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Effect of the Pauli principle in elastic scattering
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The effect of imposition of the Pauli principle for two-fragment elastic nuclear scattering is examined. It is shown

that the antisymmetrized problem can be cast into the Lippmann-Schwinger form with an effective interaction in

which the effect of the Pauli principle is entirely absorbed into the effective interaction potential operator. This
result enables the formalism to be developed in analogy with the unsymmetrized formulation. Central to the

approach is the choice of the off-shell extension of the transition operator. Comparison is made with a previously

proposed treatment based on a different off-shell extension. It is shown that both the antisymmetrized transition

operator and the associated optical potential proposed herein are readily expressed as spectator expansions in which

the effect of the Pauli principle among the active fermions is incorporated in a physically appealing fashion at each

stage of the expansion.

NUCLEAR REACTIONS Antisymmetrization incorporated in elastic scattering
and optical potential theory. Multiple scattering series and spectator

expans ion.

I. INTRODUCTION

Recently a treatment of identical fermions in two
fragment elastic nuclear scattering has been pre-
sented. " In that development, the imposition of
an off-shell unitarity criterion leads to the Alt,
Grassberger, and Sandhas (AGS) off-sheil exten-
sion of the transition operator. ' A number of bene-
fits are associated with that approach. In this pa-
per we offer an alternate, but related, discussion
of the antisymmetrization problem in the multiple
scattering formalism. The treatment suggested
herein has the advantage that is is completely
analogous to the usual unsymmetrized Feshbach, 4

Kerman, McManus, and Thaler (KMT), ' and spec-
tator' results, but with the effects of the Pauli
principle explicitly exhibited in a physically com-
pelling fashion. We believe this point of view to be
particularly wel. l suited to application of the multi-
ple scattering formalism to intermediate energy
problems.

We begin by showing that the fully antisymme-
trized problem may be dealt with by means of a
Lippmann-Schwinger equation, and hence treated
in a manner similar to the usual Feshbach tech-
nique for nonidentical particles. To obtain this
Lippmann-Schwinger equation we use a particular
off-shell extension of the transition operator (T).
The Lippmann-Schwinger equation so obtained is
necessarily written in terms of an effective inter-
action V which incorporates all of the effects of
antisymmetrization, and whose properties we ex-
plicate. This result is compared to the treatment
of the same problem with the use of the AGS off-
shell extension of T.

II. A LIPPMANN-SCHWINGER EQUATION
FOR THE ANTISYMMETRIZED

TWO FRAGMENT PROBLEM

We begin by writing the unsymmetrized scatter-
ing eigenstate of the full Hamiltonian H as

where

G '=E-H +i&,

G '=E —H+se,

(2)

(3)

and
~

Q~ ) is an eigenstate of H with energy E
The state

~ @ ) consists of the internal wave func-

The effective interaction V is then used to pro-
vide an expression for an antisymmetrized optical
potential operator U. The same operator is also
derived without the intermediary of a Lippmann-
Schwinger equation. Similar manipulations lead to
the antisymmetrized optical potential operator'
U based on the AGS off-shell extension of T. The
two results are compared. The common, crucial
ingredient in both optical potentials is that they are
defined, as in Ref. 1, through the usual less than
fully antisymmetrized projector.

Finally, we show how the antisymmetrized opti-
cal potential PUP may be readily expressed in
terms of a spectator expansion in which the effect
of the Pauli principle among the active fermions
is fully incorporated in each term of the expansion.
The first term of this expansion is the usual first
order Watson' or KMT (Ref. 8) result, with t con-
sidered to be the antisymmetrized two-body transi-
tion operator, as expected.
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under the circumstance that the projectile, particle
(0), interacts through two-body forces with each
of the Q target nucleons. '

The state vector with which we must deal, how-
ever, is not that of Eq. (1), but rather the anti-
sy mmetrized ket P), given by

~
g) = 8

~
P) = QQ

~

Q' ) = 8GG '
~

@' )

(6)

where 6,

( Ia)

is the full unnormalized antisymmetrizer for the
problem, ' and 8 is the antisymmetrizer between the
two fragments. In the case of nucleon-nucleus
scattering, for example,

«& (Vb)

where E« is the exchange operator for the pro-
jectile (0) and identical fermion (i).

