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We present a description, including relevant formulas and numerical estimates, of a set of polarization transfer
experiments which appear to offer a feasible way to separate the deuteron charge and quadrupole form factors and

measure the neutron and proton electric form factors. The experiments require a 2 to 4 GeV high-intensity, high-

duty factor, longitudinally polarized electron beam and require that the polarization of the recoiling hadron be
measured in a second, analyzing, scattering. The relevant asymmetries are fairly large, and our calculations show
that they are sensitive to different models obtained from existing data. Attention is called to the fact that the
proposed deuteron measurements will require new 10% measurements of vector and tensor analyzing powers of
deuterons with kinetic energy from 150 to 450 MeV.

NUCLEAR STRUCTURE Analysis of electron polarization transfer experiments
to measure Gz&, oz„, separate d monopole and quadrupole form factors.

I. OVERVIEW AND SUMMARY

A. Introduction

A complete understanding of the electromagnetic
structure of the neutron and proton requires
knowledge of both the electric form factors (G~„
and Gs~) and the magnetic form factors (G„„and
G»); yet in the region of four-momentum transfer
squared Q' greater than 2 (GeV/c)' the electric
form factors are very poorly known. The situation
for the deuteron is even worse; there we need to
know three form factors, the charge G~, the quad-
rupole G, and the magnetic G„, but only one
combination of these, A=G '+~q'G '+ —,'qG„', is
known for Q' &1 (GeV/c}'. If we could separately
determine all of the nucleon and deuteron form
factors, our knowledge of the physics of these
systems would be greatly increased. In this pa-
per we will report calculations, and suggest ex-
periments which appear to offer a feasible way to
do this. A key factor in these experiments is the
use of longitudinally polarized electron beams.

Electron beams with 85 jo polarization and low
intensity' and 40% polarization and high intensity'
have been used at SLAC, and there is hope that
beams which are both highly polarized and in-
tense will be available in the near future. ' Such
beams can be used to separate the form factors,
provided the polarization of either the initial or
final hadron is also known. While polarized tar-
gets have already been used with low-intensity
beams, ' there appear to be fundamental difficul-
ties in using them with the high-intensity beams
required for measurements at high Q' where the
counting rates are low. It is therefore natural to

examine the alternative where polarization of the
recoiling hadron is measured by looking at the
asymmetry produced in a second scattering. Such
a detector (polarimeter) will inevitably have low
efficiency (10 ' to 10 '), but has advantages over a
polarized target in that it would be a relatively
simple, passive system with little or no down time,
can analyze many states for which polarized tar-
gets are not available, and can take full advantage
of the high current and high duty factor planned
for the next generation of electron accelerators.

To extract the form factors to 10% accuracy
from the asymmetries measured in the second
scattering requires that the analyzing powers of
the second scattering should also be known to at
least 10% accuracy. Analyzing powers for neu-
trons and protons have already been measured4 at
the right energies and to the required level of ac-
curacy. Better measurements of these would be
desirable, but are not essential. For the deuteron
the situation is less favorable. Analyzing powers
are known only for a few selected targets at a few
isolated energies and scattering angles. Both the
vector and tensor powers have been measured' at
420 MeV deuteron laboratory energy [correspond-
ing to Q' of 1.6 (GeV/c)'], and while some vector
power measurements have been made at lower
energies' [94—157 MeV corresponding to Q' of
0. 35 to 0. 6 (GeV/c}'], the tensor powers were
not observed there. New 10% measurements of
all the analyzing powers from 150 to 450 MeV are
needed before the experiments outlined in part B
below can be carried out to the 10% accuracy de-
sired, and more nuclei should be searched to find
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those which give particularly large analyzing
powers.

The asymmetries expected for the experiments
proposed in this paper are typically of the order
of 0. 10, so that while the experiments will be
difficult, it should be feasible to measure these
to the desired 10' accuracy. We also wish to
point out at the outset that, while most of the mea-
surements discussed in this paper require longi-
tudinally polarized electron beams, some of the
measurements for the deuteron are possible with-
out polarized beams.

We turn now to a discussion of the proposed ex-
periments. Since the detailed considerations are
different, the deuteron, neutron, and proton will
be discussed in separate parts below. Finally,
some details of the calculations for the deuteron
are given in Sec. II.

