately, for b~ ) 1.0 fm ' the energy de-
nominator occurring in the m - He problem be-
comes too small to iterate for solution with T,
=290 MeV. So the present study must be re-
stricted to values of b~ & 1.0 fm ' until techniques
other than the iteration procedure adopted here
are used. Figure 1 shows the variation with ener-
gy of the 533 for T~ = 193 and T~ = 270 MeV and for
b~=0. 6, 0.8, and 1.0 fm

In addition to the separable mN interaction ac-
counting for the 33 resonance and effecting only
the l =1 partial wave, a local complex Gaussian
potential is used to account for the nonresonant
m& interaction effecting the other partial waves
and to generate the spin and isospin averaged in-
elastic cross section associated with charge ex-
change. This potential will be written as v~(r)
= A,„v,e ' ", where A „~ is the relativistic kine-
matic factor. The range of this local potential is
arbitrarily chosen to be the same as that of the
separable mN interaction. The nN phase shifts
for l v 2 are uncertain and for l = 1 are dominated
by 533@

The charge exchange cross section o(w p —m'n)

at T, = 290 MeV is observed to be" 19.02+ 1.0 mb.
For the purpose of describing w —He elastic

TABLE I. Parameters for the separable M interac-
tion.
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FIG. 1. Fits to the reported &33 for T~= 193 MeV and
Tq=270 MeV for various ranges of the ~N separable
inter action,

scattering, the charge exchange reaction must be
regarded as an inelastic process and so is repre-
sented by the imaginary part of the local Gaussian
potential. In the case of m - He scattering the
charge exchange reaction can occur only when
the m interacts with a proton of the 4He nucleus.
So the strength of the imaginary part of the local
m& Gaussian potential is adjusted to produce only
9.5+ 1.0 mb. Table II presents the values of the
parameters of the local nN Gaussian potential.

B. Calculation of the potentials descriptive of n -4He

elastic scat tering

The dynamical equation used to generate the state
corresponding to elastic scattering is H4= E4,
with the operator H and energy E of this equation
adjusted so as to incorporate relativistic kine-
matics. ' Thus

H( ro, r) = T( r, ) + Hr(r) + V(ro, r),
where T is the kinetic energy operator for the
pion, H~ is the target Hamiltonian, and V is the

b~ (fm ~)

0.6
0.8
1.0
1.2
1.4
1.6

y (MeV2-fm ~)

0.9783x 104

p.2973x 1p5

0.7447x 105

p.1657x 1pe

p.3334x 1pe

0.6202 x 10'

&~ (MeV)

257
281
303
325
349
373

e~(fm ')

0.8

Res~a (MeV)

-65+ 5

Imx ~0 (MeV)

-20+ 2

TABLE II. Parameters for the local mV Gaussian po-
tential at T~ =290 MeV.
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pion-target interaction so that V= A, Q,.,v(r,
-r, ). If M is the mass of He, then the total cen-
ter of mass energy is

W =(M+ m, '+ 2M(r, + m, ))'",
where T, is the kinetic energy of the pion in the
laboratory reference frame. Defining e= W -M,
the relativistically corrected operators are

Ev = (1+a, /m~) (e, —m, ). (3.13)ra 2 p»&

Then the m - He nonlocal operator appearing in the
SchrMinger-like equation is

4
V" =A, A,„ lf (ro-r())

sl

@2
T= V„

W»a

x(z, -z„) (f(r,'-F,.)f,
(3.14)

a, = [1+~/M] 'e, ,
P»a

V= [1+&/M] 'V=- A„tp
Aa

(3.10}

E= [i+~/M]'(~' —m, '},
2P.» a

where V includes the interaction of the pion with
each of the target nucleons by both the local com-
plex m& Gaussian potential and the separable mN

interaction accounting for the 33 mN resonance.
As such, Vis the sum of a local potential and a
nonlocal operator. This dichotomy is expressed
by writing

v= v'+ v". (3.11)

The relativistically corrected separable m+ in-
teraction was assumed to be of the form v"
= lf) (E -E„)'(fl, with no multiplying relativistic
kinematic factor. So the uncorrected separable
nN interaction is given by v" = v" /A, „with

with r, serving as the pion coordinate and mea-
sured from the center of mass of He.

The elastic channel potential Vpp and the coupling
potentials Vpy RIld Vyp of the ECA are functions
only of the pion coordinate r, and are derived from
the potential V(ro, r) according t o~' 4

V fu&=&a. lVfe. &lu),

v f~&=&y, fvf@& f~&, ~d (s.18)

v„fu&=& @fv f@,& lu&.