With these preliminary definitions disposed of,
we now turn to the antisymmetrized Metier wave
operator Q defined in Eq. (6). We write Q as

Q=GSG -'=1+G (G 'GftG '- G ') (Sa)

=1+G,[V GGG '+(8-1)G, ']
=1+G t',

(Sb)

(Sc)

where the resolvent identity for G has been used in
going from Eq. (8a} to Eq. (Sb}. The operator f' is
defined by Eqs. (8) to be

i = V™8GG '+(8 —1)G, ', (9}

which we refer to as the (symmetrized) AGS
choice' of T. This form of transition operator has

tions of the two bound fragments in their states
of lowest excitation and their relative plane-wave
motion denoted, respectively, by subscript eo and
superscript k. The channel n corresponds to a
particular arbitrary assignment of the identical
nucleons to the two clusters and is referred to as
the unsymmetrized elastic channel. The internal
wave functions of the fragments are taken to be
properly antisymmetrized, that is

(4)

where R is the normalized (R ' =R ) antisym-
metrizer internal to (but not between) the two
fragments. The difference H-H = V' is the inter-
action between the fragments. For the special
case of nucleon-nucleus scattering, to be dis-
cussed in detail later, we have R =-R, where R
simply antisymmetrizes the target, and

A

V =Pv„.=Pv, , (5}

=1+G V GG '=1+G T. (12)

However, since T = V Q, Eq. (12}can be written in
the Lippmann-Schwinger form as

Q=1+G V Q,

whereas Eq. (8c) cannot be so expressed, since
i'e V Q. The fact that Eq. (Sc) does not represent
the solution of a Lippmann-Schwinger equation of
the usual form is not necessarily a severe limita-
tion. However, the question does arise as to
whether the antisymmetrized problem can be man-
aged so that the convenience of the Lippmann-
Schwinger equation may be retained. To this end
we define a wave operator Q such that

Q=1+G 7, (14)

where T is given by Eq (10). . In that case one may
recognize Eq. (14) as being the solution of

Q=l+G f'(I+G, T) 'Q,

which we cast in the form

Q= 1+G (V~ft[1+G V (ff —1)] ']0

(15)

(16)

by substitution of Eq. (10) into Eq. (15). We then
define

V= V~Q[1+G V (8 —1)] '

so that Eq. (16}takes on the familiar form

Q =1+G VQ, (18}

where all the effects of antisymmetrization have
been absorbed into the effective potential V. The
assertion above, that Q cannot be cast in this form,
can now be easily appreciated. Namely, if we wish
to define Q by means of the Lippmann-Schwinger
equation,

Q =1+G.VQ, (19)

then we must define V to be

V= 9'(1+G g') ', (20)

in analogy with Eq. (15). The problem is that the
operator (1+G t) cannot be inverted" since

a different off-shell extension from the standard
antisymmetrized form T given by

T= V HGG (10)
and it is this difference that was exploited in Hefs.
1 and 2. The two choices of T are obviously re-
lated by

y' = T + (8 —1)G

The use of the AGS form f' in Eqs. (8) arises in
a most natural way, in complete analogy with the
standard unsymmetrized relation

Q=GG '=1+(G —G )G
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(1+G i') = 8GG~ ', (21)

(22)

Fu rthermor e, the relation

T= V 8Q = VQ = V 8[1+G V (8 —1)] 'Q, (23)

suggests that

Q = [1+G V (8 —1)] 'Q . (24)

and 6 does not have an inverse.
It remains to be shown that the wave operator

Q possesses useful properties. By comparison
of Eq. (19) and Eq. (14), we infer that

T= VQ.

verted. We remark once more that the absence
of a Lippmann-Schwinger equation is not a fatal
defect, but rather that the existence of such an
equation facilitates many further considerations.

