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A phenomenological model of the interactions between pions, nucleons, and 3 isobars is constructed. The mass

operator is defined on a Hilbert space made up of NN, Nd, and NNm/states with the following interaction
mechanism: (1) a 1+~+Vn vertex in the nN-P33 channel, (b) two-body n.N~mN interactions in other n.N channels,

and (c) two-body interactions for NN~NN, Nd ~NB, and NN~~N1 transitions. The model is Lorentz invariant

and satisfies cluster separability. The interactions are parametrized bP analytic separable forms with parameters
determined by fitting the mN scattering phase shifts for l & 1 up to 3(Q MeV and NN scattering phase shifts for l & 4
up to 800 MeV. In fitting parameters and in the applications, nonrelativistic approximations are used for the

baryons in the Nd and NNm channels. The model so determined giles a satisfactory description of pion absorption

by deuterons and of elastic pion-deuteron scattering. Multiple rescattering of pions between N and 3 as well as NN
interactions in NNm. intermediate states are found to be important in channels coupled to Nd s waves. These effects
enhance the cross sections for m+ +dip by 407o in the resonance region. From the two-baryon Hamiltonian we

construct a many-body Hamiltonian for nonrelativistic baryons.

NUCLEAR REACTIONS A model of interactions between ~, 1V, and 6. Applica-
tions to the pion-deuteron system.

I. INTRODUCTION

It is by now well recognized that intermediate
energy nuclear reactions induced by pions are dom-
inated by the mechanism of exciting the nucleon to
the 6 isobar state. Many recent experimental' and
theoretical' ' findings have indicated that both the
scattering and the absorption of pions by nuclei are
governed by the interactions between the h isobars
and the nuclear medium. The excitation of inter-
mediate states containing isobars is also known' '
to play a significant role in intermediate energy
nucleon-nucleon collisions. Clearly, a quantum-
mechanical many-body theory describing the inter-
actions between pions, nucleons, and ~ isobars is
needed for the study of intermediate energy nuclear
reactions.

Any extension of the conventional nuclear many-
body theory designed to include pions must provide
a mechanism for pion production and absorption.
If the basic pion-nucleon interaction is an N= Nm

vertex, as in the Chew-Low model or any field the-
ory, ' then the physical one-nucleon state involves
an infinity of virtual pions and the composite
(dressed) nature of the physical nucleon affects the
many nucleon theory.

If, on the other hand, the basic pion nucleon in-
teraction is a two-body interaction and a A Nm

vertex, then the physical nucleon is elementary and
the many-body theory is considerably simpler. In
such models, pion production and absorption are
governed by an NN=NA transition potential and the

b, =Nm vertex. While there are no virtual mesons
in the physical nucleon of this model, nucleon-nu-
cleon scattering involves, in principle, an infinity
of virtual pions.

The purpose of this paper is twofold. First, such
a model of the interactions between pions, nucle-
ons, and A's is determined phenomenologically by
fits to pion-nucleon and nucleon-nucleon scattering
data. Second, as a first application of this model
to pion-nucleus physics, the pion-deuteron system
is investigated in some detail.

In our model, the Hilbert space of the states of
the two nucleon system is

XNN XNb, +NN7r+ X

where

X' =Xgg„BX~~& X«„„6~ ~ ~ .

We will assume that the interactions have no ma-
trix elements from X«and X» to X'. The states
in XN„„are then "doorway states" for transitions
to X'. Components in X' can be eliminated by the
usual projection technique. This procedure does
not alter the Hamiltonian in X»$ X», but intro-
duces an effective energy dependent interaction
with domain and range in X«„. For the present
model we replace this energy dependent effective
potential in X„„„byan energy independent auxilia-
ry NN potential designed to fit the NN scattering
data below the pion threshold, and otherwise chosen
for computational convenience. Such a model is, in
principle, fully relativistic, "but in practice we
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XNN XN +N ~ (1.2)

+N& ~N & b & (1.3)

where X„, K„and X~ denote, respectively, the
one-particle Hilbert spaces of a nucleon, a pion,
and a b, isobar. Note that the space X„,contains
a two-particle mN subspace and a one-particle 6
subspace. Thus, the entire space X of the model
involves three different channels: NN, N~, and
NNm. The relativistic invariance of the model is
realized by expressing the generators of the
Poincare group in terms of the mass operator M,
the intrinsic spin operator j, the momentum P, and
the canonically conjugate position operator X. In
the case of a system of noninteracting particles,
the expressions for these operators in terms of in-
dividual particle variables are well known. " In-
teractions are introduced by adding to the free
mass operator an operator V which commutes with

P, X, and j of the free particle system.
The interaction V is made up of three parts:

V = V, + V'+ V" . (1.4)

The two-body operator V, performs the transitions
NN —NN, NN-Nh, and N~ —Nb, and is defined to
vanish on the three-body space X»X, . The op-
erator V' vanishes on X» and is constructed from
operators v«and v~, . The two-body interaction
v» describes the deuteron bound state and nucleon-
nucleon scattering below the pion productionthresh-
old. The interaction v„, is a A=Nm vertex in the
P» channel and a two-body interaction in other wN

channels.
The combined action of V, and V' results in pion

production through the mechanism NN-NE-NNw.
The operator V" may have nonvanishing matrix
elements between X„„and 30'„ K„as well as
diagonal matrix elements in X»X, . It would be
needed to account for w production not proceeding
through the L and for possible three-body NNm

forces. In the present work, we shall let V" =0.
This simplification does not prevent an adequate
description of the physics, with the exception of
pion production near threshold, which is therefore
excluded from our considerations.

The model thus constructed is intended to de-
scribe the following processes (numbers in brack-
ets indicate the energy region in which one expects

will treat only the pion and the motion of nucleons
in X» relativistically.

Let us first briefly review the NNw model of Ref.
10 (referred to as 1 hereafter). The models are
constructed in the Hilbert space

X —Kp 3%~~8 BC'~ ~

with

the description to be adequate):

(a) wN- mN [0- 300 MeV],

(b) NN-NN [0- 800 MeV],

(c) NN-NNm [400-800 MeV],

(d) NN-wd [NN energy: 400-800 MeV],

(e) wd-wd [0-300 MeV].

In this paper, we accomplish this by finding a set
of interactions v», v„„and V, such that the fea-
tures of these processes are accounted for. Con-
venient parametrizations are chosen for these in-
teractions. In particular, all two-body interactions
are taken to be of low-rank separable type with
simple analytic form factors. It is clearly imprac-
tical to use the data for all processes listed above
in order to determine the parameters. Therefore,
the following strategy is employed. The two-body
interactions in NNm states are constructed first.
The parameters of U„, (as well as the bare 6
mass) are determined by fits to mN scattering
phase shifts. The parameters of v» are deter-
mined by fitting the NN phase shifts in the energy
region where inelastic processes may be neglected.
The operator V' is then completely determined,
and only V, remains to be specified. This is ac-
complished by adjusting its parameters in such a
way as to bring the NN phase shifts and inelastic-
ities, as given by the full model, in agreement
with the experimental values. Processes (c)—(e)
can then be used as testing grounds for the model
and as means of removing any remaining ambig-
uities in the parameters. In the present paper we
consider only pion absorption on the deuteron and
pion-deuteron elastic scattering, leaving pion pro-
duction in NN collisions for future investigation.

It is perhaps useful to emphasize here that our
approach is quite different in its foundation from
most previous theoretical work"" "on the NNm

system. In particular, we do not assume an under-
lying field theory, and therefore there are no
Bethe-Salpeter amplitudes. The question of the
proper reduction" of the four-dimensional Bethe-
Salpeter equation to three-dimensional form does
not arise. Since our model does not contain an N
=

¹ vertex, the derivation of correct scattering
equations is straightforward; no renormalization
is called for and there is no danger of overcounting
interactions. The Pauli principle is trivially sat-
isfied by antisymmetrizing all states in the nucleon
variables. Finally, since the scattering equations
follow, through exact algebraic manipulations,
from the time evolution of state vectors under the
action of a self-adjoint Hamiltonian, they embody
unitarity from the start.

The present work differs also from that of Refs.
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4 and 6 in its purpose. No attempt is made at cal-
culating NN scattering above the pion production
threshold from independent input. Instead, empir-
ical NN phase shifts and inelasticities are used to
determine the completely phenomenological inter-
action V, . Thus, we make no pretense of explaining
the physics of the NN~ system in terms of other,
more fundamental" processes; we seek a set of
interactions that correctly describe it and hope it
can be used as a, starting point in many-body cal-
culations.

The construction of V described in I satisfies the
requirements of Lorentz invariance and cluster
separability" exactly. However, its numerical im-
plementation without approximation is difficult be-
cause it involves taking square roots of complicated
operators. In the calculations presented below, ap-
proximations are made based on the following as-
sumptions: (i) All particle momenta in the space
X„8)X„,are small compared to baryon masses;
and (ii) the strength of any two-body interaction in
X„(3X~, is small compared to the mass of the in-
teracting cluster. In Sec. II, the construction of V
is summarized and the approximations just men-
tioned are introduced and discussed.

The two-body interactions in NNm states are con-
structed in Sec. III. The pion-nucleon interaction
v„„ is dealt with in Sec. IIIA, and the nucleon-
nucleon interaction v„„in Sec. IIIB.

Once v„, and vNN are determined, the operator
V' is completely known. One can then turn to the
determination of V,. For this purpose, the formu-
lation of NN elastic scattering as given by the full
model is needed. This is done in Sec. IV, drawing
on the formal results of I. A set of parameters of
V, obtained by fitting data for NN scattering both
below and above the pion production threshold is
presented. This section also contains a discussion
of the role played by multiple pion rescattering be-
tween N and 6 and by NN interactions in NNm in-
termediate states in the description of NN elastic
scattering.