The effect of the inelastic channel potential V will
be simulated by using V~.

The functions P, and P are, respectively, the
ground state and effective inelastic channel wave
functions of 4He as described above.

The objective is to accomplish all integrations
analytically except a final radial integration over
the pion relative coordinate, with the pion wave
function assumed to be expandable in partial waves
as

A„-=~" (I+~.„/m„) '.
&v

u(r, )=g i'(2l + l)P, (cos6}
gsp

(s. i8)

Now V" =Q,., v"(r, -r, ) and V= A, V, so that
for the m- He problem the relativistically cor-
rected nonlocal operator is

V~=A A~ ' v" r, -r, .
jsl

(3.12)

The point of view adopted in this study is that
the range b„, strength y, and energy parameter
E„of the separable mN interaction are independent
of energy and are input to the n -4He problem
zoithout modification. However, the variable en-
ergy of the energy denominator is different from
that of the n+ problem because the reference
frame is now the n - He barycentric system. ""
This variable energy E~ is not the w -4He bary-ra
centric energy because E~ should be a m+ rela-&ra
tive energy and not a v —He relative energy.
That is, the interaction v"(r, -r, ) is for a nN

and not for a n - He system. So the variable en-
ergy of the energy denominator in the m- He prob-
lem is taken to be

Executing the coordinate transformations

p psl and rp: tl + 5psl y or

tl —5prl + pprp and s,= rp—
(s. Iv)

with t) =— m„(m„+m, ) ' and p, —= 1-5» and per-
forming the integrations over r2, r3, and r4 to
give the single particle density

p(r) flier ,lp I ()(-'I=: el, (3.18)

there results

r"„I~ )=(e f e(, p(r)f(, — )(E —E )'e'

x d s, s, e " '~l "+l'u tl+ ~OSl

(s. is)

Finally, under the transformation x=t, + Cps, the
potential becomes



460 JAMES A. RETTER AND YUKAP HAHN

)'"~~ )=,N"e'" f d ( )e''

x(a,r '+a x, +a' '2

+a,r, x,).
z

(s. 2o)

Notice that if e'6'0'* is replaced by a constant, this
potential becomes a sum of nonlocal separable
potentials and effects only the first three partial
waves. In this approximation the two channel
problem can be solved analytically. The constants
a, . . .a, are functions of 50 and v.

To obtain exact solutions by iteration, u(x) must be expanded in partial waves and the integral over
l

x
l

must be done numerically during the iteration scheme. Writing

kr -. 2
Rz (r)=———., aol)i"e 'z" g z (2n+ 1) dxu„(x)xe 'o" A, „(r,x),

0

the only quantity remaining to be evaluated before solution by iteration is
1 1 2zl

A,„(r,x)= dzxPz(cz) dlzP„(lz) dpe'o' *(a,r''cz' +a, x'p, +a, +a,rxnlz).
~1 0

Using '

(s. 21)

(3.22)

e~'* =g (2n+ 1)i„(rx)P„(cosl')= 4)z g i„(rx) g Y„„(O;)Y„* (fl;),
@up

with r x=xxcosf, and so the integral"

f 2 2 2T

dn dp, dPP, (cz)P„(}z)e4~'*= 5z „i,(arx),
1 -1 0

n 2~+) f n

(3.23)

(s. 24)

where the i, (arx) are modified spherical Bessel functions, the desired integration for A, „ is easily deter-
mined to be

Az„(rx)=8)z a,r'i„()fz(l, n)+a zixz(zz)f(n, l)+a, i ()z)6 z„+a4rx(i„,(z)g, (l, n) i, ,(z)g (l, n))

with
~+'

f(l, n)=2 1 2 1 2
((1+2)5„„,+ (1+1)5„,)

+ (15z „+(l —1)5„z oj

1 1 l+1
2l+12n+1 2l+3g, (l, n) =

&((1+1)u, „+n3, „g

1 1 l
2l+1 2n+ 1 2l —1

&&((n+1)5z z +1hz „),
and using z = aux as the argument of the modified
spherical Bessel functions.

So with a form factor f(r}=~yr }'ze zR", as in-
spection of the result for A,„reveals, any given
partial wave is coupled to the two next adjacent
partial waves. For example, solution for the d

(s.25)
I

wave requires knowledge of the s and g partial
waves.