III. THE ANTISYMMETRIZED OPTICAL
POTENTIAL

A direct consequence of the existence of the
Lippmann-Schwinger equation for Q, Eq. (18}, is
that one can immediately apply well-known tech-
niques to obtain an optical potential for the fully
antisy mmetrized problem. Foil.owing Feshbach, '
for example, we write Eq. (18) as

In fact, we have from Eq. (14)

Q=1+G V 5GG

which with the definition Q = GG ', gives

Q=(G G'+G V 8)Q

or

Q=[1+G V (8 —1)]Q,

(25)

(26}

(27)

Q =1+G VPQ+G VqQ,

where P-=P is the usual projector onto the un-
symmetrized elastic channel n, with g =1 —P.
From Eq. (35) one immediately obtains

qQP={1 —G QV)-'G QVPQP

so that

which yields Eq. (24) immediately.
An alternative derivation may help to provide

a physical interpretation of Eq. (24). We write

PQP=P+G~P[V+ V(G, ' —QV) 'qV]PQP (37a)

=P+G PUPQP (37b)

with U defined to be
Q = 1+G V Q =1+G (V, + V2)Q

=(1 —G V, } '(1+G V, Q)

= (1 —G V2F(1+G V GG '),
and then choose

V, =V 8

(28)

(29)
or

U= V+ V(G, ' —QV) 'QV

= V[1+ (1 —gG V) 'QG, VJ

= V(1 —QG V) '=(1 —VQG ) 'V

U= V+ VG QU.

(39a)

(38b)

(39)
and

V, = —V (8-1). (30)
On the other hand, we have from Eq. (23)

T= V+VG T (40a)
One then finds

Q=[1+G V (8 —1)] '(1+G T) (31)

= [1+G V (8 —1)] 'Q. (32)

=(G '+ V~8) 'G 'Q

so that

Q = 8Q = 8(G '+ V 8) 'G 'Q .

(33)

(34)

Again, we remark that the relation between Q and
Q is such that inversion of the operator in Eq. (32)
leads to a Lippmann-Schwinger type of equation
for Q in terms of Q, whereas a similar relation
between Q and Q does not exist because the oper-
ator to the left of Q in Eq. (34) may not be in-

The formal relation between the antisymmetrized
wave operators Q and Q is also easy to find. We
note that Eq. (32) implies that

Q = [G '+ V~(8 —1)J 'G 'Q

so that

T= V+ VG PT+ VG QT,
which when combined with Eq. (38b) yields

T= U(1+G PT) . (40b}

PQP = (1+G PT)P, (42)

For elastic scattering the antisymmetrized tran-
sition operator PTP is then given by

PTP =PUP+PUPG PTP. (41)

The "one-body" operator PUP is, of course, an
optical potential in which the effects of the Pauli
principle have been appropriately taken into ac-
count. We shall discuss the practicality of this
form of the optical potential shortly.

At this point we wish to obtain the optical poten-
tial without the intermediary of a Lippmann-
Schwinger equation. Since Q is given by the ex-
pression in Eq. {14)we can immediately write
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from which the relation

PQP=P[1+G T(1+G+T) 'PQP] (43)

follows straightforwardly. We then consider Eq.
(43) to be in the form

PQP=P(1+G OPQP},

from which we identify U as

U= T(1 +G PT) '

(44)

(45)

or

T= U+UG PT. (46)

Comparison of Eq. (37b) and Eq. (44) or Eq. (40b}
and Eq. (46), of course, indicates the identity of
the optical potentials defined by the two methods.
Insertion of the definition of T, Eq. (10), into Eq.
(46) then yields

i=U+UG PV'=U+FG PU.