B. Deuteron

Three form factors —Gc, G„, and Gz for the
charge, magnetic moment, and quadrupole mo-
ment distributions —describe the electromagnetic
interaction of the deuteron in elastic scattering.
These form factors depend directly on the wave
function of the deuteron. Measuring the three
deuteron form factors is thus a test of our know-

ledge of the nucleon-nucleon interaction; at higher
momentum transfers where relativistic correc-
tions or meson exchange currents become im-
portant our understanding of these matters is also
probed. The deuteron form factors are propor-
tional to the electromagnetic form factors of the
constituent nucleons and at high Q' uncertainties
in (particularly) the neutron form factors currently
hamper our ability to extract information depen-
dent only on the nucleon interaction.

In scattering unpolarized electrons from unpo-
larized deuterons, only two combinations of the
three form factors can be separated. The differ-
ential cross section is given by

[A + B tan'( —,
' 8)],dg da'

dQ dQ

where Q' is the four-momentum transfer squared.
(Our conventions follow Bjorken and Drell, and if
Q is the momentum transfer, Q'—= —q')0. ) Accu-
rate measurements over a range of angles can
determine G„, but cannot separate G~ from Gz.

To aid in separating G~ from G, we discuss
polarization experiments. In particular, consider
scattering longitudinally polarized electrons from
unpolarized deuterons. ' The outgoing deuteron
from this reaction will have vector and tensor
polarizations P,. and P, & (i, j=x, y, z) which can be
calculated in terms of the three deuteron form
factors and which can be measured by a second,
analyzing, scattering from another (perhaps car-
bon) target. The cross section for the two scat-
terings together in the coordinate systems of Fig.
1 is

d' d'
drMn dndn2 2 0

+ 3 P«A«cos

+ —,' (P„„—P,„)(A„,—A„)cos2@,j.
(4)

Here, a is the polarization of the incoming electron
beam (i. e. , a is the probability of finding a right-
handed polarized electron minus the probability of
finding a left-handed one,

l
al ~ 1). The quantity

d'o/dQdg,
l
„ is the cross section for scattering

with unpolarized electrons followed by a second
scattering with unpolarized deuterons. The azi-
muth angle between the two scattering planes is
P, (see Fig. 1). The only P, dependence is in the
sines and cosines displayed explicitly above, so
that a simple Fourier analysis will separate all
the terms except P„. The second scattering has
analyzing powers A,. and A, , which are functions

Electron Scattering

where 0 is the laboratory scattering angle of the
electron, do/dDl„~ is the cross section for
structureless particles,

do a ' cos'(—2'6j) 1
dQ „~ 2E . 4(, )

2E . ,(, s)
d

and
A=G '+ —,'qG„2+~g2G '

8 =~3@(1+@)G„',

Q2

4M2'
d

Secpndory Scattering

Pl one

FIG. 1. Definition of electron scattering, recoil parti-
cle, and second scattering coordinate systems. The
recoil coordinates xz are in the electron scattering
plane.
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of the energy of the deuteron which enters the
second scattering and of the second scattering
angle 8, . We could also. say that they were func-
tions of Q' and 82 since the kinetic energy of the
deuteron entering the second scattering is given
by

Q2

2Md

The values of A,. and A, , must be measured in a
separate experiment.

The nonzero polarizations are given in terms of
Q', 8, Gc(Q'), G„(Q'), and Go(Q') by

Iop„= —~[@(1+q)]'~'G„(Gc+3 @Go) tan(~8),

I,p, =-, q((1+ q)[1+ 7i sin'( —,'8)]]'~'G„'

x tan(-,'8) sec(-,'8),

-Iopzz —
3 gGcG+ 9 g'G&

+ —,'q[I+ 2(1+q}tan'(-,'8)]G„',

lo(P.. P,„)= —rjG~'-

I,P„=-2q[q+q'sin'(-, '8)]'~'G„Gc sec(-,'8),
where

(6)

I =oA+B tan'(~8)

and some readers may wish to rewrite two of the
above using

I

[q+q'sin'(-, '8)]'~'= sin(-,'8),
d

(8}

where E and E' are the initial and final electron
laboratory energies. We give p, even though it
does not enter the cross section Eq. (4) directly.
In practice, the deuteron may pass through a

magnetic field between the first and second scat-
tering, causing the polarizations to precess. Then
in order to calculate the vector polarization com-
ponents of the deuteron when it enters the second
reaction, both P„and P, of the deuteron as it
emerges from the first reaction must be known.