The bulk of the work to express the nonlocal po-
tential operators in a form suitable for iteration
is now done. The results for the nonlocal coupling
potentials can be written down by inspection. The

Vpzt nonlocal coupling potential operator is

Voo lu)& =(Qol V"
lsd&) lu)&

V'X-'qVP lgo& l~&

=
& eo l

V'& 'V
l
4& l

~) -
& 40 l

V& 'f P.&

x ((o I
Vl 4 (s.28)

where V is taken to be a real local potential of
Gaussian form. The strength of V is arbitrary
because the normalization N is also proportional
to this strength. The normalization N is a func-
tion only of the magnitude of the vr -~He relative
coordinate. The two terms into which VRoo lzz)& de-
composes are each able to be cast in the same
form as the single term for V»lu). The r, -de-
pendent & is incorporated into the results for
V» lu) simply by making the replacement u, (ro}—u)z(ro)i&) '(r, ).
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C. Abating the mW constraints

To vary the strengths of the wN local and separ-
able potentials, regardless of constraints im-
posed by nN scattering, is tantamount to an ad-
mission of the occurrence of off-shell processes
not taken into account by the nN potential.

A pion can be absorbed by a nucleon and the re-
sult can propagate as a n particle (n, propagation),
or as a nucleon (pion absorption), and then emit
a pion of the same variety as was absorbed. If
the pion is being scattered by a free nucleon then
both of these processes have been taken into ac-
count; the former by the separable wN interaction
and the latter by the local Gaussian mN potential.
However, if the nucleon scattering the pion is em-
bedded in a nucleus then both of these processes
have been only approximately taken into account.

To further study the pion absorption process
the parameters of the mN energy independent local
and energy dependent separable potentials are
varied to produce m -4He angular distributions and
cross sections in reasonable agreement with ex-
periment over a range of energies. The associated
m - He elastic scattering wave functions do not suf-
fer from nonuniqueness to the same extent as wave
functions generated by fitting experiment at a sin-
gle energy and can be profitably used to evaluate
the pion absorption amplitude.

the n - He cross sections and forward scattering
amplitudes at T, = 290 MeV as Table III presents.
The angular distribution at T, = 290 MeV was not
measured, but the measured angular distributions
at the energies ranging up to 260 MeV have one
common feature that would probably be character-
istic at T, =290 MeV. The first minimum is near-
ly independent of energy from 110 to 260 MeV and
occurs at about e, = 75'. The optical point at
T, = 290 MeV can be generated from the measured
total cross section and the ratio of the real to
imaginary part of the forward scattering ampli-
tude according to

(3.27)

So for T,= 290 MeV with p as given in Table III,
the optical point falls in the range

93mb/sr ~ —(e = G') ~ 134 mb/sr.
do'

dQ

On the basis of the trend of the angular distribu-
tions from 180 to 260 MeV, the large angle scat-
tering at 290 MeV should be about the same or
somewhat less than that at 260 MeV.

The results of three different kinds of calcula-
tions will be presented. The calculation will be
called nonlocal if the m - He interaction V results
from only the separable mN interaction

D. Results for m -4He elastic scattering

The pion absorption amplitude will be calculated
for a pion laboratory kinetic energy of T, = 290
MeV and compared with the experimental results
at that energy. The pion absorption amplitude
calculation requires the 7t -~He scattering wave
function at T, =290 MeV.

Elastic m - He scattering has been experimental-
ly studied" for pion laboratory kinetic energies
ranging from 110 to 260 MeV. Angular distribu-
tions, total and inelastic cross sections, and the
real part of the n -4He forward scattering ampli-
tude have been measured. Additionally, the n - He
total cross section at T, = 290 MeV has been mea-
sured. Table III gives the experimental results
for n - He elastic scattering at T, = 260 MeV.
Extrapolating these experimental results provides

(3.28)

with

and f(r)=Wyr ke 'R" as described above. The
standard paramters for v" are chosen to be b„
= 0.8 fm a and E„and y as fixed by the mN 33
phase shifts to be E~ =280 MeV and y=0. 2937
& 10 MeV-fm

If the m - He potential V results from the sepa-
rable mN interaction and the complex local Gaus-
sian potential with the strengths and range of the
latter adjusted to generate the spin isospin aver-
aged l = 0 phase shift, then the calculation will be
called constrained. In this case the m - He poten-
tial can be written as

TABLE III. Experimental results for & —He elastic scattering of T „=260 MeV and extra-
polated value at 290 MeV.

T» QEeV)

260
290

0'g [mb]

235
215

o, [mb]

155
140+ 5

m [fm]

-1.0
-1.0+-1

2

~g(O ) [mb/sr]

100
114+2

1st min

75'
75'
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V=A, A,„gv" (r, -r,)+A„g v (r, -r,),

with
2

V„=V e

(3.30)

(3.31a)

(s.slb)

(s.29)
2

with v~ (r) = vie 'I" . The standard set of parame-
ters of the local wN potential v~ are chosen to be
v~o = (-65 —20i) MeV and b~ = 0.8 fm '.

