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The isobar-doorway model for pion-nucleus interaction is extended to coherent 7° photoproduction. The
modifications to the transition operator due to many-body effects are shown to be the same as those in the optical
potential. Nonlocality associated with isobar propagation, recoil corrections, and an off-shell extrapolation of the
mNA vertex are included. The calculated cross sections are found to be in good agreement with the existing data.

EIUCLEAR REACTIONS Coherent 7° photoproduction; isobar doorway; optical}
potential model. Many-body modifications of the transition operator.

I. INTRODUCTION

The inadequacy of the impulse approximation in
generating the pion-nucleus optical potential in the
3-3 resonance region has been widely demonstra-
ted. InRef.1the isobar-doorway theory, 2whose use
introduces the isobars as explicit nuclear con-
stituents, was used to parametrize the pion-nucle-
us optical potential. The advantage of such an ap-
proach is that it not only sums the higher-order
terms in the multiple scattering series but also
provides a means of including the many-body ef-
fects due to isobar dynamics in terms of a small
number of phenomenological parameters. The
parameters of the model in Ref. 1 were deter-
mined by comparing the angular distribution for
elastic scattering with the experimental data.

This model was later generalized to isospin non-
zero targets,® where it was found that the experi-
mental charge exchange scattering cross section
can be very simply reporduced by allowing the
parameters to be different in different (pion-
nucleus) isospin channels so as to take into account
the isospin-dependent many-body modifications to
the isobar propagator in the presence of the nu-
clear medium.

In this work we have extended the isobar-door-
way model to 7° photoproduction. It is well known
that in the resonance energy region 7° photopro-
duction on nucleons goes mainly threugh A pro-
duction. Thus, any study of this reaction should
include the effect of isobar nucleus dynamics not
only in determining the pion-nucleus optical po-
tential describing the final state interaction but
also in the photoproduction operator. The isobar-
doorway model provides a framework for doing so.
We have considered only coherent 7° photoproduc-
tion as, in this case, the doorway states, which
are superpositions of A-(A-1) states diagonalizing
the effective intermediate Hamiltonian, are the
same as those for elastic scattering. The photo-
production operator is, therefore, completely

determined once the pion-nucleus optical potential
is specified. This is discussed in detail in Sec.
II. Following the parametrization! 2 of the optical
potential, the transition operator is written in
terms of a modified form factor and an energy
shift and width. The corresponding parameters
are no longer free but are determined by fitting
elastic scattering. In Sec. III we give the details
of such a determination of the parameters of the
isobar-doorway model along with our results for
elastic scattering on light nuclei. (The optical po-
tential considered here contains certain refine-
ments over the one of Ref. 1.) In Sec. IV we pre-
sent our calculation for the (y,n°) reaction. Re-
sults of a distorted wave impulse approximation
(DWIA) calculation, using a first-order optical
potential, are also given. We compare our calcu-
lations with the (somewhat limited) existing data
for '*C(y, 7°)*2C and *He(y, n°)*He. Finally in this
section we discuss some earlier calculations of
the process and compare them with ours. The
conclusions are given in Sec. V.

II. FORMALISM

In the isobar-doorway theory the Hilbert space
is divided into different subspaces, each with its
own characteristics. We extend the P space to in-
clude all the asymptotic states with the target in
its ground state—generated by the nonresonant
part of the pion-nucleon and photon-nucleon inter-
actions, D space containing A-(A-1) states, and
Q. space containing everything else. Using the
projection operator algebra and making the door-
way assumption Hp, =0 the effective Hamiltonian
for the P space states is

1
=H,,+
JC=Hpp HPDE -H,, "HDO[I/(E "HQQ)]HQDHDP ’

(1)

so that the transition matrix is given by
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where G,=(E - Hy)™! is the free Green’s function and VN®=H,_, — H  is the transition operator generated by
0 [s] FP 0

interactions in P space.

1

Equation (2) can alternatively be written as

T=7 R+ |H
PDE "HDD

where ‘" is the outgoing wave function generated
by Hp, with 7N the corresponding T matrix:

(E=Hpp)y® =0 and T¥F = (3| ). (4)

Although we shall not need the coupling potentials
Hp, and Hj,, it is useful to write them explicitly

Hpp=Hpp =V, yy +V, gy tH.oC., (5a)
with
(&1 Vs Vr) =008 e T () (50)
T
and
(] V| Ny T2 R8T, (5c)
T

where ¢* and k* are the relative momenta for
pion-nucleon and photon-nucleon systems, respec-
tively, € the photon polarization vector, o the pion
isospin and § and T the spin and 1sospm transition
operators between spin and isospin % and £

In case the target is a nucleon, Eq. (3) reduces
to

(N | V;NA | A){A| Veya | NT)

—4NR 4
e = lre E -M, +lI"A/2 (Ga)
for pion-nucleon scattering and
V,Na|NT
o= AT Ve | )AL yna VD) (6b)

E-M, +iT,/2

for pion photoproduction. In Eq. (6), M, and T,
are the physical mass and width of the isobar given
by

(E-M,+iT,/2)

=(s Y @

In writing Eq. (6) we have assumed that in the en-
ergy region of interest the coupling of the nucleon
to other mesons can be neglected (although we can
include their contributions very easily).