Polarizations p„and p„, are the most interesting
because they involve combinations of G~ and G~
different from A. (Q'). Polarization (p,„—p„) is
less interesting from this viewpoint since it de-
pends only on G„', which could be measured with
no polarization analysis. Also we shall see that
(p„„—p») gives contributions in Eq. (4) that are
numerically small. If the absolute normalization
of an experiment proves hard to determine, then
the only quantities that come easily from a Fourier
analysis in P, are the ratios P,/P„, P,/(1+ -,

' P„A„),
and p„,/(1+ —,'p„A„). If the initial electrons are
unpolarized, only the last ratio can be measured.
The last two ratios can determine p„and p„, in-
dividually only if we have separate information

about p„. In some cases one might be willing to
trust a calculation of P„: It can happen that the
uncertainty or model dependence of p„ is large
but that this does not cause a large percentage
uncertainty in (1+ —,

' p„A„). However, the first
ratio yields

[n(I+ n)]'" ', ' + — (9}
M G 1

p,. E+E' nGQ 3

which gives new information and can be deter-
mined independent of p„and G„.

A few remarks should be made regarding the
reason the particular polarizations in Eq. (6) are
nonzero. If neither of the initial particles was
polarized, parity invariance could be used to show
that P„=P,=O. In the present case, this does not
apply, and neither P„nor P, is zero. In general
p, is not zero. It is not forbidden by parity or
any other invariance principle. That p, =0 here
is a consequence of making the usual one-photon
exchange approximation. Also with the one-pho-
ton-exchange approximation, the tensor polariza-
tions are independent of the electron polarization.
Hence only the tensor polarizations which would
be present if the initial particles were not polar-
ized, i. e. , those tensor polarizations allowed by
parity invariance, are nonzero. These are p„,
P„„and (P„„—P„„), and they could be measured
without having a polarized electron beam.

To our knowledge, the formulas for the vector
polarizations are new. 'Ihe tensor polarizations
have been discussed before. ' The component p„
is the same as —v 2 T2p where T2o is the tensor
polarization studied by Levinger et al. "and by
Moravcsik and Ghosh. " (The formula for T„ is
sometimes quoted after doing an extrapolation in
8 to remove the G~' terms. ) The other tensor
polarizations p„,= v3 T„and ( p„——p„)= 2v 3 T„
have been recently studied by Haftel, Mathelitsch,
and Zingl, "who examined the sensitivity to dif-
ferent deuteron wave functions.

We have calculated the polarizations over a
range of angle and Q' for several different deu-
teron wave functions. Our calculations of GE, G~,
and G& follow Ref. 13, so that we have a fully re-
lativistic calculation of the impulse approximation.
This means that some corrections sometimes
counted among meson exchange corrections,
namely the pair currents, "are automatically in-
cluded, although true meson exchange corrections
such as the photon coupling to a p-~ current are
not. The three deuteron form factors depend on
the nucleon electromagnetic form factors as well
as on the deuteron wave function. Our plots are
all prepared using the nucleon form factors called
"Best Fit" in Ref. 13.

Results of our calculation for the deuteron are
shown in Figs. 2 through 4. Figure 2 displays the
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FIG. 2. Recoil deuteron polarization components
(a) p„, {b)p», (c)p„„(d)p~, and (e) (p —p ) at selected
values of Q versus electron scattering angle S for one
choice of deuteron model HM3 (Ref. 15). These results
were calculated relativistically using the formulas of
Ref. 13 and the nucleon form factors we call Best Fit.
The electron polarization is 1.0. Note the vertical scale
for component p~ is a factor of 5 larger than that for the
other components.

five nonzero polarizations vs scattering angle for
several values of Q' and one wave function, namely
the HM3 wave function from the Bonn group. "
Polarization P„, is large at most angles (so we
should measure it where the event rate is high)
and changes sign at a particular Q' whose value we
shall see is model sensitive. Polarization P„ is
larger for backward scattering, where the event
rate is small, than it is for forward scattering,
where the event rate is large. If one considers

FIG. 3. Recoil deuteron polarization components
(a) p„, (b) p, (c)p„(d)p„, and (e) (p„-p~) at electron
scattering angle 0=40 versus Q~ for various deuteron
models. The curve labeled RSC-NR is the Reid soft
core model (Ref. 16) calculated nonrelativistically. The
curves labeled Relativistic were calculated using the
relativistic formulas of Ref. 13 and the following deuter-
on models: RSC—Reid soft core; HM3 —one of the
Holinde-Machleidt Bonn potentials (Ref. 15); LF-4.5%—
Lomon-Feshbach boundary condition model with 4.5% D
state (Ref. 17); A. =0.4—a 4-component relativistic model
(Ref. 18). The electron polarization is 1.0. Note the
vertical scale for components p ~ and p~ is a factor of
10 larger than that for the other components.

only statistical errors, the figure of merit for a
measurement is proportional to the (event rate)' '
x(polarization), and for P, this number is not
strongly angle dependent and in fact slightly favors
forward directions. Hence one may expect that
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FIG. 4. Ratio of recoil deuteron polarization compo-
nents p„and p ~ at electron scattering angle 8 =40' ver-
sus Q2 for the same deuteron models as in Fig. 3.