Sections V and VI are devoted to testing our mod-
el in the study of the 7j -d system. The reaction md

NN is studied in Sec. V. The relevant scattering
equations are written down and results for the total
cross section as a function of energy and for the
angular distributions at a few energies, obtained
with the interactions determined in previous sec-
tions, are presented and compared to data. The
importance, for this process, of.pion multiple re-
scattering and of NN interactions in NNm inter-
mediate states is also discussed.

In Sec. VI, we turn to pion-deuteron elastic scat-
tering. Practical scattering equations are derived
using the results of I; total and differential cross
sections, as well as polarizations, are calculated

II. THE MODEL

In order to make the present paper reasonably
self-contained and to define our notations, we de-
vote Secs. IIA and IIB to a summary of the con-
struction of our NNm model. A discussion of the
Lorentz invariance and cluster separability prop-
erties of this construction can be found in I. In
Sec. IIIC, we introduce approximations made in
actual calculations.

A. Pion-nucleon mass operator

The two-body wN problem is formulated in the
space X„,given by (1.3). In what follows, we
shall frequently denote variables referring to the
nucleon, the pion and the 4 by subscripts N, m,

and Q, respectively. Thus p~, s„, and t„stand
for the momentum, spin, and isospin of the nu-
cleon. Let P„„and M'„„be the momentum and
mass operators on K„,. Define

0
Q»7r

= P„,/ M„, , (2.1)

(2.2)

8
X=Z (2 2)

&~ = $, [P„,Q~„]s, n=— fv, 6 (2.4)

where k, P are four-vectors and j.(Q) is the Lor-
entz transformation that transforms [Q, (I +g')'~ '}
into L0, 0, 0, I}. The Wigner rotation operator
6t[p, Q] is defined by the following decomposition"

within our model. Comparison with the available
data is made; special attention is paid to the in-
fluence of the coupling to the NN channel ("true"
absorption).

In See. VII, we discuss the extension of the pres-
ent work to a many-body system with A &2. If all
baryons are nonrelativistic, a second-quantized
Hamiltonian can be written down, such that the
corresponding scattering equations for the A =2
case reduce, after suitable truncation, to those
used in Secs. IV-VI ~ This Hamiltonian contains
the interactions V, and v~„but not the interaction
v». From the equations for NN scattering, it can
be seen that this last interaction is to be inter-
preted as an effective one, containing, in addition
to the NN-NN part of V„ the effects of the cou-
pling to states with more than one pion or ~. The
motivation for parametrizing this interaction by a
two-body potential fit to NN phase shifts below the
pion production threshold is discussed. Thus, Sec.
VII provides further insight in the nature of the
space truncation inherent in the model constructed
in the previous sections. Finally, our conclusions
are summarized in Sec. VIII.



M. BETZ AND T. S. H. LEE

of the Lorentz transformation L(Q):

r rrb)=r (
—)afb, rblr. '(—),

where

O' =L(~a1)P P"=P'= m

(2.5)

matrix elements in the restricted space of relative
variables are

(K' P' Pbl Mabl V» Vor K) = 2E„(K)5(K' K—) 5a b 5»;a,

+ (K ', v.', vt, I
V N N I vb, v. , K) .

(2.15)
The intrinsic angular momentum of the mN system
1s

xx k+o~ on X„(3X,,
3p~=

oz, on Xz.
(2.6)

(k, var vNI MN»lvN, va, k)

= W(k) 5(k' —k)5„„5„„
+ (k r Vrrr VNI VNal VNr Vrrr k) r (2.7a)

The Hilbert space X„X„ is spanned by func-
tions rjr(pN„k, r„,v„, 7„) and the space Kz, by func-
tions 1)r(PN„v~, ~~), where vN(vN) stands for the t-
axis projection of vN(tN). The N)I mass operator
M„, has matrix elements proportional to 5(P'„,
—P„„)and the matrix elements in the space of the
intrinsic variables are

The operator 8„„satisfies

[ NNr Jab]
= [VNNr tab] (2.16)

where t, = t, + tb.
The contribution V,b. , to the full mass operator,

corresponding to NN interaction in NNm states,
can now be constructed as follows. Let

Q=PjM',

q. =i(Q) J5. ,

(2.17)

(2.18)

where P and M' are the free momentum and mass
operators for the whole system. States of X«
3X, can be represented by functions rfr (P, q„v„K,
v„v,). We define the interaction operator V„by
its kernel in this representation:

(v~lM„. I v~) =5. .. m~,

(vglMN»I v„, v„k) =(v~1 V«l v„, v, k),

(2.7b)

(2.7c)

I I I I I I(P, q» V„K, var pal&abl Vbr Var Kr Var q» P)

=5(P'-P)5(q', —q, ) 5,.„(K,v, vblvNNI vb vo K) .

8
X= 't

BK

va = dt [Pa r Qab] sa r

3ab
= XXK+0'a+ Ob ~

a=—a, b,

(2.12)

(2.13)

(2.14)

The Hilbert space X„„is spanned by functions
rjr(P, b, K, v„v,). The mass operator describing the
deuteron and NN scattering at low energy has ma-
trix elements proportional to 5(P,'b —P,b) and the

where v„stands for [vN, TN'f and

W (k) = EN(k) + E (k), (2.8)

with E (k) = [k'+ m '] 'l'. The operator 8„, has the
invariance properties

[v„„J„,] = [v„„t„,] = 0, (2.9)

where t~, is defined as t„+t, on X„(3X,and t~ on

XQ»

B. Mass operator for the14Wn system

As a preliminary step in the construction of the
full mass operator for the NNm system, we con-
sider the nucleon-nucleon system in the space X»
given by (1.2). We label the two nucleons a and 5
and denote by P„and M,'b the momentum and mass
operator on X«. We define

Q.b
= Pbbs Mob (2.10)

K =L(Q..)P. , (2.11)

Let
0ab ™ah+~ah'

(2.19)

(2.20)

q. =L(Q)P. ,

S =(R[p,g]s

(2.22)

(2.23)

) (&=a) 5.
Bq

(2.24)

States of X»(3X, can be represented by functions
»fr (P, q„ JJ„f„,v„v, ) and states of KN~ by func-
tions»fr(P, q„p„vz,), where g, stands for 1S„v,}.
The interaction operator gb„defined in this rep-
resentation by

(P r qa r V'a r k rr b r v rr r Vb I U b rr I
Vb r V rr r k rr b r l a r qa r P )

=5(P'-P) 5(q,'-q, ) 5& „(k',b, v'a, vblvNalv„v„, k,b),

(2.25a)

(P r qar l"a vzl Ubal va l ar qa» P) = 0 r (2.25b)

The interaction V„.„ is given in terms of this mass
operator by

V,b, , = (q, '+ 5K,b') 'i' —(q, '+ M„' )'l'. (2.21)

The operator V,„., corresponding to interaction of
the pion with nucleon b in the presence of nucleon
g is constructed in a similar manner. Let
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(P &4 0 vol 0nml va~ vw~ km'~ I"a& &4t P)

= &(P' —P}&(z —z) 5„'& (v~1 v»l v» v„k,~)

(2.25c)

is used to construct the operator V, „., :

V~~,, =(q +K~~ ) —(qo +M )

where

0o~ = ~~~+'Uo~

The operator V' is defined as

V = Van; 7I
+ Va ff;5+ V~n', o

(2.26)

(2.27)

(2.28)

%= M +Vo+V'. (2.30)

Scattering equations for the various amplitudes
of interest can be formulated in terms of % and
the mass operator Mz describing free stable par-
ticles. Expressions for the scattering amplitudes
corresponding to processes (a)-(e) listed in the
Introduction have been presented in I and will be
exploited in the subsequent sections of the present
paper. However, before turning to this, it is help-
ful to introduce some simplifying approximations.

C. Approximate mass operator

The numerical implementation of the construction
of % outlined in Sec. IIB is made difficult by the
appearance of square roots of complicated opera-
tors. In the calculations of Secs. IV-VI, this
problem is avoided by the use of the following ap-
proximations.

(i} We assume that, in the c.m. frame, all par-
ticle momenta in the space 3C~(3X„„are small
compared to the baryon masses. More specifical-
ly, if q denotes any particle momentum in that
space, then terms that are formally of order q'/
m„' (or q'/m~') are dropped. The expressions
(2.21) and (2.26) then become

2

(2.31a)
2'4 o-'

2
M (2.3 lb)

The operator V, has nonvanishing matrix elements
in X~~ and in X„~, as well as matrix elements be-
tween states of XNN and states of K~~. These ma-
trix elements are proportional to 5(P' —P). The
restricted operator V, acting on the space of func-
tions 4 (q „p„p,) and 4 (q», p „,p~) satisfies

IV, j ]=IV„t ]=0, (2.29)

where the total spin j» of the two-baryon system
is given in terms of the q 's, y 's, and S 's by
equations similar to (2.14). The total isospin of the
two-baryon system is denoted by t». The full
mass operator is given by

and (2.32)

If (2.32) is valid, the second terms on the right-
hand side of Eqs. (2.31) may be dropped and (2.28)
becomes

V' = 'U, a ++„+'U (2.33}

This approximation, which we shall call the small
mass defect (SMD} approximation, rules out inter-
actions with an excessively strong repulsive core.

III. TYCHO-BODY INTERACTIONS IN NNm STATES

A. Pion-nucleon interaction

The Lippmann-Schwinger equation satisfied by
the mN 7 matrix is given in I. Using the definitions
and formulas of the Appendix, one easily obtains
the partial wave expanded forms. For all but the
P» channel,

T~v, (k', k; Wo) = v~v, (k', k)

vv, (k', k")T"„,(k";k; Wo)

Wo —W(k") +i@

(3 1)

where Wo is the c.m. total energy and y stands for
the set of quantum numbers (I~,J„,T~) For con-.
venience, we assume separable two-body interac-
tions:

Since any interacting pair in the model contains at
least one baryon, it is clear from (2.5) that all
Wigner rotations may be neglected at this level of
approximation. It is therefore unnecessary to dis-
tinguish between the variables 0 and S. We shall
refer to this approximation as the nonrelativistic
baryon (NRB) approximation. It should be stressed
that no approximation is made in the space K»,
where the nucleons are kept relativistic. On-ener-
gy-shell kinematics can be invoked to provide some
qualitative justification for this approximation. The
maximum c.m. kinetic energy of the NN system we
shall be dealing with is about 400 MeV. In the NA

system, roughly 300 MeV are taken up by the ~
mass leaving only 100 MeV in kinetic energy to be
shared between the two bar yons. Similarly, in
~NN states, 140 MeV are converted into the pion
mass, leaving 260 MeV in kinetic energy to be
shared by the three particles. Therefore, in NA

and mNN states, baryon kinetic energies should be
small enough to allow a nonrelativistic treatment.
Ultimately, of course, the validity of the NBB Bp-
proximation must be established by calculating cor-
rections. Sections II A and IIB above provide a
well defined framework in which to do this.