An unconstrained calculation will be one in
which the strength of the local nN potential and
the parameters of the mN separable interaction are
varied to produce the observed characteristics of
m - He elastic scattering at T, = 290 MeV without
regard for the spin isospin averaged l = 0 phase
shift. In such a calculation the n -'He potential
is written as

4 4

+= A A g v„r] —r() A v„rg —ro

still too large. The primary effect of increasing
the real part of the local potentials in the con-
strained and unconstrained calculation is to in-
crease the inelastic cross section and to pull in
the first minimum. Increasing the range b of the
potential v has the predictable effect of squelching
the real part of the forward scattering amplitude
and at the same time allowing more interaction so
that v, and correspondingly Imp(0') increase, with
the result that p decreases.

The usual effect of the second channel is to in-
crease the large angle scattering. However, this
scattering is already large in the single channel
calculations. This situation is perhaps traceable
to the use of the separable w& form factor f(r)
=~yr ke ~&' with k arbitrarily taken to be in the
direction of the incident pion beam in violation of
time reversal symmetry.

In the unconstrained calculation the addition of
the width I' to the n - He energy denominator EDf 0-E„+iI'/2 has the effect of softening the target
so that the large angle scattering is further de-
creased as well as providing an energy dependence
of the m - He scattering features more closely
aligned with experiment.

The strength of the local potential 7~ of the con-
strained calculation is. not well defined and a de-

with f(r)=War ke '&' . The standard strength of
v „~ is chosen to be v, ~ = (-30 —40i) Me V, and the
standard parameter set of the separable interac-
tion in the unconstrained calculation is E~ = 260
MeV and I"=200 MeV, and with b~ and y as in the
nonlocal calculation.

In each kind of calculation the range of the local
potential v= v,e '" associated with the n -'He local
potential ~ used to generate the inelastic channel
pseudostate function P=N 'QVPg, is taken to be
b=0. 8 fm '. As noted above, the strength v, is
arbitrary because ~ is proportional to that
strength. Finally, as measured from e - He scat-
tering, the exponent of the single particle density
p(r)= (4v)/(sw) i e ~ ~+ is taken to be v= 0.57
fm

The angular distributions and other pertinent
results associated with these three different cal-
culations are presented in Figs. 3-5 in which,
for comparison, the angular distribution as mea-
sured at T, =260 MeV is shown.

The angular distributions resulting from the
single and two channel nonlocal calculations pre-
dict much more large angle scattering than would
be expected on the basis of the experimental stu-
dies at T, = 260 NeV and below. The addition of
the absorption potentials in the constrained and
unconstrained calculations significantly decreases
this large angle scattering although it is probably

IO::2..
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E
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O.
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P (0«
f (0«
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i 70 I frn
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I
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I

100 I 20 I 40

FIG. 2. Angular distribution for 7r —He elastic scat-
tering at T, = 260 MeV resulting from unconstrained cal-
culation. The experimental points are for T, = 260 MeV.
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FIG. 3. Angular distribution for 7r - He elastic scat-
tering at T = 290 MeV resulting from nonlocal calcula-
tion. The experimental points are for T,'= 260 MeV.

crease in the real part of this strength by forty
percent will still produce reasonable mN results
but will increase do(0') for the r -'He problem to
about 80 mb jsr.

Each of the three kinds of calculations can be
made with the coupling potentials set to zero, and

a "one channel calculation" results. These angu-
lar distributions are also presented in Figs. 2-5.
In the one channel calculation the inelastic compo-
nent of the n -4He scattering wave function is iden-
tically zero and the elastic component differs from
the result of a two channel calculation. The one
channel calculation includes the coupling among
the partial waves of the elastic component.

In the two channel calculation each partial wave
of the elastic component is coupled to itself, to
its two next neighbors, and to three partial waves
of the inelastic component.

Caution should be exercised so as not to confuse
the results of these one and two channel calcula-
tions to similarly entitled calculations of the pion
absorption amplitude as described in Sec. 5. In
the latter case the so-called single channel calcu-
lation is made by neglecting the contribution of the
inelastic component of the m -4He scattering wave
function to the pion absorption amplitude. How-
ever, the elastic component of the m - He wave

-3
10 I

2 0 40 60 80 100 120 140

8 (deg)

FIG. 4. Angular distribution for 7r - He elastic scat-
tering at T, =290 MeV resulting from 7rN constrained
calculation. The experimental points are for T, = 260
MeV.

function used in the single channel pion absorption
calculation is the elastic component of a two chan-
nel 7I -4He elastic scattering calculation.