experiments will be done at forward angles. To
reduce clutter on our graphs when we consider
different deuteron wave functions, we shall fix 8

at a moderately forward angle like 40 .
In Fig. 3 we show the five polarizations vs Q'

for a number of deuteron wave functions at 6} = 40'.
Results from the Reid soft core" wave function
with the form factors calculated nonrelativisti-
cally have been included as a benchmark. We
then show results from four credible model wave
functions calculated relativistically. These are

the Reid soft core wave function, the HM3 wave
function, "the Lomon-Feshbach wave function with
4. 57% D state" and the ~ =0.4 member of a family
of relativistic wave functions. " The Lomon-
Feshbach wave function is quite interesting in that
it fits the deuteron parameters, and the potential
that generates it fits the phase shifts well, but the
results it gives for the quantities of interest here
are rather different from the other wave func-
tions. Note that measurements with 10/~ errors
are sufficient to distinguish the models from each
other.

The ratio P„/P„, appears in Fig. 4 for 6 =40' and
the same deuteron models as in Fig. 3. The
model sensitive point where P,/P„ is zero is due

to, although somewhat displaced from, the zero
and associated sign change of Gc at Q'= 1 (GeV/e)'.
Polarizations P„and P„, individually also have
zeros at Q' of 1.4 to l. 6 (GeV/c)' due to G„, but
these cancel in the ratio. Since G~ and Gz depend
primarily on the isoscalar electric nucleon form
factor (and not the magnetic), the ratio P,/P„ is
insensitive to the nucleon form factor model.

There is a need for more experimental measure-
ments of the analyzing powers A„A„, A„„and
(A„, -A„) at energies of interest here (deuteron
laboratory energies 150 to 450 MeV}. Some data
do already exist. " For Q'=1. 6 (GeV/c}' we can
use the analyzing powers reported in Ref. 5, tak-
ing 8, =6' to 10' for definiteness, to estimate the
size of effects that can be obtained for various
electron scattering angles 8. For example, taking
6}=40 and P,. and P„" from the Lomon-Feshbach
wave function, we get

{1+ -', ap„A, sing, + —,
' p„A„+—', p„A„,cosp, + ~6 (p„—p„)(A„,-A„,) cos 2$,)

= ll —0. la sing, —0. 23 —0.08 cosp, —0.01 cos2@,) . (10)

Effects from (P„—P„„}are small. However, the

amplitude of the sinusoidal variation is not small,
and a good determination of its phase as well as
its amplitude will yield both P„and P„,.

C. The neutron

The goal is to learn about the neutron form
factors. They are in general difficult to mea-
sure because there are no free neutron targets
and recoil neutrons are difficult to detect. The
magnetic form factor G„„is the best known because
it is relatively large and can be determined from
the slope in the Rosenbluth plots of cross section
vs electron scattering angle; it has been mea-
sured'9 up to Q' of 2. 7 (GeV/c)2 in quasifree elec-
tron-deuteron scattering with uncertainties rang-

I

ing from 10% to 40%. The electric form factor
GE„ is very small, and therefore is generally very
poorly known, except for the slope at Q'=0, which
has been obtained" to 2% accuracy by scattering
neutrons from atomic electrons. Away from Q'
=0, G~„ is obtained from electron-deuteron elas-
tic and quasielastic scattering, but has until now

only been measured out to Q' of l. 5 (GeV/c)' with
errors from 30% to 50/0. In that region there are
quasifree measurements" dominated by large
statistical errors, with G~„extracted from the
intercepts of the Rosenbluth plots consistent with

G~„=O, and elastic ed measurements" with G~„
ranging from zero to about 0. 10 with the largest
uncertainty from deuteron model dependence.

The electric form factor of the neutron is a
particularly important quantity for our understand-
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ing of nucleon and nuclear structure. The Q' de-
pendence of GE„ is related to the charge distribu-
tion of the neutral neutron, and is a sensitive test
of the symmetry of the ground-state quark wave
function. " Knowledge of the neutron electric form
factor is essential for accurate calculations of
electromagnetic interactions of nuclei, especially
the deuteron, which serves as the laboratory for
our investigations of the short range nuclear
force, meson currents, and relativistic effects. "
For all these investigations our present knowledge
of G~„ is highly inadequate. It would even be im-
portant to know only if GE„were not strictly zero
above Q'=0. To this end we suggest that mea-
suring the polarization of recoil neutrons follow-
ing (quasi) elastic scattering of polarized elec-
trons might offer a better possibility to determine
GE„ than the previous methods.