Using Eq. (11) in Eq. (54), one finds

(54}

tension of the transition operator i, given by Eq.
(9). That is to say, although Q does not satisfy
a Lippmann-Schwinger equation of the familiar
form, PQP presumably does. To see this, we fol-
low the same steps as those above. We write, in

analogy to Eq. (42),

PQP = (1+G P7')P (52)

and then

PQP =P{1+G [i'(I +G PV') ']PQP)

=—P(1+G UPQP), (53)

from which we identify U as the operator which
satisfies the relation

or

VIGGG ' = U+ UG PVIQ GG (47)
(Q+8P}U=i'- 7'PG U, (55)

which with the aid of the definition of V' and the re-
solvent identity for G gives

(49a)

= V'8[1+G,V (8-1)—G,QV 8] '

or alternatively

(49b)

U= V 8{1-G [QV —PV (8 —1)])'. (50)

V Q=UG G'+UG PV 6 (48)

from which one obtains the explicit result for U,

U = V 6(G G '+ G P V Cf) '

(Q + G 'G8, P) U =i'
~ (56)

Insertion of the definition of E into Eq. (56) yields

(G 'G Q+8P}U=G 'G [V QGG '+(8 —l)G, ']
= V G, 8G '+G 'G, (Q —1)G, '

= V'+ (8 —1)G

so

These forms are easily reconciled with Eqs. (38).
The result of Eq. (50) is to be compared with the
unsymmetrized Feshbach result analogous to Eq.
(38b), viz. ,

or

(Q + 8P) U = V + (8 —1)G ' + V G (jU

U={1—[V Q —(8 —1)G 'P]G ) '

(57)

U„=V (1 —G QV )'. (51) x [ V + (8 —1)G '] . (58)

The physical interpretation of the denominator of
Eq. (51) is that it contains scattering to interme-
diate states in the Q space, whereas the scatter-
ing to intermediate states in the P space are in-
cluded explicitly in the analog of Eq. (46). The
additional term in the denominator of Eq. (50) ap-
parently corrects for the fact that scattering via
Vo(6- 1) to the P space is explicitly included in

Eq. (46). Equations (49) and (50) may provide use-
ful departure points for approximations at low
energies where multiple scattering theories of the
KMT type may not be justified. These equations
can be written in a variety of suggestive forms and

could, for example, be used to obtain corrections
to the result of Eq. (51).

The reason for the above exercise, the results
of which could have been obtained directly from
Eqs. (38}, is that a similar procedure leads to an
analogous result for the optical potential corres-
ponding to PAP or equivalently to the off-shell ex-

f' = U(1 —G,PU) ' = T + (6 —1)G

= (1 —UPG, } ' U+ (6 —1)G

from which one obtains the relation

(1 —UPG }U=U(1 —G„PU)+(1 —UPG )

x (8 —1)(G ' —PU),

or

(59)

(60)

U= U+(1 —UPG )(8 —1)(G ' —PU), (61)

Equation (58} is to be compared with the corres-
ponding equation for U, Eq. (50}. Although the
structure of the two equations is identical. , the
presence of the G ' terms tends to obscure the
direct physical interpretation of Eq. (58).

The relation connecting U and U can easily be
obtained with the aid of Eqs. (46) and (54), toge-
ther with the relationship between i and g. One
finds
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and of most immediate interest

PUP= PUP+ (G~ ' —PUP}PG~(8 —1)P

x (G
-' PUP) . (62)

Clearly the two optical potentials PUP and PUP
differ unless the operator at the extreme right
of Eq. (62) vanishes identically. This is not the
case. However, we do have

and

PUPIL& =PUPQI y ) =PT
I y ) (63a)

(63b)

The difference in Eqs. (63) is P(8 —l)G, 'IQ ),
which expresses the half-shell equality of
7'and T since I&]& ) is an eigenstate of H, . It
also follows from the definitions of

I P& and P&,
viz.

y

I
C&

= (1+G.T}
I 4:,&

and

IV. EXPANSION OF THE ANTISYMMETRIZED
OPTICAL POTENTIAL

In this section we establish the relationship of
the optical potential U, given by

T= U+TG PU, (67)

singular operators, an observation that follows
from the fact that PUP and PUP satisfy one-body
Lippmann-Schwinger equations [obtained by pro-
jecting Eqs. (46) and (54) from the left and right
with P] in terms of the nonsingular operators PkP
and PTP. This discussion of equivalence of the
alternate approaches, represented by U and Li,

was primarily to lend credence to the proposition
that the choice between the two antisymmetrized
optical potentials lies in their calculational prac-
ticality or in their feasibility of application to reac-
tions other than elastic scattering. The first of
these questions is discussed briefly in the next
section.