(ii} We further assume that

II&„M,', 'll « I,
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TABLE I. Parameters of the &N interactions.

&N channel kj (MeV/c) k2 (MeV/c)

~~&

Pi)
Pn.

-5.741
9.217
4.520
0.6167
1.687

368.4
962.8
409.8
316.3
300.9

—3.240 522.5

P)) F~—-0.9783 k &
——358 MeV/c m& ——1280 MeV

~, (V, k)=Qf, (k')F f"fk). ,
4= 1

(3 2)

where
oo f 'k"

Z ( W,) = dk" k" '
0

(3.4)

The form factors are parametrized as follows:

(3.5)

Equation (3.1) is then readily solved. In the P»
channel, assuming that the only interaction is the
~=Nm vertex, the scattering equation can be easily
solved, giving

T„~~(k', k;WO)=f~(k')[Wo —m~ —Z(WO)+ie] 'f~(k),

(3.3)

The following NN interactions in NNm states are
included in the calculations to be presented in Secs.

actions in partial waves with orbital angular mo-
mentum l ~ 2 are expected to be relatively unim-
portant in the energy region of interest and are
neglected. For all but the 'S,-'D, interaction, the
form factors are parametrized as follows:

K'(K~)" '
g;(K)=

[
2

( y)2]r+g (3 9)

The parameters G& & and K&, determined by fitting
NN phase shifts" for laboratory energies below
400 MeV, are collected in Table II. The fits ob-
tained with such simple interactions are quite ade-
quate for our purpose. The 'S,-'D, interaction re-

k )' (ai ~Y) (3.6)
180-

33

The mN scattering phase shifts can be calculated
from the on-energy-shell 7 matrix using the stand-
ard formulas. The parameters m~, F~, and k~ for
the P33 channel and F~, k,. for other mN channels
are adjusted to fit the CERN phase shifts" for en-
ergies W, » 1300 MeV. The resulting parameters
are given in Table I and the corresponding phase
shifts are shown in Fig. 1.

B. Nucleon-nucleon interaction

The 7 matrix corresponding to the interaction
v~„satisfies the Lippmann-Schwinger equation
[see I and Eq (A4)]:

T (K, «iE}

p l

l5-

IO

5

p I

0

-2-
I

P,

= V«~&(K', «)
I It tl

d „„,~"„„(K',K")T"„„(K",K;E) (3.7

-IO

-l5

where F. is the total c.m. energy. In order to sim-
plify the calculations of the forthcoming sections,
we again assume separable interactions:

I I 00 I 200
-20-

l l

I 300 I I 00
E (MeV)

I 200
l

I 300

(3.8)
FIG. 1. Fits to the 7('N phase shifts of Ref. 19. The

corresponding parameters are given in Table I.
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TABLE II. Parameters of the NN interactions in NN&

states.

NN channel G& g (MeV/c) G& e& (MeV/c)

ig

imp
1

3Q

3Q

3g

-1.114

10.42

346.5

612.2

-1.500 340.1

3.259 479.7

-1.275 527.6

3.506 858.5

13.96 805.1

IV. NUCLEON-NUCLEON SCATTERING

Once the interactions v „,and v „„have been
determined, operator V' can be constructed in
the approximation (2.33) using (2.25) and (2.19).
The determination of V, is then accomplished by
fits to NN scattering data at energies up to 750
MeV. The relevant formal scattering equations
have been given in I. In Sec. IVA, we make use
of the approximations introduced in Sec. II to
write these equations in explicit form suitable
for computation. Numerical results are dis-
cussed in Sec. IV B.

A. Scattering equations

quires more care, since a realistic deuteron wave
function is required for calculations of the process
md =NN. We have used the rank-two interaction of
Ref. 21, which gives the same deuteron wave func-
tion and roughly the same low energy phase shifts
as the Reid soft-core potential.

(4.5)M (E) =(PM (P+ VD(E),

R(E) =[E+i& —M (E}—V(E)] ',
R'(E) = [E +is —M'(E)] '.

Then, the scattering operator T defined on fC~„
8'K» can be written as

(4.6)

(4.7)

T(E) = V(E)+ V(E)R(E)V(E) . (4.8)

In the case at hand (V" =0), the operator Vc
vanishes on K». It therefore follows from (4.4)
and (4.8) that the operator

To(E) = Vo+ VOR(E)V0 (4.9)

has the same matrix elements between NN states
as T, and the NN elastic scattering amplitude is
obtained by taking appropriate matrix elements
of T,. Defining

Rc(E) =[E+ia M'(E) —-Vc(E)] ', (4.10)

we may rewrite (4.9) in the form

To(E) = Vo+ VOR c(E)To(E) . (4.11)

To solve Eqs. (4.8) or (4.11), it is useful to
introduce scattering operators associated with
the resolvents R and R~:

T(E) = V + VR (E)V, (4.12)

T(E) = V + VR (E)T(E),

T, (E) = v, (z)+ v, (z)R'(z)7, (z),

(4.14)

(4.15)

Tc (E) = Vc (E) + Vc(E)R~ (E)Vc(z} . (4.13)

From (4.2), (4.7), and (4.10), it follows that these
T matrices are solutions of the equations

As shown in I, the c.m. NN elastic scattering
amplitudes are given by matrix elements between
NN states of an operator T defined as follows.
Let 5 be the projection ope rato r onto X«$'K„~
and 6' = 1 —O'. The effective interaction obtained
by projecting out the space K«8'K, may be written
as

where

R' =[E+ie —M'] '4'.

Also,

R(z) =R (z)+R (z)T(z)R (E)

and

(4.16)

(4.17)

O' VR(E)V(P = VD(E)+ Vc(E), (4.1)
R (E) =R (E)+R (E)T (E)R'(E). (4.18)

where

R(E)=[z+ie-M'- V] '6', (4.2)

(4.3)

(4.4)

and the & self-interaction VD is by definition that
part of left-hand side of (4.1) that does not vamsh
when the nucleon in 7C„~ is moved to infinity [see
Eq. (71) of I]. The effective interaction Vc is
then defined by (4.1). Let us separate the self-
interaction VD from other interactions by intro-
ducing the following operators

V(E) = Vo+ V c(E),

and

V (E}=&p VR'(E)va —V (E)

VB(E) = (PVR'(E)T(E)R (E)v+,

(4.19)

(4.20)

both VE and V~ vanish when the nucleon in'K» is
moved to infinity and, obviously,

The effective interactions VD and V~ are obtained
by substituting (4.17) into (4.1). Since we are
assuming that the only mN interaction in the P33
channel is the &=Nm vertex, the second term of
(4.17) does not contribute to Vn. Therefore, if
we define
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V~(E) = Vs(E)+ Ve(E). (4.21)

The only interaction contributing to V~ and V~ is
the &=Nv vertex. Using (2.33), (2.25), and (A3),
together with the approximations introduced in
Sec. IIC, we get

(q', i ', i,'lv, (E)li„u„,q)

can be found in Ref. 11; in the NRB approximation,
they yield

E.(q, ) - E.(q, )k'=q, + (') q, k=q, + (') q', q, =-q-q',
Nif Ns

(4.2V}

=&(q' —q)&„, , &, .„Z»(q; E), (4.22) NEE(qk qkk N(EE ) E (k)
(4.26)

with

z„(q;E)
Eko 2

dk k'f~'(k) E+ie —m~-
0 2m N

q' k'

with

= 5(q' - q)5„,, 5...R' (q; E), (4.24)

M -1
R'»(q;E) = E+ie M»» L»(q E)

(4.25)

where M« -m N+ m~.
The operator V~ is simply the one-pion ex-

change interaction between a nucleon and a ~:

(q', i ', i R l
Vs(E)

l
i R, u~, q)

(4.23)

where M~, (k) =m„+E,(k) The .N& propagator
including the ~ self-interaction is therefore

R'«

R'(q', q, q„E)= E+ie —2m „—/ +q'

N

—E,(q, )

(4.29)

The minus sign in front of (4.26) is easily seen
to arise from the antisymmetry of the inter-
mediate states in the nucleon variables.

In order to simplify the calculation of the ef-
fective interaction V~, we introduce one additional
approximation' . We assume that all but the P33
mN interactions can be neglected in NNv states.
This approximation is justified by the relative
weakness of nonresonant mN interactions. In the
energy region just above the pion production
threshold, we should expect the s-wave mN inter-
action to play a significant role. However, by
setting the operator V" of (1.4) equal to zero, we
have already given up a reliable description of
the coupling to the NNm channel in that energy
region. In this approximation, the only inter-
action contributing to V is v». From (4.14),
(4.3), (2.33), and (2.19), it follows that

(ql (' ~' ul i(('lq'(E)le u. (( (, q. )

= -J~.~'(q', q, ; 5'„,, k')
where

(4.30)

9'' 0 9' yE ~, =E- —E,(q,),g (4.31)

&R lv(((, l &R) J(((,

(4.26)

and T»(e, ) satisfies a Lippmann-Schwinger equa-
tion with &» as driving term and with the prop-
agator

where J~,(q, q; P„„k)stands for the Jacobian
of the transformation {q,q,j-P„„kjdefined by
(2.2). Explicit formulas for such transformations

2 -I
R(, E)=(E +'E —2 (4.s2)

The matrix elements of V~ are therefore given
explicitly by

(u'l .lu;", „k)R'( ', ,)(', i', i"'[&„(,)li", i, ),
&& R (Ic 'E )(k', v, p'(((

l v» l p(k)EJ~ (q, q; P((( k) (4.ss)
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where

Tc'=q'+ ' Tc=q+ ~
2 ' 2

(4.34)

the help of (4.18}, (4.24}, and (4.36), the solution
of (4.11) may be written in the form

N

T',"(q', q; E) = Q h',.
'
(q') [K '(E)]',.'',.'h,'(q),

and the subscript 6 is used to indicate that a
matrix element is taken between properly anti-
symmetrized NN states.