The neutron is easier to study (at least theo-
retically} than the deuteron because there are no
tensor polarizations, only vector polarizations.
Similarly, instead of there being four analyzing
powers there is only one, the one called A„.

The formula for the full cross section for scat-
tering longitudinally polarized electrons from
unpolarized neutrons, including both the first and
second scattering is

g cf 0'

dQdQ dQdQ2 2 0

where a is the electron polarization, d&r/dQdQ, I,
is the double scattering cross section with un-
polarized electrons, and Q, is again as indicated
in Fig. 1. The only nonzero polarizations are'

ponent P, is less interesting from the point of view
of form factors because it is proportional to G„„,
and it is not directly observable in the second
scattering. We will study both components here,
however, because under certain experimental con-
ditions, both may be important. The neutron de-
tection system would almost certainly include mag-
netic fields between the first and second scatter-
ings to sweep away charged particles, and the
recoil neutron spins would precess through large
angles due to the large neutron magnetic moment.
Therefore it would be necessary to know both p„
and P, emerging from the first scattering to cal-
culate the component P„entering the second scat-
tering. We shall see below that one might arrange
the necessary magnetic fields to actually take ad-
vantage of the unavoidable large precession to
help reduce the systematic errors.

We have evaluated the formulas for P„and P,
for several choices of neutron form factors and a
range of Q' and scattering angle 6. Figure 5

shows the results as a function of 8 for fixed Q'
for one of the fits of Hohler et al. 25 The fact that
P„—0 and P, -1 at large angles is a general kine-
matical feature evident from Eqs. (12) and (13).
While P„grows with increasing 0 at small 6, the
figure of merit (event rate)'~'x(polarization) de-
creases with increasing 6I. Therefore the choice
of 8 would tend toward forward angles.

In Fig. 6 is plotted the polarization vs Q' at a
given electron scattering angle 6=50' for several
different form factor models. The results for the
fit we" called "Best Fit" with G~„ from Galster

I,p„=I,K~ z
——2[v(1+ r)]' I'G„„Gs„tan( —,'8),

Opz 0 LI.

= 2r((1+ r)[1+ r sin'( —,'8)])' 'G„,'

x sec(—,'8) tan( —,'8),

[T(1 + r}]' 'G„„'tan'(-,' 8} .
E+E'

(12)

pz

(o) p,
I .Q

0.8

0.6

0.4

I

Neutron —Hohler 8.2

Here

I,= GE„'+ 7'G„„'[1+2(1+ r}tan'( —,'8)],
r = Q'/4 M' (13)

0.2

:- (b) p„

and M is the neutron mass. The recoil polariza-
tions P„and P, are the same as the spin transfer
coefficients K» and K» familiar from nucleon-
nucleon scattering, ' and we have indicated above
this alternate notation.

The polarization component P„ is the most in-
teresting because it is directly proportional to the
sought after G~„and it alone appears in the cross
section Eq. (11}for double scattering. The com-

px

-0.2 — Q2= 2' I' 0 2

-0.4
4Q 80 I20 l60

e (deg)

FIG. 5. Recoil neutron polarization components (a) p~
and (b) p at selected Q2 versus electron scattering
angle 0 for one choice of nucleon form factors, fit 8.2
from Hohler et al. {Ref. 25).
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et al. ,
' the fit g.2 of Hohler et al. ,

' and the
e a qua e similar.Blatnick and Zovko fit" are all u t

These correspond to values for G~„consistent
with the slo e atp Q'=0 and rising to approximately
0. 05 at Q' = l (GeV/c)' in the middle of the lar e
experimental errors. The IJL fit from Iachello,
Jackson, and Lande" is determ' d t'ine en zrely from
a model fit to nucleon form factor data excluding
G~„and gives quite different results, with GE„and
p, passing through zero near Q'=1. 4 (GeV/c)'.
The form Dipole+ GE„——0 yields P„=O and P, in-
distinguishable from the other phenomenol leno ogzca

x s. inally, the curve labeled Dipole+ F,„=O
employs standard dipole forms with the Dirac
form factor of the neutron set equal to zero. "
This is consistent with a quark model for nucleon
structure with the valence quarks in a spatially
symmetric ground state, and gives

1.91'
14)

of th
for Q' in (GeV/c)'. This G is at the uppe d

o e large experimental error bars on the exist-
ing data.

