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Relevance of final-state nucleon-nucleon charge exchange in inclusive (m,~X) reactions

Paul J. Karol
Department ofChemistry, Carnegie-Mellon Uniuersity, Pittsburgh, Pennsylvania 15213

(Received 23 July 1979)

The Sternheim-Silbar linear transport model for calculating the effect of final-state charge exchange of the struck
nucleon in (n,~N) reactions has been reexamined. It is demonstrated that for "C, the effect ranges from only 10% at
low pion energies to 4% at the (3,3) resonance and plays a minor role in determining the magnitude of the inclusive
cross sections. A semiclassical linear transport model is used to calculate the m. /m+ ratio for a clean, one-step
nucleon knockout. Unlike the Sternheim-Silbar calculation these results are in very good agreement with
intranuclear cascade model predictions.

NUCLEAR REACTIONS o(s, s(V) ratios, (3, 3) resonance, final state interaction,
nucleon removal, one-step quasi-free and intranuclear cascade calculations.

I. INTRODUCTION

Recent results' for the absolute cross sections
of the "C(v', sN)" C reactions between 40 and 600
MeV have been interpreted in terms of a linear
transport model constructed by Sternheim and
Silbar' from a suggestion originating with Hewson. '
Sternheim and Silbar estimate the probability P
that a nucleon struck by an incident pion will un-
dergo charge exchange within the residual nucleus.
As a consequence, the ratio of w to m' induced
neutron removal reactions near the (3, 3) isobar
resonance energy will be reduced from the value
3.0 predicted by single-step impulse approximation
considerations. For a self-conjugate target, the
ratio becomes

v~ o,-„(1—P)+o,-q ~&P 9 —8P
o,+ o',,„(1—P}+a,,sP 3+ 6P '

where the approximation is valid only near the
resonance. Experimentally, R„=1.59 + 0.0V at the
resonance. The charge exchange probability P is
a function of the nucleon-nucleon charge exchange
cross section and the path of the struck nucleon
through the nucleus. Success of the Sternheim-
Silbar model is predicated on its unmatched abil-
ity to account for the behavior of R„over a wide
energy range for several light nuclei4 subject to a
single normalization. Final state charge exchange
is allocated a large role in nucleon removal reac-
tions as attested to by the values of P necessary
to explain the recent activation measurements.
For "C, P rises from -16% at 250 MeV to 45% at
40 MeV.

On the other hand, the intranuclear cascade
(INC} model, which requires no normalization and

which presumably entails all that the Sternheim
and Silbar model does and more, has also been
used to calculate R„, yielding a value of R„=2.4

II. SEMICLASSICAL LINEAR TRANSPORT MODEL

A. Sternheim-Silbar method

The probability that a nucleon, struck within the
nucleus by an incident pion, undergoes charge-
exchange before emerging is given by Sternheim
and Silbar'7 as

P = a[1 —exp(- po„(d))] (2)

for a nucleus of mass A and uniform density p
= 3/4nR'. The cross section for nucleon charge ex-
change is o„and (d) represents the average dis-
tance traveled by the struck nucleon within the
nucleus. Assuming the entire reaction process is
colinear, the calculation of (d) may be visualized
by referring to Fig. 1. If X, = (o',p} ' is the pion
mean free path in the nucleus, then P,„(z)dz = o,p
exp[-o, p(l+z)]dz is the probability at impact pa-

for "C at the resonance. ' Dropesky et al. ,' and
others have been puzzled by this serious discrep-
ancy. They refer to a conjecture by Silbar et al. '
that the intranuclear cascade model employed
probably neglects unspecified quantum mechanical
coherence in the nucleon charge exchange inter-
action.