A graphical representation of the equations
for NN scattering, under the approximations
mentioned above, is shown in Fig. 2. Partial-
wave expansions of (4.26) and (4.33) are given in
the Appendix. Once the effective interactions
V» V~, and V~ have been constructed, the N~
T matrix Tc can be obtained by solving (4.15),
which reads, in partial wave expanded form,

Tc "(q', q; E) = Po''"(q', q; E)

K=H ' —N-Q,
where

N", P( E)=II„.f dqq'h (q)R ', (; q')hE;(ql,
0

(4.38)

(4.39)

(4.37)

where K, a matrix whose row and column indices
run over all sets (p, jj, is constructed as follows:

dq ' q" '
V~

""
(q ', q"; E)

0
x dq'q"h'- q' ~ q', E)

0

xR»(q";E)To "(q",q;E),
(4.35)

where the driving term is the sum of (A7) and
(A17). The solutions of Eq. (4.35} are then used
to evaluate Ro of (4.18). The last step is to solve
(4.11) for T,. We assume again a separable form
for the interaction V,:

x T~o "
(q ', q; E)R', (q; E) hP~(q),

(4.40)

R, (q; E) = [E+ia —2E~(q)] ', Ro(q; E) =R „o(q, E) .

(4.41)

The S matrix for NN elastic scattering is com-
puted from T, in the usual way:

P~ '(q', q)= Q h', (q')H', j'h~(q), . (4.36)
with

(4.42)

where the notation of (A5} is used and the symbol

p stands for the set of superscripts {y, 5). With
E = 2Ev(qo}i po = o Eqo ~

In practice, the following parametrization is
adopted for the form factors of (4.36):

(a)
h, ( )

q'(q', )"
J q [ o (qp)2]1~1 (4.43)

(b)

and the equations derived above are used to deter-
mine the strength parameters H', ~' and the range
parameters q', by fits to NN scattering data both
above and below the pion production threshold.

(c)

FIG. 2. Scattering equations for NW scattering. Solid,
wiggly, and dashed lines stand for nucleons, deltas, and

pions, respectively. A solid and a wiggly line appearing
together indicate that the particle can be either a nucleon
or a delta. The interaction Vo is represented by a dotted
line. Equation (a) stands for (4.11) and (4.18) of the
main text, Eq. (b) stands for (4.15), Eq. (c) for (4.5)
and (4.7), and Eq. (d) for (4.21), (4.26), and (4.33).

B. Numerical results

Because it would require treating many angular
momentum channels simultaneously, the deter-
mination of the parameters of Vo directly from
NN scattering observables would be very difficult.
The task is greatly alleviated by relying on the
phase-shift analysis of Ref. 20, which makes it
possible to consider one channel at a time. We
should acknowledge at the outset that the phase
shifts and inelasticities are not at this time un-
ambiguously determined, especially at the higher
end of the energy region of interest. It is likely
that, as more data for medium-energy NN scat-
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tering accumulate, significant changes will occur
in the output of the phase-shift analysis. The set
of parameters we present below should therefore
be considered as tentative. In any case, the
experience gained in the present work should be
useful, since many of the conclusions we reach
concerning the importance of various effects are
valid independent of the precise values of the
phase shifts and inelasticities.

Before turning to the presentation of our results,
we discuss briefly the techniques used in num-
erical calculations. 'The first step is to construct
the effective N~ interactions V» V» and V~
using (4.23) and (A6)-(A17) together with the re-
sults of Sec. III. For E &2r»~+rn„ three-body
branch cuts appear in the propagators of (4.23),
(A8), and (A15). The usual rotation of contour
method" is used to circumvent these singulari-
ties: the interaction matrices are constructed
on a momentum grid defined on a ray in the com-
plex plane, at an angle 8R with the real axis.
The integration over q, in (A17) is performed over
the same grid. Accordingly, Eq. (4.35) becomes
a matrix equation over the complex momentum
grid; its solution is obtained by matrix inver-
sion. The energy-dependent matrices N and Q
defined by (4.39) and (4.40) are computed by
evaluating the corresponding integrals also over
the complex grid. It is then simple to construct
and invert the matrix K, and to obtain the NN

scattering matrix from (4.37) and (4.42). The
method of Ref. 22 can be used to determine the
allowed range of values of 8~; one finds" 0&OR
& v/2 (measured clockwise). In actual calculations,
we have used values of O„ranging from 15' down to
10' as the energy varied from threshold to 800
MeV. The motivation for choosing these rather
small values is explained in Sec. V, where we
discuss calculations of pion absorption on the
deuteron. The stability of the results with respect
to changes in 8~ has been checked in a number of
test cases.

he same grid was used for all momentum
variables in the calculations. It was divided into
four segments, over each of which a Gaussian
mesh was set up. In the evaluation of the Q inte-
grals, an accuracy of better than 1% was obtained
in all cases studied with the following choice of
segments and numbers of mesh points (the num-
bers are momenta in MeV/c): 0-200 (12 points);
200-600 (12 points); 600-1200 (4 points); 1200-~
(8 points). The last segment was mapped into the
interval [-I, I] according to q =1800(1+x)/(1+x)
+1200. As will be seen below, the Q integrals
are in many cases small compared to the N
integrals, and an accuracy of 5-10% is then suf-
ficient in their evaluation. This was achieved with

TABLE III. Partia1 wave decomposition of NN and
NA systems.

NN N4 NN interactions inNN & states

'So

'Po

3p
1

3p 3g
2 2

D

3+

io

5D

Po

i i

3P 5P
2 2

'S,
SP

5D

S

1 i

3S 3D 3P 3P 3P ipi i 0 1 2 1

i S 3$3D ip 3P 3P
0 i 1 1 1 2

3S 3D

3S D P P 3Pi i 0 i 2

So Si Di pi Pi P2

the same choice of segments and with 8, 8, 4, and
4 mesh points, respectively. The corresponding
accuracy in the evaluation of the N integrals was
always better than 0.2%. 'The angular integrals
(AS) and (A15) were also evaluated by Gaussian
quadrature; a 1% accuracy was obtained with 20
mesh points.

In order to devise a workable strategy for the
determination of the parameters of Vo, it is
important to note that Tc does not depend on them.
Therefore, the calculation of T~ which requires
a large amount of computing time need not be
repeated in the course of the parameter search.
(This is the motivation for treating V, and Vc
differently in the formulation of the scattering
equations. ) Storing the matrix elements of Tc
for all the energy values used in the fits and eval-
uating the Q integrals at each step of the fitting
procedure would still be too costly. We remark,
however, that the only parameters of V, involved
in the integrals N and Q are the ranges of the N~
form factors. In view of this, the strategy used
in the fits was to hold these ranges fixed and per-
form a search over all the coupling constants 8
as well as over the NN form factor cutoffs. The
integrals N and Q may then be evaluated once and
for all. The only operation that must be repeated
at each step of the search is the inversion of the
small matrix K.

Since the strength of the NN —N4 coupling is
determined by fitting the inelasticity in NP scat-
tering, the determination of V, is possible only
for those angular momentum channels that exhibit
inelasticity in the phase-shift analysis. Obviously,
only T =1 channels are considered in our study.
The NN channels of interest are listed in Table
III. Threshold behavior suggests that, in the en-
ergy region up to 800 MeV, most of the pion prod-
uction in a given NN channel proceeds via the N~
partial waves of lowest orbital angular momentum.
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Therefore, only those partial waves have been
included in the calculations. This approximation
is corroborated by the fact that only NN channels
that couple to an N~ configuration with l &2 exhibit
inelasticity.

As mentioned in Sec. III, NN interactions v„„
in NNv channels with l „~~ 2 (with the exception
of 'D, ) are assumed negligible. Since including
them all in NNm channels with l„„~1 would require
a large amount of computing time, it is worthwhile
to investigate beforehand the relative importance
of NN interactions in different partial waves,
This was accomplished as follows. A set of pa-
rameters of V, was obtained, neglecting all in-
teractions in the NNw channel. The contribution
of each NN partial wave in NNm states was esti-
mated by treating it as a perturbation in the fol-
lowing sense; The corresponding Q integrals
were evaluated by replacing T~ by V~. As is
clear from (A17), different NN partial waves
give additive contributions to Q in that approxi-
mation. It is therefore possible to estimate
separately the importance of each NN partial wave
in V~ for the calculation of the phase shifts and
inelasticities by performing calculations for a
few energies with and without the corresponding
contribution to Q. This procedure relies on two
assumptions. First, it is necessary that the pa-
rameters of V, determined by neglecting all NN

interactions in NNm states be sufficiently close
to those resulting from a more accurate cal-
culation. This was found to be the case at the
crude level of accuracy needed for the estimates
just discussed. Second, errors made by replacing
T~ by V~ should be sufficiently small. They were
found to be of order 10-20% at most in all in-
stances.