IV. GENERATION OF THE n-3H ELASTIC
SCATTERING STATE

Insufficient experimental information precludes
application of the ECA to the n-'H elastic scatter-
ing problem at the energy associated with the pion
absorption reaction being studied. ' The angular
distributions and cross sections related to the
n-'H scattering problems have not been measured.
The n-'H problem is thus treated in single chan-
nel approximation using a Woods-Saxon potential
in conjunction with a very short range Gaussian
local potential to describe the large angle behav-
ior. The Coulomb interaction is neglected and
charge-independence of the strong interaction is
assumed so that the potential parameters are ad-
justed to agree with the p-'He elastic scattering
angular distribution at T„=582 MeV. This poten-
tial is then applied to n-'H elastic scattering at
T„=556 MeV and the resulting wave functions are
then used to study the pion absorption reaction
4He{m, n) 'H at T, = 290 MeV. "I '
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FIG. 5. Angular distribution for 7t = He elastic scat-
tering at T,= 290 MeV resulting fromunconstrainedcal-
culation. The experimental points are for T, =260 MeV.

FIG. 6. Angular distribution for n- He elastic scat-
tering for &„=582 MeV. The data are as in Ref. 22 for
p- He elastic scattering with T&= 582 MeV. The optical
point is generated from p- He elastic scattering data of
Ref. 20.

The Woods-Saxon potential is written as

V (r)= V (1+e ')(1+e'" ' '}' (4.1)

with m being the radius of the potential at half
maximum and where d is a measure of the sur-
face thickness. The local Gaussian potential is
written as

tion reaction He(w, n) 'H an explicit expression
for the 'H ground state is needed. So as to be
able to perform the integrations involved in the
evaluation of the pion absorption amplitude, the
ground state for 'H is parametrized as the Gaus-
sian

Ve(r)= Vee '" (4.2)
3

(4.&)

and a plausible fit to the p-'He elastic angular
distribution at the proton laboratory kinetic ener-
gy T~ = 582 MeV results with Ve = (-2 —50i) MeV,
zo = 1.45 fm, and d = 0.29 fm corresponding to a
surface thickness of 1.27 fm for the Fermi poten-
tial and with Ve = (250 —100i) MeV and a = 6.0 fm 2

of the Gaussian core potential. This parametriza-
tion also produces a total cross section v, = 85 mb
or about -' of the total cross section of the more
often studied p- He scattering system and a ratio
of the real to imaginary part of the forward scat-
tering amplitude p= -0.034 also in agreement
with what would be expected from studies of p- He
elastic scattering. The n-'H potential and result-
ing differential scattering cross section are shown
in Fig. 6.

In evaluating the amplitude for the pion absorp-

with the normalization C, defined by

dr, tt}, '6 —' r, =1.

In customary fashion, the Dirac delta function is
included in the integration over the bound nucleon
coordinates so as to incorporate the constraint
that Q',., r, =0 so that, the r, are measured from
the center of mass of 'H and are not independent.
The normalization C, is easily found to be

(4.4)

and, from electron-'He scattering studies, the
exponent" n= 0.45 fm '.
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V. FORMULATION FOR THE DESCRIPTION
OF PION ABSORPTION

where II'f, depends on the partial waves of the
neutron and pion scattering wave functions and 8
is the scattering angle.

To begin, the static form of the pion absorption
operator is written as

H'=zF, „~ v7 y, (5.2)

The final stage of the present study is the ex-
pression of the amplitude for the reaction 'He(v,
n)'H in terms of a radial integral over the partial
waves of the n-'H scattering function with the ra-
dial component of the pion production operator
acting on the partial waves of the w -'He scattering
function. That is, from the general expression
for the transition amplitude Mz,

——&f lH' li ) with

l
I) representing the elastic scattering state of the

v - He system, and lf) representing the same for
the n-'H system and H' being the pion absorption
operator, all indicated integrations must be ac-
complished except that over a final radial coordi-
nate so that M« is then expressible in the form

~0

M~, =I A, (e) I dr%~((r), (s. I)
lwO 0

where, for the particular reaction considered,

q=E; *j=(2~,)'~'(q, -iq„)=(»,)'~*(I, i, O)

(s.s}

so that P includes the relativistic weighing of E, ' '
and then

4v(a c)'
(mc')*

with f'=0.080+0.005. The spatial part of the
pion field is imbedded in the initial state ~i) and
is normalized by unity as is the continuum neu-
tron wave function of the final state lf).