The following report addresses the discrepancy
between the Sternheim-Silbar nucleon charge ex-
change model and the INC calculations of Harp
et al, .' Despite accumulating experimental contra-
indications, the former is still seriously advocated
because there is no outstanding evidence against
it.' What will emerge here is that the linear
transport calculation, when repaired, is in very
good agreement with the intranuclear cascade pre-
dictions. Furthermore, the final state charge ex-
change effect turns out, as expected, to be much
smaller than claimed.
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Beam
Direction (z)

—(D

x —= 2R/X, = 2o',pR, (4)

the above integrals may be solved exactly to give

(d) =—1- +f(x)—4R 3
3 2x

in which

f(x) =[1—e "(I+x)]/[zx' —1+e *(I+x)]. (6}

Examination of (d) in Eq. (5) shows that in the
limit of strong pion-nucleon interactions, e.g. ,
near the (3, 3) resonance, x becomes large and (d)
approaches 4R/3. As expected, this is the average
chord length of a sphere of radius R, the pions all
"reacting" at the surface of the upstream hemi-
sphere. In the weak interaction limit

llmf(x} =——1=3
0 2X

or (d) =0, again as expected since the pion "never"
undergoes its reaction-initiating collision with a
nucleon. '

FIG. 1. Cylindrical coordinate system for linear trans-
port at impact parameter z along axis z defined by beam
entering from -~. Uniform nucleus has radius R and E

~2 2)i/2

rameter r that there is a pion-nucleon interac-
tion between z and z+dz where we have, for con-
venience, introduced the abbreviation

I —I(r) = (R2 r2)&)'2

P,„(z)dz also represents the probability that the
struck nucleon must travel a remaining distance
l -z in order to escape. Averaging this distance
over all impact parameters corresponds to the
exp ression

d
2v J rdr f (I —z}e~+"")dz

2v frdr fe """'dz (3)

The limits in Eq. (3} are 0~ r~R and —l~z~+I.
The denominator in Eq. (3) is necessary in order
to exclude transparencies from the averaging pro-
cedure. Using the abbreviation

However, the difficulty with the Sternheim-
Silbar calculation arises elsewhere. The appro-
averaging should be done, not for d(r), the dis-
tance to be traveled by the struck nucleon at a
given impact parameter, but rather for the entire
sequential process. This point is most succinctly
expressed by the inequality in cylindrical coordi-
nates

(1 — "'"")«(1 — '"') .
As will be shown, the above fact proves to be es-
pecially germane to the ensuing issue. For exam-
ple, the implication of Eq. (5) that in the strong
interaction limit, nucleon removal reactions occur
uniformly at the surface of the beamside hemi-
sphere, is incorrect as has been amply demon-
strated. Such reactions are localized to the nu-
clear surface equatorial region defined by the
beam direction.

B. Rectified Sternheim-Silbar collinear transport model

Following the above discussion, the linear trans-
port approach is retained, but redeveloped as
follows. From the integrand of Eq. (3), one can
calculate the residual path length at impact para-
meter r; that is, the distance to be traveled sub-
sequent to pion nucleon collision.

&(v)=,p f () — ) """'d*

&p &p

Using d(r), we can define the probability at impact
parameter r that the struck nucleon undergoes a
final state interaction. This probability is

P( )=( —expI — p 21 — + ' . (8)
1 exp(-2lcr, p)

O'P 0P
In Eq. (8) (op) '=X„ is the nucleon mean free path
at some average recoil energy. Integration of
P(r) over all impact parameters and azimuthal
angle gives the average probability for a final state
interaction following an initial pion-nucleon colli-
sion.

Final state interaction of the scattered pion is ig-
nored. " However, we are interested in only a
fraction of all possible final state interaction chan-
nels: those involving charge exchange leading to a
particle-stable residual nucleus. At impact para-
meter x, the charge-exchange probability may be
written in terms of the probability of the primary
nucleon scattering into a final single particle state
of energy U, ejecting a secondary nucleon which
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leaves a hole excitation energy E~. These parti-
cle-hole energies are crucial to what follows. For
the charge-exchanged residue, the condition of
particle stability is that E~+ U, ~S, where S is the
separation energy of the least bound nucleon in the
residual nucleus. ff P~(E&+ U,.~ S) represents the
probability of this charge exchange with a nucleon
initially in bound state j and p&/p represents the
fraction of total nucleon density corresponding to
nucleons in state j, then P„(r) is given by