that

I
i& =(I+G.T}

I
4'.,& (64b) where

T=V 8GG '=V QQ, (68)

or

PI e& —PIe& =PG, (ff —1)G

PIe&=PIi&,

(65a)

(65b)

under those circumstances for which the Lippmann
identity term in Eq. (65a) vanishes. ""Equation
(65b) must be used with some care" due to the
delicacy associated with application of the Lipp-
mann identity. A discussion of the Lippmann iden-
tity is not our purpose here. For our present
purpose it suffices to present Eqs. (63) and to note
that

(y." IPUPG. (0I 1)G. 'I y'. -)

=(P' IPUPG (8 —1)G 'I P' ) =0. (66)

The Lippmann identity holds for the matrix ele-
ments in Eq. (66) because PUP and PUP are non-

T=V 0= T + S. . + ~ ~ ~

i t j (69)

and

l+G, Gl ~SGQ +SQ +S), (70)
i i&j

so that we may write

to multiple scattering formalisms of the KMT type
which are appropriate to intermediate or higher
energies. For the sake of clarity, and since the
formalisms themselves are most compelling for
this case, we restrict ourselves to nucleon-nucleus
scattering. " The notation for this has already been
indicated in Sec. II.

As a guide to the argument, we shall first deal
with the spectator expansion for the unsymme-
trized" T, where T is given by

Ls,.Ls„'"=E., s.G.(Es..Es,,+ ")
i i&j i j j&0

(v1 G+T,)+Q(v, G T. , +v, G T, +v~G S;, +v~G S,,)+ (71)

Term by term identification" then yields

and

(72}

(73)

From Eq. (72} we identify T, -t, , the two-partic. le
transition operator for particles 0 and i, if we ap-
proximate G by the free two particle propagator.
The identification of S,.&

is most easily accomp-
lished by adding T,. + T, to both sides of Eq. . (73).
Upon using Eq. (72) on the right hand side of the
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resulting equation, one obtains

(T, +T, +Sgg) =(vg+vg) [1+G (T;+ Tg+S;g)],

which allows the identification

(74)

T = V ED = V 8 I + G, i Q T,. +g S,, + ~ ~, (78}

where the unsymmetrized Q is taken directly from
Eq. (70) and T, and S,.&

are given by Eqs. (72) and
Eq. (75), respectively. We then express V~8 as

S,~=Ti,. —Ti- T~

with

Tgs. = (vg + vg) + {vg+v )GoTgg .
If we approximate G by the free three-particle
propagator in Eq. (76), T,&-t„, the th. ree-particle
transition operator for scattering of particle 0
from i and j. These identifications provide the
expected spectator result'

and

wg =vg(1 —Eog)

Xgg = —(v&Eog+v&Eog) .

We then write, in analogy with Eq. (69),

VoB=+v,
~

1 —~o, (=—Qw, .++X,g

(
f ( g )

with

(79)

(80)

(81)

T-ZTg+Z( gg-Tg —Ts}+''' (77)
T=gT, +gS,,+ ~ ~, (82)

Before proceeding to the antisymmetrized case,
it is useful to note certain features of the above
treatment. In particular, the grouping of the ex-
pansion is by no means unique. For example, one
could have chosen to expand T in terms of the free
(s4+1) particle propagator, rather than G, . In fact,
had this been done the result would have been the
unique connectivity" expansion of T. The result
of Eq. (77) can be characterized as the expansion
about the propagator G, . In view of the corres-
ponding treatment of the optical potential to be giv-
en shortly, however, the expansion about G is
suggested by Eq. (67}.