Now the m -4He elastic scattering state is repre-
sented by

li) -=4, = fu, (r,)q, (r„r„r„r,)
+ p(r„r„r„r„r4)so.(r,))iI=0, S =0),

(s.4)

where ~I=0, S =0) is the isospin and spin structure
of the target 4He and all unprimed coordinates are
measured relative to the He center of mass.

The state lf) is the elastic scattering state of
n-'H and is written as

lf)„, =- 0 "' =u„( r', )g, ( r,', r,', r4)
)l

I' = —,'M,' = -', S' = —,'M,')
l —,
' —

—,
' ) l

-', m, ) (s.s)

so that this state has total isospin 1 as it must for
isospin to have been conserved in the course of
absorption.

To compute the inner products of the absorption
amplitude in spin space and isospin space use &

=1/v 2(T, i73) =W-2r with r (',)= (,) and write

sg"~ =& ', m, ~&
', ',-I& ', -', ',M,'lc--v, T-I-i=--o, s=o&.

(s.s)

r,'=r, + 3r1 for i=1,2, 3,4. (s.8)

The associated contribution to the absorption
amplitude is

f

latter measured from the center of mass of He.
This transformation is accomplished by reference
to Fig. 7. Using X4 ———,'Q,., p, and Xs=sZ(mph~
where the p, are measured from the origin of an
arbitrary reference frame, the transformation is

Now define e.V, = c'd + cr d, + 0 "d, with d, = V,
+iV, and do= V, and with a' and (r as the nu-
cleon spin raising and lowering operators so that,

The inner products in configuration space re-
Inain to be evaluated. To integrate over the coor-
dinates of the 2, 3, and 4 nucleons, the overlap
of g, with [I[, must be determined. It is expressed
in terms of coordinates measured from the center
of mass of 4He by

4

(„(r,[=fI; ur, (, (r,' [r Jl(,(r )5 [ I r,),i~1 $~1

(s.7)

Nucleon I r,

Pion

NUcleon 2
}

I

H

with r~~[T,»~] being the expression of the primed
in terms of the unprimed coordinates, with the

FIG. 7. Depiction of the various coordinates used in
the calculation of the absorption amplitude.
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x [3P//'m
)

-Ar

(5.9)

where% "ms, is determined by evaluating it first
in pion coordinates r, and then evaluating the re-
sult at the position of nucleon 1 so that r, —r, .
Finally, the outgoing neutron wave ug(r,') must be
expressed as a function of coordinates measured
from the center of mass of He so that r,'- —,

Then the amplitude for the transition from the
single initial state to the final state characterized
by the quantum numbers M,' = 2 and m, = -2 is
given by

"I ('I

I

} l
I I

I
I

II

Y

(f )
H') i),= f V 2 d r,u„( r,')[--',d~, ]IOO(y, ) .

(5. 10)

The nucleon wave function ug(r,') is expanded as
~0 I

u„(r,') = g i'4~ g &, (n, ) &+ (n, )
l ~ 0 nt ~-1 k y'&

(5. 11)

FIG. 8. Qlustration of the orientation of the coordinate
system used in the evaluation of the plane wave Born
approximation of the absorption amplitude.

by reference to Fig. 8, so that 9 is the scattering
angle. Thus the above transition amplitude be-
comes

+ (f~H'~f) =0-i — i'4rY~(Q&) dr Iooe V&~ (Qe)Z. W2, 00 $tn 6 k yr

l'+1 d l' u (y)
2l'+3) dr r k r

l' d l'+1 u, , (y)
{21' 1)~/2 dy y j I'+&0

k,r

N

Cl

0

(5.12)

and all that remains is the radial integration involving the numerically computed partial waves uN and u, ,
To complete the evaluation of the amplitude to the state characterized by the quantum numbers M,' = -,' and

m, = ——, the term, (f ~H'~i)@ must be added to, (f ~K'~i), and a prerequisite for the determination of the
former is the evaluation of the overlap

(5.13)

with

p(ro, r»~)=N '(yo)QVPg (r»3~)
4

4& 3/f2 " 2=N '(y ) 0 e ''"~"&' —4i e-4bvro //4w+9k)
q ( r )0 4v+ 35 o 1234

gal

Under the transformation r,'= r, + 3 r, for i = 1,2, 3, 4 and with r,= r, this overlap is found to be

(5.14)
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3/2 4 3/2 ~ 3/2 4v 3/2 . - 2
I (r )=N '(r )4' C C i) e " ' " — 1-4 - e ~4" '~'~""x