The following conclusions emerge from this
study. The 'S, N~ partial wave is most affected
by the 'S,-'D, NN interaction in NNm states. The
contributions to the Q integrals from NN 'P waves
are an order of magnitude smaller and lead to
effects in the 'D, NN phase shift and inelasticity
that are small compared to the error bars. An-
gular momentum conservation rules out the 'S,
and 'P, NN interactions in this N~ partial wave.
The 'P, N& partial wave is affected negligibly by
the 'S, NN interaction; the 'P, and 'P, NN inter-
actions are more important and give effects of
comparable magnitude. The 'S,-'D„'P„and
and 'P, NN interactions are excluded by selec-
tion rules. For the 'P, - Py P2 P2& and
'P, N& partial waves, no NN interaction dominates
the others, and therefore all those allowed by
selection rules were kept in the final calculations.
However, as will be seen shortly, their effects
on NN phase shifts and inelasticities are quite

i=1, 2, 3 (4.44a)

(4.44b)

(4.44c)

(4.44d)

Note that (4.44b) means that we are neglecting
tensor coupling between different NN partial waves.
The only tensor coupled partial waves relevant
to us are 'P, and 'I, ; in view of the small value
of the mixing coefficient (~ &

~

& 3"), the approxi-
mation is justified in this case. By assuming
(4.44d), we have also discarded possible direct
N&-N~ interactions. This simplification does
not impair significantly the description of NN

scattering in our model. Allowing V, to have a
nonzero N~-N~ component did not result in sig-
nificantly better fits.

The range parameter q&' are fixed at the values
250 MeV/c (i=i) and 700MeV/c (i=2). This
choice is arbitrary; it is hoped that the indepen-
dent variation of the coupling constants H~

(j = 1, 2) gives enough freedom to obtain an ade-
quate dependence of V, on the off-shell N~ mo-
mentum.

In the case of coupled Nb, partial waves ('P-'P),
the number of coupling constants is too large for an
unambiguous determination to be possible if no
further constraint is imposed. This problem is
avoided by requiring the ratio

R&"&"(q„q, ) = V)' &'
'

(q„q )/V( '& (q„q ,) (4.45).
to have a fixed value for some typical momenta

q, and q, (we chose q, =575 MeV/c, q, = 300 MeV/c,
roughly corresponding to an "on-shell" NN-Xa
transition at 700 MeV). The value of A& &' was
taken to be that given by a static one-pion ex-
change interaction with a dipole vertex form fac-
tor of cutoff 1 GeV/c. The phase shifts and in-
elasticities in a given angular momentum channel
are obviously independent of the overall sign of
V3,

"&' in that channel. The relative signs of this

small. In the 'D, and 'D4 N~ partial waves, the
NN interactions in intermediate NNn states are
completely negligible. The situation is sum-
marized in Table III, where the NN interactions
in NN~ states kept in the final calculations are
listed. This table also includes the 'S, N& inter-
action, which does not couple to the NN channel
but does couple to the nd channel and will be needed
in Sec. IV.

The fits obtained for all NN partial waves of
interest are displayed in Fig. 3. The corresponding
parameters of V, are presented in Table IV. The
coupling constant matrix H was assumed to have
the following structure:
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FIG. 3. Fits to the NN phase shifts and inelasticities of Ref. 20 (g=cosp); the parameters of the corresponding inter-
action Vo are given in Table IV. The horizontal scale gives the nucleon lab kinetic energy. The solid curves are the
fits obtained when all interactions in NNm states listed in Table III are included. The dot-dashed curves are obtained
with the same Vo but no NN interactions in NNn states. The dotted curves correspond again to the same Vo, but T~
= 0 (see text). Curves not drawn are indistinguishable from those shown.

interaction in different angular momentum chan-
nels cannot therefore be determined from NN
elastic scattering. These signs were assigned
again by comparison with the one-pion exchange
(OPE} transition potential. These recipes are

clearly unsatisfactory; a more reliable determina-
tion would require a study of the kinematically
complete reaction NN-NNw.

As can be seen from Fig. 3 and Table IV, satis-
factory fits can be obtained with relatively simple

TABLE IV. Parameters of V& (q& is in MeV/c and H& is unitless).

So (NN) D(}(N4)

Po(NN) = Po(

'P$(NN)~ Pg(N4)

3P( (NN) =sP~ (N4)

PR gfN ) PR (N4)

PR(NN) = PR(N4)

FR (NN) PR (N4)

'F, (NN) ='P, @74)

DR(NN) = 82(N4)

'F, (NN) ='P, (N4)

G4(NN) -SD4(N4)

NN NN

qi HR

-2.565 423 27.54

H3

911 0

NN ~4
Hg HR

-18.86 27.69

0.4043 268 28.42 795 0

0.4043 268 28.42 795 0

-0.2593 373 -0.2426 426 -1.176 827

-0.2593 3 73 -0.2426 426 -1.176 827

-1.547 340 200.6

-1.547 340 200.6

1325 0

1325 0

-0.2221 241 -1.191 529 0

1.144 274 12.78

-3.471 359 -11.55

658 0

698 0

3.965 -5.606

-6.543 9.250

1.105 -0.6772

1.603 -0.9819

-11.56 -6.890

-11.56 -6.890

3.753 -2.682

-6.389 -2.022

14.72 -27.73

-0.0307 103 -3.103 401 42.11 750 -15.81 21.78
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V. PION ABSORPTION ON THE DEUTERON

As a fi.rst test of the model constructed in the
previous sections, we consider the reaction m

+d N+N. In Sec. VA, the expressions used in
the calculation of the transition amplitudes are
derived, starting from the formal equations of I.
Numerical results are presented in Sec. V B.

A. Transition amplitudes

As shown in I, the c.m. amplitude for m + d—N
+N can be obtained by taking matrix elements,
between appropriate initial and final states, of an
operator ~„given by

7' (E) =[1+U(E}R(E)]U, (E), (5.1)
I

interactions V,. The only exception is the inelas-
ticity in the 'P, partial wave, for which the values
of p(= cos q) given by the phase-shift analysis for
energies below 500 MeV seem too large to cor-
respond to the production mechanism NN-NA-NNm.

The influence of the N~ effective interaction V~
on NN phase shifts and inelasticities is also shown
in Fig. 3, where the results obtained by neglecting
V~ but keeping V~ and by neglecting Vc altogether
are compared to the more accurate results (the
parameters of V, are those of Table IV in all cal-
culations). The effects due to Vc are appreciable
(compared to the present error bars) only for the
'D, NN partial wave, for which both V~ and V~
are important. Note that this NN partial wave is
the only one that couples to an NL state with /= 0.
It is reasonable to expect that the significant role
played by NN interactions in NNm intermediate
states in this partial wave is a general feature of
the NNw system, independent of the details of the
model. This suggests that the discrepancy be-
tween the results of Ref. 7 and the phenomenologi-
cal phase shifts might be due in part to the neglect
of these interactions. It also sets a limit to the
reliability of calculations of the imaginary parts
of the NN phases in which these interactions are
omitted. '

with

U(E) = V+ VR (E) V —V~ (E),

U~(E) =[1+ VR (E)] V~,

where V~, R, and R have been defined by Eqs.
(4.1)-(4.6) and

Va=V V

(5.2)

(5.3)

(5.4)

Recall that V~, is defined by Eq. (2.21). Under
the assumptions introduced in Sec. IV, we may re-
write (5.1) in the form

7~ (E) = V,R (E)V~ r (5.5)

(5.6)

where 'U„and 'U„are given by Eq. (2.25).
Let us define

(q, U„, p.~)~)o„v q,zqo)

=v2 QZ„.'&'(q, q. ; P„„k)
pt 0

x (p~l v„, I pg, v, k) (p,„,p,„'lqflk„o, ),
(5.7)

where 0~ is the z-axis projection of the deuteron

spin, 4~k~, o,}is the deuteron wave function a.nd

q, and q are, respectively, the relative momenta
0

for the md and Nb, systems. The momenta in (5.7)
are related by the equations

, E.(q..)k=q +
( )

0

q„
k~ —q+

(5.8)

(5.8)

Using (5.6}and (5.7), the amplitude for v+d —N+N
in the c.m. frame can be written in the form

where the terms of (5.2) and (5.3) which do not
contribute to the transition amplitude for md —NN
have been dropped. From (4.6), (4.10), (4.11),
(4.18), and (2.33), it then follows that

7'~(E) =To(E)[A (E)+R (E}Tc(E)A (E)) [i),z+i)(„]r

(q, rq, rr lq~(z)Irr„„q, &
= g fz'q(q„, rr„rr I ( I q, z)&(z„' (qq zl(q ( lqr(z&II, „q, &,

(5.10)

with

(q, ( ~l~(E)lo„v., q, ,) =(q, t' ~lulu„v. , q.,)

(5.1 1)2 fz q(ql , (l'l qz,q(z'&z('„rrr(q';zl(q', (' lrrr(lq„„q„),
~Nb,

where („~ stands for [p„, p. g and q„ is the relative momentum of the final NN state. Note that the anti-
symmetry of the intermediate NN)( states in the nucleon variables results in the factor W2 in (5.7). This
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is expected since each one of the nucleons in the deuteron can be changed into a n. Equations (5.10) and

(5.11) are shown pictorially in Fig. 4. The partial wave expanded form of (5.10) is defined by Eq. (A22).
The multipole amplitudes of Eq. (A22) are given by

&J (Z)=Q Q h;"(q )[K '(E)],"'P''[X '(E)+F".~ ' (E)],
y'

(5.12)

where the symbols y and l" stand for the set of quantum numbers necessary to specify an angular momen-
tum channel of the NN and wd systems, respectively, and

E»»' (E)= f dqq'q»»'(q)R» (q;E)w»' (qq, )
p

(5.18)

Y»»'(E)=P f dqq f dqqq»Y (q)R (q;'E)YJ'Y(q, q';E)R (q ~E)Wx''(q, q)
~ll p p

(5.14)

The differential cross section for m'+d —p+p is related to the transition amplitude in a standard fashion:

l(q„& o,~., c,~, l&, (E)lo„v„q„)
3 0 &7~0~

(5.15)

where 7 =7
~

=„p,=+ 1, yn~ is the deuteron mass,
and

p, „™„z„(q,)/[m, + z„(q„)]. (5.16)

(b)

FIG. 4. Pictorial representation of the md NN transi-
tion amplitude. The double line represents the deuteron.
Other symbols have the same meaning as in Fig. 2.
Equation (a) corresponds to (5.10) and Eq. (b) to (5.11).