All fivive models that we used are plausible esti-
mates for G s~„ spanning the range covered by the

0 50
Q~ (f ~)

FIG. 6. Recoil neeutron polarization components (a) p,
and (b) p„at electron scattering angle 8 = 50' for various
nucleon form factors. The solid cso i curve is for Gz„of di-

Hohl
e results for the two fits labeled Be t F't (R f.es i ( ef. 13) and

edBZ i
ohler 8.2 are indistinguishable. Th d tt de o e curve label-

e BZ is from Blatnick and Zovko (Ref. 26), and IJL is
from Ref. 27. The curve labeled Di l + F „=
erst suggested in Ref. 13 as an example for Gz„consis-

tent with the present data for A(Q2) d than e quark model
or nucleon structure with valence qua k '

pa yuar s m a spatially
symmetric ground state.

present large errors, and these estimates give
wide variations in the predictions for P„. Since
the polarization P, is dominated by the better
known G„„, there is less divergence among the
models for this component.

The most likely candidate for the analyzing re-
action would be nP elastic scattering for which the
cross sections are relatively large and the ana-
lyzing powers fairly well measured. ' It seems
possible that an analyzer-detector system could
be built with an efficiency of 10 to 10 ' with an
effective analyzing power of 0.2 to 0.3. To achieve
significant count rates with such low detection ef-

~ ~ficiency would require large beam currents. The
signal-to-background ratio would be enhanced by
detecti the s'ng cattered electrons in coincidence if
accidental rates are low. These req ' te requirements are
nicely matched to the projected capabilities of the
next generation of high-duty-factor, high-current
electron accelerator in the several-GeV region.

Since the neutron target (probably deuterium)
would also inevitably contain protons, a sweeping
field between the first and second scattering would

be necessary to remove background. With a ver-
tical sweeping field charged particles are swept
sideways in the laboratory and do not introduce a
possible spurious asymmetry in the analyzer mea-
suring the up —down asymmetry from the P„com-

th
ponent. The neutron spin then precesses daroun

e vertical direction as shown in F' . 7.n lg. . is
precession rotates the large initial p, component
into the x direction at the second scattering, thus
increasing the up —down asymmetry in the analy-
zer. Horizontal sweeping fields would not be
optimum because P, would precess into the y di-
rection introducing an unwanted left-right asym-

FIG. 7. Definition of the precession angle co for neu-
trons with polarization components d
alona ong the z direction through a magnetic field H
a ong e y axis.

e ic xe oriented
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metry, and the charged particle background would
be highly asymmetric in the up —down direction.

To indicate the possible sensitivity of such a
measurement to the predicted GE„and G„„, we
show in Fig. 8 for a scattering angle 6I = 50' the
variation of the component P„vs precession angle
u, as in Fig. 7, for the neutron models described
in Fig. 6. In principle, data with sufficient ac-
curacy and range of precession angle co could be
used to separate C'E„and G„„from the phase and
amplitude of the curve as in Fig. 8. If the pre-
cision or range were too limited, it may still be
possible to extract GE„ from the intercept at H=0.
One could either calculate the effect of the sweep-
ing field assuming knowledge of G„„, determined
more precisely from the angular distribution, to
extract the desired initial P„, or alternatively,
one could measure large up —down asymmetries
with +H sweeping fields and determine P„at H =0
by extrapolation. While this technique would not
directly increase the sensitivity to GE„, because
the increased asymmetry is due to G„„, it would
be advantageous for establishing confidence in the
method by increasing the size of the asymmetry
signal in a controlled way, and for reducing the
systematic errors by averaging over symmetric
measurements. From Fig. 8 we see that for
analyzing power of 0. 2 to 0. 3 an experiment with
the capacity to measure 10' to 10' counts could
distinguish between some of the models for GE„,
assuming that systematic errors are not dominat-
ing.

While such double scattering experiments with
neutrons would be difficult we think they merit
serious consideration because of several advan-
tages they offer. First, the desired small quan-
tity GE„ is directly proportional to the up-down

asymmetry signal (extrapolated to H=O), and is
not buried in strong competition with the larger
G„„, as in the Rosenbluth method, or available
only after a model dependent analysis, as in elas-
tic ed scattering. Also the quantity of interest is
extracted directly from a ratio measurement
(up —down/up+ down) which provides the addi-
tional advantage that the result does not depend
on any knowledge of absolute normalizations of the
beam-target-analyzer system. All that is re-
quired is adequate counting rates and knowledge
of the effective analyzing power A, to extract p„.
Finally, measurements with opposite electron
polarization and with unpolarized electron beams
can be used to eliminate spurious asymmetries.
The compelling physics interest in GE„should pro-
vide strong motivation to attempt even a difficult
experiment.