The preliminary treatment of the unsymmetrized
T shows us how to treat the symmetrized case.
We write the antisymmetrized transition operator
T as

and insert Eqs. (79)-(82) into Eq. (78) to obtain

Pr, +Ps, + =I+, E"s„)
t'

i i&f i&j

1+G T +G S,+'
k k&1

(83)

from which we obtain, through an obvious identi-
fication,

Tg= (w1 gG+T,) =v,.(1 —Eo, )(1+G T,). (84)

The quantity T, becomes, if G is replaced by the
free two-particle propagator, the antisymmetrized
two-body transition operator. The general case
is given by Eq. (6&) for an arbitrary number of
target particles. From Eq. (83) one may then iden-
tify S„.as

Sgg =wgG T, +wgG Tg+(wg+wg)GoSgg+X, .g[l +G (Tg+Tg+Sgg)]

=( wg+wg+X g)g[l +G (T(+Tg+Sgg)] — (w1 gG+Tg) — (w1 gG+Tg)

= (wg+ wg+Xgg)[1+ G (Tg+ Tg+Sgg)] —(Tg+ Tg) .

From this one may recognize that

T, + T)+S,) = Ti~,

where T,&
satisfies

Tgg =(v, +vg)(1 —E„—E g)(1+oG,T,g),

(85)

(86)

(87)

which becomes, upon approximation of the propagator in analogy with Eq. (76), the antisymmetrized three-
body transition operator. " Combining results, we have the not entirely unexpected result,

T= V"8Q= Q(VoRQ)g+Q[(V HP)gg —{VGA)g —(VGA)g]+' ' ' (88)

or

T= QTg+Q(Tgg —T, —Tg)+' ' ' .
i&3

(89)
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The expansion given in Eq. (88) is, of course, in complete analogy with the unsymmetrized expansion of
Eq. (77). This fact, coupled with the fact that the definition of the symmetrized optical potential operator
U by Eq. (67) exactly parallels the definition of the unsymmetrized operator U, viz. ,

U= T- TG PU, (90)

all. ows one to write the expansion for U by inspection of the expansion of U. In order to take advantage of
this, we now derive the expansion" for U in a manner which makes the preceding assertion apparent. We
begin by writing U (or analogously U) as

U= U+ W+ (91)

and insert this equation into Eq. (90} to obtain

U' + W +o o ~

= QT,.(1 —G PU, ) —g[.T,G PU, +T)G P. U, +(T, +T,)G PW, .,. +S,,G P(U, +U, +.W, ,) —S,,J+

= QT,.(1 —G PU, }+Q/(T.,. +T, +S,,)[1—. G (U,. + U,. + W, ,) —U,. —U,.]] + (92)

From Eq. (92) one may identify

U,. = Ti —Ti G PU,.

and

(93)

which with the definition

U,. + U,. + W, , =U, , ,

leads to

(95)

(U,. +U, +W, ,) =(T, +T, +S,,).
x [1—G P(U, + U, + W, ,)], (94)

That is to say, the optical potential. , to second
order in the spectator expansion, requires only
PT,P and PT»P as input. If the approximation of
the propagators discussed earlier is used, these
reduce to an overl. ap integral of solutions of two-
and three-body equations, respectively. The ex-
pressions (1+PT,PG ) 'PT, P and (1+PT„PG„)'
PT»P are merely the solutions of the one- body
integral equations given by Eqs. (98).

For the antisymmetrized probl. em the analogous
result is simply

U, , = (T,. + T, +S,,) (1 —G PU, „). (96a)

= T, ,(1 —G PU, ,} . (96b)

The corresponding "one-body" optical potential is
then given by

PUP=A(1+PT, PG ) 'PT, P+ g A(A —1}

x [(1+PT„G,) 'PT»P

—2(l +PT,PG ) 'PT, P] + (100)

PUP = g PU,P+ gP(U, , —U, —U, )P+
(97)

The analogous symmetrized results are obtained
by replacement of the operators in Eqs. (93)-(97)
by the corresponding "hat" operators. We note
that Eqs. (93) and (96b) allow us to write

where the requisite input is PT,P and PT»P. With
the usual approximation of the propagator this
simply prescribes the use of the appropriately
symmetrized two- and three-body quantities.

and

PU,P = PT,P —PT,PG gU, P. .(98a)
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