~&'

P (r) = g (p /p)P (E + U, —S) P(r). (10)

Although the angular limits completely neglect the
contribution of the hole energy E& to the excitation
energy, the relationship is applicable for "C when

EJ =0, i.e., for the four 1p valence nucleons. As
in Ref. 7, 0, may be approximated by

(12)

in which P is the Pauli blocking factor; P -0.45
fits the g, nN data for ' C; Q =11 MeV-S is the

Final states, such as both nucleons being in the
unbound continuum, are excluded.

In a system such as C C, 'B the above sum
is replaced by a single term involving the outer-
most nucleon shell (lp), since E, for the inner
shell (E„-40MeV) already exceeds S (-11 MeV).
Removing a nucleon from the "available" shell in
this system corresponds to E& -—0 and P (r) be-
comes

P„(r)= (p~&/p)P~(U, » S)P(r) . (10')

P~(Uz~ S), the appropriate fraction of all possible
nP scatterings, is specifically the probability that
the retained nucleon was scattered into a particle-
stable state. It is independent of r as are the den-
sities in the uniform density model employed. Av-
eraging over impact parameters and azimuthal an-
gle gives (Pg =P„. For a —self-conjugate target,
Eq. (1) becomes (in NaZ nuclei, more complicated
expressions will pertain, see Ref. 7)

o',- o,-,(1 —(P))+o, ~, ~(P„)
o, cr~„(1—(P))+ o~~(P,„)

Since the crucial nuclear structure requirement
omitted in Ref. '7 has been accommodated through
the factor p&/p, the scattering may be treated, as
done by Sternheim and Silbar, using the free par-
ticle-free particle picture

P&(Ui~S) =o,„/o,
where we use Sternheim and Silbar's 0,„

~ma

0., =2p sinele d(x„dA) .

P,„=(P)o„p&/op, (13)

where p& refers to available nucleons.
From Scanlon's np data" and Eq. (12) we find

5.8 ~ 10 P&g (14)

for carbon, where T', is in MeV.
The total nucleon-nucleon cross section cr goes

roughly as

O-9.0)& 1Q y (15)

Using Eqs. (14) and (15) in Eq. (13) we arrive at
an expression for the charge-exchange probability
in carbon.

P„=6.4P (P )T,'8 . (16)

Again following the normalization of Sternheim and

average nucleon separation energy for "C; T„
3 T, is the ave rage recoil kinetic energy of the

struck nucleon; and a and b are coefficients of the
np charge exchange differential scattering cross
section

(do, ~/dA) =a —b(1- coss).

By specifying the target nucleus, the incident
projectile energy, and employing some of the ap-
proximations for O,„and do/dO suggested by
Sternheim and Silbar, ' estimation of the total final
state interaction factor (P) and the charge-ex-
change factor P„becomes straightforward. I For
a more extensive discussion of the rationale be-
hind the development of Eq. (10) see Refs. 9 and
11-13.]

For "C as a target, (P) was evaluated by numer-
ical integration of Eq. (9) and was maximum at
0.95 just below resonance, dropping to 0.91 at 50
MeV and 0.68 at 350 MeV. This behavior is not
surprising because, for a pion near resonance,
X„ is short and the struck nucleon with X~-1.2 fm
travels relatively far within the nucleus, increas-
ing the likelihood of collision. For a pion well be-
low resonance, the struck nucleon's A.~-0.2 fm and
transmission is still small; but well above reso-
nance, X„and X, are each -2.3 fm and (P) de-
creases. One would infer from these (P)'s that the
"clean knockout" cross section, which will depend
on 1 —(P), drops to a suspiciously low value. Such
behavior, however, is attributable partly to an ar-
tifact of the use of a uniform density distribution
and partly again to the very large initial projec-
tile-nucleon interaction cross section near reso-
nance. INC calculations have demonstrated this
in somewhat comparable systems. "" By employ-
ing realistic nucleon density distributions, correct
magnitudes are predicted. '