B. Numerical results

Using the formulas of Sec. VA we have calculat-
ed the total cross section for m'+ d-p+p as a
function of energy, as well as angular distribu-
tions for a few energy values. As in the case of
NN scattering, most of the computing time went
into the calculation of the Nh T matrix T&, which
appears both in the Y integrals defined by (5.14)
and in the constants K [see (5.12) and (4.38)-
(4.41)]. For this reason, the calculations of the
NN-NN and md-NN amplitudes were performed
simultaneously, using the complex momentum
grid described in Sec. IV. This grid was also
used for the calculation of the functions W given
by (A21) and (A22). Because these involve the
fixed momentum q„, the maximum rotation angle
allowed is smaller than v/2 and is a decreasing
function of the energy. " This is the reason for

I

choosing the rather small values of 0~ mentioned
in Sec. IV. The accuracies achieved in the calcu-
lation of the amplitudes for md-NN were similar
to those for NN scattering amplitudes discussed
above. Since the calculations for NN-NN and
wd-NN were performed for the same set of ener-
gies (i.e., those for which the phase shifts and
corresponding error bars are given by the phase
shift analysis), it was necessary to interpolate
the results to obtain the angular distributions at
the energies for which data are available. The
errors introduced by this procedure did not ex-
ceed 5%.

An analysis parallel to that described in Sec. IV
was carried out to determine which NN interactions
in NNm states were to be included. It turns out
that the conclusions reached in the case of NN

scattering apply to pion absorption also. The NN
interactions included in the calculations discussed
below are those listed in Table III.

Results for the total absorption cross section,
as a function of energy, are presented in Fig. 5.
The interaction Vp used in these calculations is
that of Table IV. The shape and magnitude of the
cross section in the resonance region are fairly
well reproduced. For low pion energies (T, & 80
MeV), s-wave vN interactions are expected to play
a significant role"; it is therefore not surprising
that the predictions of the present model fall be-
low the data in that energy region. For energies
beyond 150 MeV, our model overestimates the
cross section by -2 mb. A study of individual
angular momentum channel contributions shows
that most of the flux goes into the 'D, and 'F, NN

partial waves. The contributions from all other
partial waves add up to only a few percent. Figure
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5 also shows the effect of leaving out the 'F, NN

channel. The calculated total cross section is
then in quite good agreement with the data. These
results suggest that the contribution from the 'F,
channel is overestimated. The existence of a
dibaryon resonance" in that channel might provide
an explanation of this discrepancy. The analysis
of forward cone md elastic scattering suggests
rather small values for the partial decay widths
of these resonances into the md channel" and cor-
respondingly large widths for decay into the NNn.

channel. The existence of a competing mechanism
for inelasticity in NN scattering would imply that
the strength of the 'F, (NN)-'P, (Nt) transition
operator given in Table IV is too large. In view
of the uncertainties in the phase-shift analysis
and the present lack of knowledge concerning the
nature of dibaryon resonances, this question re-
mains open.

One of the important differences between the
present calculation and others available in the
literature" is the inclusion of nonstatic pion re-
scattering between N and 6, as well as NN inter-
actions in intermediate NNm states. It is there-
fore of interest to examine the size of the error
made by leaving these effects out. In the forma-
lism above, this corresponds to neglecting Tc al-
together, that is, to putting the constants Y and Q
equal to zero [see (5.14) and (4.40)]. As shown in
Fig. 5, the total cross section obtained in this
approximation differs significantly from the result
of the more complete calculation, especially, in
the vicinity of the maximum, where the former
underestimates the latter by about 4IP&&. Comlari-
son with the corresponding results obtained when

the 'F, NN channel is left out indicates that the
effects described by Tc are appreciable mainly
in the 2+ channel. Thus, the study of pion absorp-
tion on the deuteron leads to the same conclusion
as the study of NN scattering: pion exchange and

NN interactions in intermediate NNm states in-
fluence significantly Nn. configurations geith orbi
tal angular momentum equal to zero.

As mentioned in Sec. IV, the relative signs of
the NN-NA transition operator for different angu-
lar momentum channels are left undetermined by
the fits to NN elastic scattering. The total cross
section for wd-NN is also unaffected by the choice
of these signs. However, this is not true of the
differential cross section. Since the prescription
adopted in Sec. IV to fix these signs is rather un-

reliable, we expect that calculations of angular
distributions performed with the interaction V, of
Table IV will achieve only limited agreement with

~ )
l

f
I I I

l4

l2-
IO-

8-

b
6-

O I

l.2 l.e 2.0
q /m

I

2.4

FIG. 5. Total cross section for 7(+ d NN as a func-
tion of the incident c.m. pion momentum. The interac-
tion &0 is that of Table IV. The data is taken from the
compilation of Ref. 24. (a) Solid curve: obtained with

all NN channels and all NN interactions in NN~ states
listed in Table III; (b) Dot-dashed curve: same as (a)
but the 5'3 NN channel is left out; (c) Dotted curve:
same as (a) but Tc = 0 (see text); and (d) Dashed curve:
same as (b), but TC=0.

0 s I t I t I I s I

0.2 0 4 0.6 0.8 l.O
cos 8

FIG. 6. Angular distributions for m+ d —NN. See
caption of Fig. 5 for the description of each curve. The
data are from Refs. 27 and 28.



S90 M. BETZ AND T. -S. H. LEE

the data. Indeed, Fig. 6 shows that the calculated
angular distribution agrees reasonably well with
experiment at T, = 142 MeV but becomes consider-
ably too forward peaked at higher energies. Con-
cerning the role played by the 'F, NN channel and
the importance of contributions associated with
T~, the comments made about the total cross sec-
tion are essentially valid for the angular distri-
bution also. Neither of these effects alters much
the shape of the differential cross section, but
they both influence its magnitude significantly.

A detailed comparison with all available data
for differential cross sections and polarizations
for this reaction would certainly be helpful in re-
ducing the ambiguities in the interaction V,. How-

ever, such a systematic study is beyond the scope
of the present work.

VI. PION-DEUTERON ELASTIC SCATTERING

To further test the model, we study in this sec-
tion the pion-deuteron elastic scattering. Our
model provides a framework in which the influ-
ence of true pion absorption on pion-deuteron
elastic scattering in the (3, 3) resonance region
can be studied. This is the main topic of the pre-
sent section. In Sec. VI A the results of I are
used as a starting point to derive practical ex-
pressions for the relevant amplitudes. Numeri-
cal results for total cross sections, angular dis-
tributions, and polarizations are discussed in Sec.
VI B.

where V, is defined by (5.4) and

U«(E) = V„+V„Z(E)v~. (6.2)

The simplifying assumptions of Sec. IV allow us
to rewrite Eq. (6.1) as

7'«(E) = V))k(E)va) (6.3)

where the terms of (6.1) that do not contribute to
the elastic scattering amplitude have been dropped.
Using the definitions (4.6) and (4.10), the amplitude
may be broken up in two terms:

(6.4)7..(E) = q', (E)+& (E),

where

q', (E) = v, R,(E)v„
7-. (E) = V.R.(E)T.(E}R.(E)V, .

(6.5)

(6.6)

Here, as in the previous section [see (5.6)],

(6.7)Va ='U„+ Ua~ ~

In the notation of (5.7) and (5.11), the matrix
elements of (6.5}and (6.6} read

A. Scattering amplitudes

The c.m. elastic m-d scattering amplitude was
shown in I to be given by matrix elements, be-
tween appropriate initial and final states, of an
operator ~«which can be can be calculated from
the formula

7 «(E) =U«(E)+ V,[1+R(E)V]R(E}[1+VR(E)] V„
(6.1)

(t)',
&

'„rr,'lt (F)l „t), )= „T fd'z d'p'tt)'. . .', cr'lw)l), t))(t), 4 I h))l 4 t)')

x(q', t' l~l,„v,q ), (6.8)

(q', , v'„c,'IW&(E)la„v„q. ) = g d'q d'q (q, , „vo, lull 6», q)

x~'„&(q; E) (q(»l T,(E)14„q')R„'~(q'; E)(q', („'~l VVlo„v„q. ).

(6.9)
A graphical representation of these equations is given in Fig. 7. Partial wave expansions are carried

out in a standard fashion [see Eq. (A24)]. Using (4.18), (A20), and (4.37), we obtain the multipole ampli-
tudes of Eq. (6.8)

& 5
' '(E) = & " ' '(E) + & ' ' '(E)

where the symbol I' has the same meaning as in Sec. V, and

"(E) Pf dq q'~")a., s)R=,'.(»; ~)~~ ")a e..),
y 0

OO oo

Tz~ r(E)= g dq q' dq q'VV '&' (q, , q )R„z(q; E)Tcr' (q, q; E)R„~(q; E)'u)&" (q, q ).
0

The multipole amplitudes of Eq. (6.9) are

q.' '(E) = g p[&," ~'(E)+ &,
" ~'(E)][&-'(E)]' ' [»'(E)+ I. '(E)].

(6.10)

(6.1 1)

(6.12)

(6.13)
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FIG. 7. Pictorial representation of the 7r-d elastic
scattering amplitude. The symbols have the same
meaning as in Figs. 2 and 4. This figure combines Eqs.
(6.4), (6.8), and (6.9).

A11 quantities on the right-hand side of the above
equations have been defined in Sec. V.

Clearly, if V, has no Nb, -NE matrix element
(as was assumed in Secs IV and V), only those
angular momentum channels which are coupled to
the NN space contribute to (6.13) and W„repre-
sents the contribution to the amplitude due to true
pion absorption.

The differential cross section and polarizations
are given by the standard formulas

(6.14)

(6.15)

where the Madison convention" is used and T«(8)
is defined as an operator in the deuteron spin
space with matrix elements

some role in bringing the lower energy theoretical
results into agreement with the data, they are
not expected to affect the semiquantitative con-
clusions reached below.