D. The proton

I .0
(a) p,

l l

Proton —Hoh le r 8.2

The value of GE~ is much better known than GE„—
particularly at very low Q' where it dominates
elastic scattering from free protons. " However,
for Q' a 1(GeV/c)', G» dominates the cross sec-
tion, and our knowledge of G» fades out at Q'~ 3.7
(GeV/c)', where the current'9 experimental uncer-
tainty is of the order of 25%. Better measure-
ments of GE~ in the Q' region between 2 and 4
(GeV/c)' would be of great value to both nuclear
and particle physics.

In Fig. 9 are plotted the vector polarizations P„
and P, of the recoiling proton for various Q' vs
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FIG. 8. Recoil neutron transverse polarizationp at
Q =1.0 (GeV/c) and 8=50 versus precession angle co

as defined in Fig. 7. The various nucleon form factors
used are the same as in Fig. 6.

FIG. 9. Recoil proton polarization components (a) p»
and (b) p at selected values of Q2 versus electron
scattering angle 0 for one choice of nucleon form factor,
fit 8.2 from Hohler et al. (Ref. 25).
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electron scattering angle for the model fit 8. 2 of
Hohler et al. There we see the same kinematical
feature as for the neutron that P„-0 and P, —1 for
large angles.

In Fig. 10, P, and P„are given as a function of
Q' for a fixed angle of 40 and five different
models: the dipole form (which, on the graph,
cannot be distinguished from the model of Blatnik
and Zovko"), the IJL model of Ref. 27, and two
models of Hohler et al. " Note that the models
differ significantly in the region of Q = 2 to 4
(GeV/c)', and that the polarizations are large.

The analyzing powers for protons are also
somewhat larger than for neutrons4 varying be-
tween 0. 4 and 0. 3 in the region of Q' ~ 4 (GeV/c)'.
For higher Q' (i.e. , higher energy protons) the ana-
lyzing powers and ep cross sections begin to fall off,
so that the experiment proposed here becomes in-
creasingly difficult. Also, if the recoil proton
detector-analyzer employs magnetic field, then,
as for the neutron, there will be large precession
due to the large g-2 factor. Determination of the
recoil P„and P, by variation of the precession
angle would be somewhat more complicated in this
case, however, because the precession is corre-
lated with the bend angle, which for a given geo-
metry and field, is fixed by the recoil proton
momentum or Q'.

A 10% measurement of P, at a Q' of 4 (GeV/c)'
would just be sufficient to distinguish the IJL,

Dipole, and Hohler models from each other. Since
the analyzing power at the appropriate momentum
(about 3 GeV/c) is known to about the same ac-
curacy, better measurements of the analyzing
power would be helpful but are not essential. The
expected asymmetry at Q' =2 (GeV/c)' for a 100%
polarized e1.ectron beam would be about 10%, and
a 10% measurement of this asymmetry requires
about 10' counts.

II. THEORETICAL CALCULATIONS

We shall describe the polarization calculations
for spin-1 particles. " The calculation of cross
sections from current matrix elements is standard
and will merit only a few remarks at the beginning,
and the remainder of the section will be devoted to
defining and calculating the polarizations and

analyzing powers.
The momentum and helicity of the incoming and

outgoing electron are (k, r) and (k', r') respectively,
and the corresponding quantities for the deuteron
are (D, A} and (D', X'). The matrix element is

Sit = fe'u(k 'r')y"u(k, r) —, (D 'A '~j „~

DX) .

The electromagnetic current for the deuteron is

1.0

0.8

x(D+D'),

+ G.[h„(h . q) —(, (( q)], (16)

0.6

0.4

0.2

where

G„=62

Go —G, —G2+ (1+q) G, , (17)

px

" (b) p„04

0.2

-0.2

~ ~ ~ ~

1 i I i 1

4 8 12 16
o~ [(Gev/c)~]

20

2
G =G, + —

@gal,

and $ = ((A.) and $' = $'(X') are the polarization
four-vectors of the initial and final deuteron and
satisfy $ ~ D = $' D'=0. If the initial electron is
longitudinally polarized, ' then the cross section
will be proportional to (for m, =0)

FIG. 10. Recoil proton polarization components (a) p»
and (b) p» at electron scattering angle 8=40 for various
nucleon form factors. The results for Dipole and the
fit BZ of Blatnick and Zovko ref. 26) are indistinguish-
able. The fit 8.2 of Hohler et ul. (Ref. 25) is a fit to
both neutron and proton data, while their fit 5.3 is a fit
to proton data on1y. The IJL curve is from Ref. 27.