0@ 1 1 +v 3 4 0 . 3 n+ v 4v+3b

7r 3/2

(8/4)(o + v) + b

b2x, 2 '7 b(o + v)r&

3 4 + +b 12 3 4 + )+b

3/2 4 3/2
H(x~—)IO~ — (1 +fo~ (r~)} + go~ (r~) e ""i (5.15)

and is a function only of the magnitude of r, so that the angular integrations accomplished for, (f IH I 1),
are the same as those for „, (flH'li)0~. This latter term can be written down by inspection using the re-
placements that

'/' 4»2
u, (r) —u), (r) and IOO-I, ~N '(r, } — (1+f0~(r,)) +go~(r, )

L

(5.18)

with 10, f, , go~, and A as Eq. (5. 15) defines. For the case that M,'=-,' and m = --', this prescription pro
vides

Ftg 1 3 1 ~ r', &fIH'Is)~= i~-~ —
b ~ i' '4 Pv, (c os}eE @kg

3/2 4 'II3/2

dr Io~e ""l)I '(r) —
I (1+f,~(r))+g, (r) „u(r').o+v 3]

(5.17)

So it is not necessary to evaluate „, (flH'li)~ because all except the numerically performed radial inte-
gratxons are identical to those calculated in evaluating „, (f H' li), and the form of the radial integration
is able to be obtained by prescription from that for „. (f fH' i), These. two terms are combined to form
the amplitude

u~, &flH'li& = ~Mr =;.,&flH'Ii&o+'~, &fIH'll&. (5.18)

The remaining amplitudes to be evaluated are for M,'m, = -+, ++, and -- and by inspection, (f I
H'

I i&,
= —,(f IH'Ii&0. The last two amplitudes are

„(f)H'(') = '~ W2 f ur, „(r,)[ ',d]) (r)'=, ,

=i~ ~ (4v) ' — pi' 'F, ,(n )

l(l+ 1} '~ d lx dr u„(r )100(r) ——+- u, , (r)b, , „
+ —+ u, , (r)5. .. , (5.19)d l-1
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rN(fl)(-'I') =' ' (2 f dr, (r', )[-', .d. ] ( r(„),
~E,

=i~~(4z)'~2 —„Qi' 'y, ,(f) )
E, 2 N l, l'

f(1+1) '~'-
d~~, (r)f„(r) „„, ——+-., (r)5, „.,

0

+ —+ u, (r)5. .. , (5.20)
d l-1

dr

so that all amplitudes have been expressed in the
desired form

My,
——Q A, (e} dru. stf~))(r}.

The angular distribution for the absorption reac-
tion is then given by

I

the amplitude and angular distribution for pion ab-
sorption can be evaluated analytically. " Taking
k, = k,z and k„ to make angle 8 with z and angle f
with r, and rotating the axis with respect to which
the integration is done so that k„'n has no y com-
ponent, the amplitude

i FrN
(f

~

H'
~
i),= —— d rug( r')[d~, ]IX(r)2~g

dQ j;„,k Mfi p Ef (5.21)

If the two particles of the final state are desig-
nated by 1 and 2, with 2 representing the residual
nucleus, and the two particles of the initial state
are indicated by 3 and 5, with 4 being the target
nucleus, then the density of final states factor is

with dou, = 8/(]ze' r' = ik, e'&' and using k„=- 4 k„
and with u„(r') =e""'"' is readily evaluated in
cylindrical coordinates to be

1 P~E~E2
&"~}=(a.a) cE, ~

where

(5.aa) x 00 r
r

(6.2)

Ei —E +E =(p c +m c)
+(p,'c'+ m, 'c'}"

in the barycentric reference frame so that p, = -p, .
Finally, if the scattering functions u, and uN are
normalized to plane waves, then the incident flux
is just the velocity of the incident wave

S&g
Piflie

3

and so the angular distribution becomes

dv Es av kk)E~Ez 1

dn cack, tf c'E, (ave�)',

(5.as)

(5.24)

VI. RESULTS FOR PION ABSORPTION

In the case that the outgoing neutron and incident
pion wave functions are taken to be plane waves,

As the absorbing nucleus becomes increasingly
massive the density of final states factor p(E&)—(ash )'p,E,/c' so that Eq. (5.24) is, in this
static limit, in accord with earlier calculations. "

with A= -' v/2 as above. Expanding the angular
3

dependent exponential in Legendre polynomials

e r~)))'"~ ~ =Q (al + 1)i,(k, k„/2A)P, (cose)
fa0

(5.s)

allows an expression for the contribution to the
total amplitude from each free partial wave in
terms of the modified spherical Bessel functions
i, (k, k„/2A). This analytic zero order fth partial
wave amplitude was used as a test of the accuracy
of the numerical integration used to calculate the
partial wave amplitudes when the full scattering
states were used instead of plane waves. The inte-
grand of the numerically computed radial integral
oscillates with a period of s1 fm and is damped by

2 2
the Gaussian e ~ """" with ~ v/2 = 0.8 fm ' so

3
that the integration must be continued out to r
=4 fm and cancellation occurs. The resulting
numerically computed partial wave amplitudes and
the corresponding analytic partial wave amplitudes
agree to no better than 2/00' for l ~ 2 but the agree-
ment improves to better than within 0.5% for the
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channel included. These two different results will
be called the two channel and single channel angu-
lar distributions.