In addition to the constants E, X, and Y, whose
evaluation was described in previous sections, the
amplitudes v'z and Kz defined by (6.11) and (6.12)
must be calculated. Here again, most of the
labor goes into calculating Tc. For this reason,
the computations were performed in parallel with
those of NN-NN and md -NN amplitudes, using
the same complex momentum grid and the same
rotation angle. Interpolation in energy was again
used to obtain the m-d elastic scattering obser-
vables at the energies for which data exist. The
levels of accuracy achieved were comparable to
those given in Secs. IV and V.

The results for m-d scattering observables pre-
sented below were obtained using the interaction
+p of Table IV. Note that the ambiguitie s in the
choice of relative signs of this interaction in dif-
ferent angular momentum channels are irrelevant
here. The N& partial waves for which T~ was
computed, as well as the NN interactions inclu-
ded in NNm states, are those listed in Table III.
In addition to the channels considered in previous
sections, this list includes the 'S, N& channel
which cannot couple to the NN space but does
contribute to V~ and V„. On the other hand, the
+p N+ channe 1 doe s not coup le to m -d state s. It

was verified by sample calculations that Tc has
negligible effect in higher N& partial waves.

4n'2
0~= — Im g~ T~~ 6 =0 0~

3q

It is straightforward to express (6.14), (6.15),
and (6.1V) in terms of multipole amplitudes.

(6.11)

where cos6) =q,' q, . The total cross section can
be calculated using the optical theorem

IO IO

'pi ~

IOQ t e
]

s &

]
&

1 I00 y ~
~

~ ~
(

s r

T =l42MeV - T -252MeV

B. Numerical results

Cg

b~ IO

OMeV-

lo
=256MeV

Three-body calculations" of 71-d elastic scat-
tering have by now reached a high level of sophis-
tication. Several detailed investigations of the
sensitivity of the results to different choices of
interactions, kinematics, etc. , have been per-
formed. It is not our purpose here to contribute
one more such study or to produce an optimum
calculation. Rather, we focus our attention on one
specific question, namely that of the influence
of true pion absorption on m-d elastic scattering
observables. As in previous sections, we take
into account only the I'33''N interaction. Although
nonresonant mN interactions are known to play

~r.—.,~T"'
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FIG. 8. Angular distributions for m-d elastic scatter-
ing. The data are from Refs. 31-34. (a) Solid curve:
complete calculation (the interaction Vo of Table IV is
used); (b) Dot-dashed curve: same as (a) but the Il3
NN channel is left out [not shown when undistinguishable
from (a)]; (c) Dashed curve: no true absorption, g, = 0;
and (d) Dotted curve: single scattering only, &z= V&= 0.
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However, many more partial waves are needed
in the calculation of Vi. Including all partial
waves with total angular momentum 4& 10 was
found to give better than 1% accuracy at all

energies considered.
Angular distributions at four energy values

are presented in Fig. 8. The results of the com-
plete calculation are compared with those ob-
tained when v'„ is left out (no true absorption) and
when both ts and v'„are left out (single scattering
only). The effects of tz and V„are rather small
at forward angles, but not negligible at backward
angles. At 142 and 180 MeV, both V'„and v'„
contribute to lower the cross section in the back-
ward hemisphere, thereby improving the agree-
ment with data (note that nonresonant vN partial
waves are known~ to help fill up the minimum at
142 MeV). At 232 MeV, vz plays a small role
but V„significantly lowers the back angle cross-
section. At 256 MeV, this effect is still present
but much too small to eliminate the disagreement
with experiment. Figure 8 also shows the effect
of leaving out the 'E, NN channel is the calculation
of V„; the differences with the complete calcula-
tions are small.

Vector and tensor polarizations are displayed
in Fig. 9. The vector polarization is considerably
affected by both V„and v„. Note, however, that
it remains quite small and that nonresonant mN

interactions are known to influence it consider-
ably, so that our results are indicative only. Ten-
sor polarizations are larger and less sensitive,
although the effects of V „and v „are signif icant,
especially on t„near 90 and on t„near 180'.
Absorption does not help in bringing t» (180') at
142 MeV in agreement with the recently measured
value. "
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FIG. 9. Vector and tensor polarizations in 71'-d elastic
scattering. The data are from Ref. 35. See caption of
Fig. 8 for the description of each curve.
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FIG. 10. Integrated breakup and elastic cross sections
and total cross sections for 71-d scattering. The data
for gE are from Refs. 31 and 30. The data for az, are
from Ref. 30. The data points for 0& are obtained from
data for cr&, oE, and the absorption cross section (see
Fig. 5). Solid curve: "true" absorption included.
Dashed curve: no "true" absorption.
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Finally, the total cross section, as well as the
angle-integrated elastic and breakup cross sec-
tions are plotted against energy in Fig. 10. At
energies around and above the resonance, the
effect of the coupling to the NN channel is to de-
crease all three of these cross sections. " At
lower energies, true absorption increases some-
what the total cross section. The total cross
section is in fairly good agreement with the recent
measurements, except at low energy where it is
too small. Nonresonant mN partial waves are
needed for an accurate description in that energy
region. 4

To conclude this section, we briefly compare
our results with those published recently by Rinat
et al.' These authors also take into account the
coupling to the NN channel, though in a way
rather different from ours. They rely on a trun-
cated field theory picture including, in addition
to the & = Nm vertex, a P» N = Nr vertex, as
well as & = Np and N=Np vertices. Most of their
conclusions are qualitatively similar to ours, but

significant quantitative differences exist. In par-
ticular, in their model, true pion absorption raises
the back-angle differential cross section for
energies above 200 MeV, and has very large
effects on the tensor polarizations, especially
at energies below the resonance. This suggests
that these effects are due to absorption not pro-
ceeding through the &, which we have disregarded.
In view of the many differences between the two
calculations, it seems difficult to reach a definite
conclusion on this matter. We remark that, in
Ref. 4, no results are provided for NN elastic
scattering and for the reaction wd-NN. In fact,
in this calculation, the NN T matrix at energies
above the pion threshold (which is needed in the
evaluation of the v-d elastic scattering amplitude)
was generated by a Hermitian potential. This
inconsistent procedure obviously endangers uni-
tarity. " Clearly, more work is needed to settle
quantitatively the question of the influence of true
absorption on m-d elastic scattering.

VII. MANY-BODY HAMILTONIAN

The ultimate aim of the present work is the construction of a many-body Hamiltonian for use in calcu-
lations for systems with more than two nucleons. A fully relativistic generalization of our model Hamil-
tonian to any number of baryons is not available. However, in the approximation that all baryons are
nonrelativistic, it is possible to write down a many-body Hamiltonian such that the corresponding scat-
tering equations for NN-NN, md-NN, and md- md can be approximated by those used in Secs. IV-VI. This
Hamiltonian takes the form

H =Ho+U.

where

(7 l)

&, = QE„(P)btb, + QE, (P)P,'P, + Q E,(b)a',a, , (7.2)

1
&w:;&I& If A;&)b,'t'„.b, b, ~

g
—. Q (p' ~vA, ~p2l)bA, 8 b~ Hc.). .

+ + &p'p'; 2I l ol PA;2)b';P~P~b, + 2 &p„'p,'l &„,lp„p)bt,„a,'. b, a,

+ g (p,
l
v„, l p„p,) p', b a +H. c. ,

PgPgP»

(7.3)

where, e.g. , p„stands for (p„,p„); b, p„and
a„are annihilation operators for protons, deltas,
and pions, respectively. The free baryon energies
are given by the nonrelativistic forms. An index
1 is used to denote an NN state and an index 2 to
denote an N& state. The last term of (7.3) is
related to the & =Nm vertex as follows:

&p.
l

i'., l p.p, & =6(P. -p -p.)lE, (b)iE, (p.)]'"
x &p'&I U~r

I &~i,k), (7.4)

where k is defined in (4.27) and the origin of the
kinematic factor is clear from (4.26) and (4.28).

Note that the interaction v» does not appear in
this Hamiltonian. In order to illuminate the re-
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lationship between this model and that discussed
in the previous sections, as well as to clarify
the origin of the interaction v„„, we formulate
nucleon-nucleon scattering using the Hamiltonian
(7 1)-(7 ~)

It is clear from its structure that this Hamilton-
ian generates from an NN state an infinite hier-
archy of subspaces: NN-Nh-NNm-Nba -Num

As before, let 6' and 6'be projection
operators onto 3C(NN) t93C(N&) and 3C(NNw), re-
spectively. Denote by Q the projection operator
onto the direct sum of all other subspaces
(Q = 1 —p —8). Starting from the Lippmann-
Schwinger equation

T =U+UR'T,

R =(E+ie Ha) '-,

(7.5)

(7.6)

R o o
= (E H —Q UQ )—'Q . (7.8)

The second term of (7.7) can be broken up in two
parts: a part in which the pion remains a spec-
tator throughout ("disconnected" part} and a part
in which the pion interacts ("connected" part).
Typical contributions to each part are depicted
in Fig. 11. In order to approximate (7.7) by (4.3),
it is first necessary to neglect the connected part.
From the structure of U, it is easy to see that
Eqs. (7.7) and (7.8) then become

U = (P U 6' + S' UQR" Q U 4'

=(P v„,(P +6' v„'„'(E)G',

where the resolvent R"' is given by equations
identical to (4.1)-(4.6), except for the substitu-
tion V- U and the presence of an additional spec-
tator pion everywhere. The last step of (7.9)

(7.9}

(a)

and using standard projection operator techniques,
one derives scattering equations which differ from
(4.1)-(4.8) only in that the interaction V of (4.3)
is replaced by an effective interaction

U =O' U6'+(P URQQU 6" (7 7)

where

follows from the definition

(P v„"„'(E) (P = (P (V + V QR"'Q V ) S' . (7.10)

As the notation indicates, this interaction de-
scribes NN scattering in the presence of a spec-
tator pion. This is easily seen by recasting (4.8)
in the form of a Lippmann-Schwinger equation
for the NN T matrix, with the effect of the cou-
pling to N& states accounted for by an effective
interaction. Let 1 label the NN space and 2 the
N& space; one can rewrite Eq. (4.8) as

T„—U„+U„R'T„, (7.11)

with

Uii-( oui'( o)iP22(VO}2i. (7.12)

It is clear that the matrix elements of ('I.10) be-
tween NNx states differs from those of (7.12)
(between NN states) only by the presence of a
spectator pion.