For "C, only the four valence neutrons are
available to contribute to charge exchange;
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Silbar choosing P-0.45, Eq. (16) becomes

P„- 2.9(P)T, 8. (17)

Before proceeding any further with the above
expression, we can lend qualitative support to its
approximate validity by looking at the "B(p,n)"C
reaction in a comparable energy interval; namely
20~ T~~ 150 MeV. The cross section for the (P, n)
reaction can be estimated very roughly by the
product of the total reaction cross section for "B
towards protons, times the probability that a
charge exchange takes place. Recalling that in Eq.
(17) we made use of T„= ', T„an—d using (P)-1, we
can write

(18)o(p, n) = o„P„=1.2ozT, '.
The total reaction cross section of "Bmay be cal-
culated from the "soft spheres model. "" Both the
total reaction cross section and the (P, n) cross
section from Eq. (18) are plotted in Fig. 2(a). Also
shown are experimental values for the "B(p,n)"C
reaction. In Fig. 2(b), this is repeated for "Y
(p, n)"Zr. Considering the extremely approximate
nature of the calculation, the agreement is quite
satisfactory. The use of P,„ from Ref. 7 gives
o(P, n) values five times larger than experiment.
More realistic treatment of (p, n) reactions using
semiclassical collinear transport is beyond the
scope of this work but has been dealt with by Read
and Miller.

Returning to charge exchange in the pion-induced
nucleon-removal reactions expressed by Eq. (17),
a plot of P,„vs T, shown in Fig. 3 reveals that, in
the energy range of interest, P„varies from a
maximum of -11.5% to a minimum of -2%. In Fig.
4(a) the dashed curve shows that the ratio R„de-
fined in Eq. (1}does not agree with experiment
even if rescaling by parametrization of P is al-
lowed. Letting P =P —P„represent the remain-
ing fraction of final state interactions —those not
contributing —we can express Eq. (11) in a more
illustrative manner

o',-„(1- P„—P ) + o,-~ ~ P,„

If and only if P «P,„do we get the Sternheim and
Silbar expression, Eq. (1}. The opposite, how-
ever, pertains. To recapitulate, the discrepancy
is a direct consequence of ignoring two important
features: reaction site localization and competing
transmission attenuation channels.

C. Semiclassical one-step collinear nucleon knockout

In rectifying the Sternheim-Silbar linear trans-
port model, we were led to a relationship which
can be easily adapted to calculating the probability
for a clean, one-step nucleon removal by an inci-
dent pion. As in Sec. II A, if P,„(z)dz =o,p(exp
[-o,p(l +z)]/dz is the probability at impact parame-
ter ~ that a pion enters the nucleus and strikes a
nucleon between z and z+dz, then

IOOO ——
ta) 58

- 1000—

(b) 3c)Y
o,pIexp[- o,p(l+z)]IIexp[- (o,'p+ o'p)(I —z)]Idz

is the probability that a pion-nucleon collision

100— IOO,

IO—

%q
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FIG. 2. (a) Experimental (p, n) excitation function for
B [crosses, G. Albouy et a$. , J. Phys. Radium 23,

1000 (1962); circles, L. Valentin, Nucl. Phys. 62, 81
(1965)) compared to Eq. (18) (dashed curve) assuming
only the uppermost neutron level (p3~~) contributes.
Solid curve is total reaction cross section. (b) Ex-
perimental (p, g) excitation function for +Y [G. B. Saha
et al. , Phys. Rev. 144, 962 (1966)J compared to model
(dashed curve), assuming only the three uppermost
neutron levels (ps~~, p ~~~, f5~~) contribute and total re-
action cross section (solid curve).