The angular distributions resulting from the
7I - He nonlocal, constrained, and unconstrained
calculations are presented in Figs. 10-12. Figure
10 shows the single and two channel angular dis-
tribution generated with only the nonlocal poten-
tial. Figure 11 results from the wN constrained
m - He elastic scattering wave function and Fig.
12 is the angular distribution for the unconstrained
7t - He elastic scattering wave function.

As most studies have determined, the calculated
angular distribution is rather sensitive to the ini-
tial and final scattering states. For very small
angles the contribution to the absorption amplitude
by the second channel does not have great effect
but the structure at large angles depends strongly
on the contribution by the inelastic component of
the v —He elastic scattering state.

Experimental studies of this pion absorption re-
action at T, = 200 and 100 MeV' produce angular
distributions with a well marked dip at 0, =- 70 .
This dip is thought to be suggestive of the domi-
nance of the (3, 3) vN resonance" and not a dif-
fractive effect because it is independent of the
incident pion energy. The single channel angular

distributions calculated with the mN constrained and
unconstrained m —He elastic scattering wave func-
tions do produce a dip at 8, =—70' but the two
channel angular distributions determined with
these scattering states have a very pronounced
dip at 8, =—54'. When the m - He elastic scat-
tering states are generated solely with the nonlocal
interaction the dip occurs at 8, =70 only if the
inelastic component of the m - He scattering state
is included.

VII. DISCUSSION

The great sensitivity of the pion absorption re-
action to the elastic scattering wave functions
used in its evaluation is a useful theoretical tool.
Before this sensitivity can be used to advantage,
however, the initial and final elastic scattering
wave functions must be systematically generated.
The explicit inclusion of b, propagation and pion
absorption is apparently a prerequisite to the sys-
tematic generation of the ~ —He elastic scattering
state. Inclusion of only the 33 resonance in the
manner of this study has produced inelastic cross
sections which are much smaller than is experi-
mentally observed. Such a modification could be
necessary to suppress the large back angle scat-
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FIG. 11. Angular distribution of emitted neutrons re-
sulting from constrained ~ -4He calculation compared
with experiment for T,= 290 MeV.

FIG. 12. Angular distribution of emitted neutrons re-
sulting from unconstrained ~- -~He calculation compared
with experiment for T,= 290 MeV.
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tering.
Nevertheless, valuable machinery now exists for

probing features of N-nucleus and n-nucleus dy-
namics which only weakly effect elastic scattering
angular distributions. The effective channel ap-
proach has been quite successful in describing N-
nucleus elastic scattering, "and when additional
n-'He elastic scattering data become available,
the final state wave function of the pion absorption
amplitude will be more weQ defined. Then all
study can be focused on the systematic determina-
tion of the m - He elastic scattering wave func-
tion. The combined discrimination of the pion
absorption amplitude and the elastic scattering
angular distribution should reveal defects in the
7t —He elastic scattering wave function.

The present work obviously requires much addi-
tional refinements before its result can be com-
pared more meaningfully with experimental data.
Thus: (i) improved parametrization of the vN pa-
rameters and solutions of the elastic problem
across the 33 resonance region is very important.
(ii) The & propagation inside the nucleus and the
absorption effect should be treated more care-
fully, either by an additional effective interaction
or by modifying the inelastic y channel. The
double counting problem between the v and this

new term should be dealt with. (iii) The EGA
treatment of the nt scattering requires additional
experimental data, although the theory as it was
applied to the P4He problem earlier should be good
enough. Effect of the inelastic component of the
4„, on the pion absorption amplitude is yet to be
estimated. Finally, (iv) the Galilean invariant
term in the pion absorption amplitude should be
evaluated incorporating the full C, and 0„,.

Note added in proof. Recently, an experimental
data on m +4He elastic scattering at 295 MeV was
reported by J. Kallne et al. [Phys. Rev. Lett. 45,
517, (1980)]. The general trends deduced earlier
from the lower energy data persist, with a small
dip near 8, =75'. A much deeper dip was seen
also at 8, =110'.
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