L""=g u(k'r')y" u(kr)u(kv)y'u(k'v')

= —,
' Tr If' (1y+ ay, )fy" (18)

= 2(k'"k" + k"k'" —k ~ k'q'"+ fae~""k, k,'},
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where a is the electron's polarization (a= +1 for
the pure helicity state implied by the first line
above, and

~

a~ (1 if one does the weighted sum
appropriate for a partially polarized beam).

When we calculate the cross section for pro-
ducing final state deuterons in some definite po-
larization state

(19)

we get

oo ol 0 0 i

[0 i 0 -i 0 0

0 -i 0

o, =S,= i 0 0

.0 00
i'1 0 Ol

6„=3O,' —2= 0 1 0

g0 0 -2~

O'„=S„= 0 0 -i, (P„=S,= 0 0 0

(24)

dQ ~ dQ

where

(20) -3 0 0

o„„—o„,= 0 3 0

0 0 0

[A +B tan'(-,'e)] x —,
' g'*(x)P" (8(x') .

NS

(21}

Here p
~ is a relativistic version of the density

matrix and completely describes the polarization
of the outgoing deuteron. Note that both $'(&') and

(&) refer to the outgoing deuteron. The nor-
malization of p is

0 0 -1
4 „,= -'. (a „a,+ 4,6„)= — 0 0 0

, 1 0 0

For example, consider calculating the cross
section for producing a final state polarization in
the +x direction. This means that the polariza-
tions are eigenstates of S„with eigenvalues +1,

(25)

(22}
so

(0, +1, -i)1
(26)

P = I+ .(P.a'. +P, +, +P.&.)+-.'P„a„-
+ 'p..s..+ l (p..- p„„-)(s..—s'„). (23)

which leads to the correct cross section for the
case when the final polarization is not measured.

The vector and tensor polarizations are defined
from the density matrix. Note that ('*p $z is a
covariant object, so that we may study it in a
reference frame of our choosing. In the rest frame
of the deuteron, the polarization vectors have only
spatial components, and p can be treated as a
3 x 3 matrix. We then use the standard nonrela-
tivistic conventions as recorded below to define
the vector and tensor polarizations. If one wishes,
the 3x3 matrices below can be thought of as the
space parts of 4x4 matrices with the unwritten
components being zero, and their form in an ar-
bitrary frame can be obtained by boosting. We
choose our coordinate axes as shown in Fig. 1,
and write p in terms of Cartesian tensors, '

in the rest frame of the final deuteron or

i &,.= ——&'(0) +-.'[& '(+1) + &'(-1)] (27)

in general. We then get

dg~ dv „da'
dn dn d~ „s 'p" (28)

The quantity on the left is straightforward to cal-
culate, and leads to the expression for p„quoted
earlier. Similar exercises yield the other vector
and tensor polarizations.

Incidentally, the symmetric and antisymmetric
parts of L„„induce terms of corresponding sym-
metry in the density matrix. The facts that the
tensor polarization matrices are symmetric and
that the part of L„„that depends on the electron
polarization is antisymmetric leads to the state-
ment made earlier that the tensor polarizations
are not changed by the electron polarization.

To measure the polarizations p: and p, , we must
do a second scattering from another target which
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is called the analyzer. The dependence of the
~:ross section upon the polarization of the entering
deuteron can be studied with a formalism such as
the density matrix given above. If the entering
deuteron is in a pure polarization state $, then

of 6', , in the primed and unprimed coordinates,
respectively, we have

(O „,),, =R, , , R, ,,(g,,), ,,
with

(32)

where

' cosQ~ -sing~ 0

R = sing, cosQ, 0

0

(30) (p, , in the primed coordinates has the same form
as 0, in the unprimed coordinates, so that

In the rest frame of the entering deuteron, Z may
be treated as a 3&3 matrix, with

6'y, ——(p, cosf, + (P„sing, . (34)

+ —' (A„—A, )((P„,, —(P„, , ) . (31)

Components of A not listed above are zero by
parity invariance.

The primes remind us that the two scatterings
are not in the same plane. The unprimed coordi-
nates axes are shown in Fig. 1; the z axis is
along the direction of the deuteron exiting the ed
scattering and the x axis is in the ed scattering
plane. The primed coordinates are for the second
scattering, so the z' and z axes are the same, but
the x' axis is in the plane of the analyzing scatter-
ing. The primed axes are related to the unprimed
axes by a rotation about the z axis' through angle

Thus, if (6'„,), , and (p, ,),, are the components

The other 3&&3 matrices can be rotated similarly.
Of course, the entering deuteron is in a linear

combination of polarization states given by its
density matrix. The overall cross section is ob-
tained from

do do
d dB, dQd

which yields the result given in Eq. (4).

(35)
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