I
! ' I I I I I

0 40 80 I 20 I 60 200 240 280 320
T~(IVleV )

FIG. 3. Dashed curve: Sternheim-Silbar final-state
charge exchange probability P for C. Solid curve: re-
evaluated probability P,~
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integration Eq. (19}gives

( )[(g 1)/g]r

(20)

in which o„(w) and os(w'+fV') are the total reaction
cross sections for a uniform density sphere of
mass number A towards a "single particle" with
mean free paths X equal to (o,p)

' and (o,'p+o'p) ',
respectively. os(v) is identical to the expression
derived by Fernbach, Serber, and Taylor"
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FIG. 4. (a) R„=o(7t )/o(7r') for C - C. Experiment
with error bars, and INC calculations as crosses (Ref.
1); triangles, Benioff-type calculation (this work);
circles, uniform density (this work); dashed curve,
corrected Sternheim-Silbar model (this work). (b)

R& =o(7t' ) / o(71 ) for Mg Na. Experiment, closed
circles; and INC results, open circles (Ref. 19); tri-
angles, Benioff-type calculation (this work). (c) R„
=o(7t')/o(~') for STAu Au as in (b).

occurs between z and z+dz, followed by escape of
both forward scattered particles with mean free
paths X,'= (cr,'p) ' and X'„= (&x'p) '. The cross section
for nucleon removal from any state in this collin-
ear model is

R +$

o(w w'&)=2w re o pe '~'"+"e @~~""'dz.r
0 -1

(19)

A similar expression results for a collinear tra-
jectory with backward scattering of the pion. Upon

Equation (20), if multiplied by the fraction of pion-
nucleon collisions with available nucleons (for ex-
ample, the four 1P neutrons in carbon) provides an
expression for the appropriate nu"leon removal
leading only to particle-stable final states and an
exiting mN pair. Within this collinear model, the
cross section for neutron removal can be approxi-
mated as a function of energy from free particle
cross sections and target radius. We have done
this as a function of pion energy for m' and w and
the results for R„=o,-ja,, are shown as circles for

C in Fig. 4(a}. Because of the sensitivity of nu-

cleon removal reactions to the diffuseness of the
nuclear "surface" alluded to earlier, calculations
involving a uniform density distribution should not

be taken too seriously. "
A much more realistic assessment of nucleon

removal reactions was made by Benioff' using
collinear transport and a harmonic oscillator shell
model. Maintaining the linearity approach, Beni-
off's equations are readily adaptable to pion in-
duced reactions, parametrized by incident pion-
nucleon, escaping pion-nucleon and nucleon-nu-
cleon collision cross sections and density distri-
butions for nucleons. In essence, Benioff's treat-
ment goes one step further than that embodied in
Eq. (19}by using a nucleon density distribution
function that varies realistically with x and z, with
different forms associated with different shell
states. Excitation functions for m' reactions ' C
-"C, 'Mg- Na, and Au-' Au, and ratios R
and R~ calculated according to Benioff's prescrip-
tion are illustrated in Figs. 4(a)-4(c) and com-
pared to recent experimental data'" and intranu-
clear cascade calculations. '" Agreement with the
more sophisticated Monte Carlo method is very
good.

A review of the literature on nucleon removal
reactions shows that the inability of the intranu-
clear cascade calculations and the impulse approx-
imation to reproduce observed cross sections to
better than 50% accuracy has not been confined to
pion-induced systems. Cross sections for proton-
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induced proton- removal reactions' and neutron-
removal reactions"'" as well as anti-proton-in-
duced neutron-removal reactions ' have been fair-
ly consistently misjudged, although not by large
factors.

III, CONCLUSION

The straightforward model of Sternheim and
Silbar for calculating the effect of a final state
nucleon charge exchange in pion-induced nucleon
removal reactions has been reexamined. It has
been shown that, within the probably oversimpli-
fied but now corrected treatment, the final state
interaction in question accounts for only a small
percentage of observed cross sections. A simi-

larly simplified linear transport model of clean,
one-step quasi-free nucleon removal reactions
gives results that are in good agreement with
Monte Carlo intranuclear cascade calculations.
The Sternheim-Silbar explanation for the major
cause of the discrepancy between experiment and
impulse approximation predictions is apparently
invalid, leaving the matter open for further specu-
lation.
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