At this stage, Eqs. (4.1), (4.2), (4.4)-(4.8), and
(7.9)-(7.10) form a closed set of coupled equations
such that NN scattering in the presence of a spec-
tator m is calculated self-consistently. Although
this is appealing in principle, it is hard to deal
with in practice. If the parameters are deter-
mined in such a way that the effective interaction
0yy correctly des cr ibe s NN scattering, the same
is true of v„'„(E). For the relevant values of E,
the subenergy of the NN system in the presence
of a pion does not exceed the pion production
threshold. The interaction v„"„'(E) is therefore
real and it is natural to parametrize it by a real
energy independent two-body potential fit to NN

phase shifts below the pion production threshold.
This is the interaction v» which was introduced
from the start in the construction of our NN~

model.
The approximation just described is expected

to be superior to a strict space truncation, i.e. ,
to entirely neglecting the coupling to the Q space.
This is because, in those NN channels which
couple to N& states, a large part of the effective
NN interaction is due to this coupling, so that the
second term of (7.10) is not a small correction to
the first. We note, however, that for the most
important NN interaction in NNn' states, namely
'S, 'D„(v,)» and -v» are identical and the space
truncation is automatic. As seen in previous
sections, other NN interactions in NNm states
have a small influence on observables and the use
of v» to estimate their effects should be adequate.

(b)
FIG. 11. Graphical representation of some contribu-

tions to the disconnected (a) and connected (b) parts of
U [see Eq. (7.7)]. The various lines have the same
meaning as in Fig. 2.

VIII. CONCLUSIONS

A model has been presented in which the nucleon,
the pion and the isobar are the basic degrees of
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freedom. The parameters of the Hamiltonian are
determined by fits to rN scattering phase shifts
for l ~ 1 and energies up to 300 MeV, and fits to
NN scattering phase shifts for l ~ 4 and energies
up to 800 MeV. Since N& states are coupled to
NNm states the treatment of NN scattering in-
volves the solution of three-body equations. Dyna-
mic effects of the NNr channel turn out to be im-
portant in N& s waves but not in higher partial
waves. This means, in particular, that they play
an important part in the calculation of 'D, NN

phase shifts.
We have explored the consequences of the model

so determined for elastic pion-deuteron scattering
and for pion absorption by deuterons. Interactions
in the NNn' channel contribute up to 40% to the
absorption cross sections. The absorption channel
influences significantly the elastic pion deuteron
cross section.

In its present form our model is somewhat
crude, but the results are encouraging. The
model can and should be improved along the
following line s.

(i) Comparison with experimental angular dis-
tributions and polarizations for the reaction
NN- md and NN- NNn. Modifications of the model
that may be required to account for these data.

(ii) Inclusion of nonresonant »»N partial wave

interactions as well as an NN-NNn interaction
that accounts for low energy pion production.

(iii) Use of meson theory to constrain the form
of the interactions and the values of parameters.

The goal of our approach to the NNn system
has been the construction of a well-defined
Hamiltonian that accounts for the observed fea-
tures of this system and can be generalized to a
many-body Hamiltonian. A rigorous many-body
generalization of the relativistic models of Ref.
10 is not available. However, if all baryons are
nonrelativistic, a many-body Hamiltonian can be
constructed such that, after well-defined approxi-
mations are made, the corresponding scattering
equations for theA =2 system are identical to
those for our NNm model. This Hamiltonian
should be useful in theoretical studies of many
medium -ener gy nuclear reactions of current
interest, as well as in nuclear matter calculations.
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APPENDIX

In this appendix, we collect explicit formulas for the partial wave expansions mentioned in the main text.
For any pair of particles (v„»»,), we define

'tt»""r(q) =g(lksol JM)(sp, s~, l so)(t,r,t,», l TMr) Y,~(q)l sp„t, »s, ot, &», (Al)

where s; and t; denote the spin and isospin of particle m;. The corresponding greek letters are used for z-
axis projections. The symbol y stands for the set of quantum numbers (I, s, J, T'I The summ. ation in (Al)
is over all magnetic quantum numbers except for M and M~.

The partial wave expansion of the two-body mN interaction is

(k', v'„v'„l 8», l v», v„k) = Q v„,(k', k) (v', v'»l'y" r(k')y» "r(k)
l v„, v, ) . (A2)

MMZ

The mN 7 matrix is expanded in the same way. The matrix elements of the a=No vertex may be written as
+

(v&l ~«l v» v„k) =f~(k)y'„~"~"~(k)
l v„, v, &, (A3)

where y~-={1,—,', -'„-,'j.
The partial wave expansions of baryon-baryon interactions (and T matrices) take the form

(K', v,', v,'l U»»l v„v„Tc)= Q v»'»(»', ») (v,', v,'l y»„'„»»r(»')p»»»r(»)
l v„v.&

y'y MMZ

(A4)

(A5)(q', t '„ t .';t" I &.It); t ~, t „q) = 2 I'". '»'(q', q)(t '„ t!I'9e""'(q')'9~ '(q)l tt„ t,&,
yy'MM Z

where a particle channel label 5 has been introduced, such that 6 = 1 for an NN pair and 5 = 2 for an NA

pair.
The partial wave expansion of the effective Nn. interactions (4.26) and (4.33) can be obtained by standard
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methods from the above definitions, together with (4.27), (4.28), and (4.34). In order to write the results
in compact form, it is useful to define a sum over angular momentum coupling coefficients as follows:

1 2

(2a')! [2(L' —a')] i (2a)! [2(L -a)]! t' t, t,
LI-a' a d', l d A L-a a' d', l' d'd'd"

0 00..000.. 0 0 OJ0 0 0.

with

l' s' J l'e l
x pe' L' -a' a'

s l e d ~d'
d'

L g S~ S S

L' S's, sy L

e L' S e j
(A6)

P ty+ ty+ t + t +l +A+ $ I
+ssP2s'-J

In (A6), the symbol K stands for the set of quantum numbers ([L(s,s,)S]j; (t,t,)t; Is} and the 12-j coefficient
is that defined by Ord-Smith. "

Expanding (4.26) in partial waves then yields
1 1

V» '(q', q; &) = —g g g 8,','&" "(q', q; E), (A7)
a'=0 a=o A

where K =—([I(-,' 0)—,'] —', ; (-,' 1)-', ; ls} and

+ I
A ' "(q', q;E)=q'' '" q' ' "

—,
' dxPA(x)P(q„)'" q(k', q, )R'(q', q, q„E)(t»(k, q,),-I

where

x=q ~ q',

(A8)

(AB)

Z, (k) "f,(k)
Z, (q„) k

(A10)

Vl p'
t3(q.)= ~ ( )

(Al 1)

In order to compute the effective Nb, interaction (4.33), it is first necessary to solve the scattering equa-
tion for T„„(e„) Using (3.8.), this can be done straightforwardly, with the result

T» '«(K, K; e ) =g g» (K ) [I (E )]» '»g»{K), ,

ij

where

r(,)I,'r=(G '),". "q;; —f q q'( )(( ('«'),R"I )', . ,
0

I.et K =— ][1(0-,' ) —,'] -', ; {1—,')-', ;Is} and K» =— ([l(~-,')s]J; ( ,' ,')T;fJ}; defi—n—e

1

~;»(q, q.)= s~z', '-„","(q, q.),
a= =0

where

(A12)

(A13)

(A14)

8"'"(q, q, ) = q' -"'.q', '" —,
' dxPA(x) ' '

—, ())(k, q, ) IT'(~, e„)
-1 &pr. (qr

x=q

The multipoles of (4.33) are given by

v","(q', q;z)=E(& —(-&)'"'') EE f qq, q, *rr (q', q)(r ()P;"rj"(q,, q, -)'. , ,',.

y'7 f i,j o

(A16)

(A16)

(A17)
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The deuteron wave function may be written in the form

C
~ k„od) = Q A, d(kd)JJ»d»d(kd),

Jd=0, 2

where yd=- {id, 1, 1, 0) and the normalization is

(A18)

(A19)«««*I«, («)I*= «.

The operator & defined in (5.7) may be expanded in partial waves as follows. Let I' —= ]L, 1, J, lj and Kr
—= ([fd( —,'~ )1]1(—,'-,')0;f, 1}. Then,

(q, i », i &l~lod~. q,)=~ ~"(q, q.)(u„i &IS~&"'(q)')f".d (q)I'od ~ ),
yr

NNg

with

««"')«, «,)=~«E g ZZ«*',", ««'„"")«,«.),
id=0 2 + =0 +=0 A

0, (kd)

MN„&q, ]' -1 d

where k and kd are given in terms of q, q„, and x by (5.8), (5.9), and (A16).

The amplitude for m + d -N+ N is written as

(A20)

(A21)

(A22)

(A23)

(q )' odl &dd(&)l od & q ) 2 &dd' (&)(& otfl 8 d (q )'9 d r(q )iud &

NNg

Explicit formulas for the amplitudes v'dd' are given in the main text [see Eqs. (6.8)-(6.13)].

(q», &. &«I &d(&) I od, ~., q.,) = 2 &,"(E)(&., P &I
')f'„"„"'(q»)&".d""'(q.,) I od, ~.).

NNz

The multipoles 1'"' are given explicitly by Eqs. (5.11)-(5.13). Note that the NN states used in the defini-
tions of the partial wave expansions (A4), (A5), and (A23) are not antisymmetrized. Properly antisym-
metrized amplitudes are obtained trivially by taking appropriate linear combinations.

The multiple expansion of the md elastic scattering amplitude is
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