For a nuclear target the T matrix can be evalu-
ated? by introducing a complete set of states |D,’)
which diagonalize the energy denominator of Eq.

1
E _HDD "HDP E* _HPPHPD

—Hpol1/(E-Hy)Hqp-Hyp [1/(E

(+)
_HPP)]HPDHDPIw >’ (3)

(3):

rern Y

<w“ 1pr \D; Y(Di | Hpp | )
_ rel +€:ln) +2(F"e1 +F"‘“)/2

(8)

The problem then reduces to evaluating the e’s and
T'’s given by

’ 7 1 ’
o iTeg = < Hop = Moo D,.> (92)
and
1
’i 7 ’
n ZF 1/2 = < HDQmHQD Di>' (Qb)

This is the starting point of various calculations in
recent years®*® which take into account the isobar
degree of freedom in a T-matrix formulation of
the isobar-doorway model.

We, however, prefer to evaluate the transition
operator [the quantity in square brackets in Eq.
(2)] first and then calculate the T matrix. For
pion elastic scattering the transition operator is
just the optical potential. We evaluate it by intro-
ducing a complete set of states lDi) which diagon-
alize the energy denominator in Eq. (2),

@] Vo @)= @ | VERI )

Z (E =My +iT,/2)

R (& & = =
Eln +Zr\1“/2 t,,(q 7q)Fi(q )q

10
where e
Ei‘“—iFQ“/2=<Di HDD+HDOE—1—HQD Di>’

- Hgq
(11)

and we have used Eq. (6a) to write V;,,V, v, =(E
-M, +iT,/2)t& | t% being the pion-nucleon scat-
tering amplitude in the 3-3 channel. The modified

nuclear form factor F;(3’,d) is given by

F@@=% [ei60p@ +a.5+0
x ¢y (B)d3p’dp (12)
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with

P+ B+ D =0, (B +dNe B +d),  (13)

¢ being the wave function of the A in doorway

state ID,.). The pion-nucleus scattering T matrix
is then given by
= (1 + TGO) Vopt EQVopl . (14)

For coherent 7° photoproduction the transition
operator can be evaluated in a similar way. Pro-
ceeding exactly as for the optical potential we get

@ik = @y K

My +iT /2) - -
+Zmﬁrf2‘ (5 old, k) Fy(q, k),

(15)

where we have used Eq. (6b) to write V;y,V, v,

=(E-M,+iT,/2)t8,. The pion photoproduction
amplltude is then given by

T, 0= (1+TG,)i=0f. (16)

The quantities Ei*, T'!", and F; occurring in Eq.
(15) are exactly the same as in Eq. (10). Although
the photon will in general couple to all the doorway
states, the sum in Eq. (15) is restricted to only
those occurring for elastic scattering as they have
to have appropriate quantum numbers to couple to
the final state of 7° and the nuclear ground state.
Thus to include many-body isobar effects in the
(y, m°) reaction we have to modify the isobar prop-
agator in exactly the same way as for the optical
potential. This is shown schematically in Fig. 1.

A similar philosophy was adopted by Koch and
Moniz? in calculating the (y,n°) cross section using
a T-matrix formulation of the isobar-doorway
model. These authors correctly emphasize the
relationship of coherent 7° photoproduction to the
off-shell 7-nucleus 7 matrix. This is all the more
apparent here as the transition operator is related

Q - LN NQ

opf Vopt G Trw
T)’ r° = f)/ r° + ')/1r GO Torr
(b)

FIG. 1. Diagrammatical representation of pion elastic
scattering and 7° photoproduction in the isobar-doorway
model. The interaction ---X represents all many-body
modifications to the isobar propagator except those due
to coupling to P space.

to the optical potential. The latter defines the off-
shell as well as the on-shell pion-nucleus interac-
tion. However, the implication in Ref. 9 that the
off-shell behavior probed by (y,7°) is given by the
off-diagonal elements of the A-hole propagator is
a consequence of the model used to evaluate G,,.
If we use the states ‘D;) which diagonalize H,,
[see Eq. (8)] rather than the tridiagonal basis of
Ref. 9, both elastic scattering and 7° photoproduc-
tion would be given by the diagonal matrix ele-
ments (D;|G,,|D}).

III. PION-NUCLEUS OPTICAL POTENTIAL

As pointed out in Ref. 1, the theoretical deter-
mination of the quantities Ei*, T'{* and F; requires
not only a detailed understanding of the isobar dy-
namics so as to construct the doorway states but
also the coupling of doorway states to the compli-
cated many-body states in the @ space. Rather
then embarking on such involved calculations, a
more phenomenological approach was taken in Ref.
1, i.e., to parametrize the optical potential given
by Eq. (10).

For the nonresonant part we use the first-order
optical potential’® with the interaction in the pion-
nucleon 3-3 channel switched off. For the contri-
bution of the pion-nucleon 3-3 channel we assume
that the width T'; of the doorway states is larger
than the average separation energy E; — E; so that
the energy denominator in Eq. (10) can be replaced
by an average over the contributing states. The
resonant part of the optical potential is then given
by

1
E-M,-AE+iBT, /2

<[(E-M,+iT /2)E@,d, E)FA; §,9)]
(17)

with F(x; @’,d) as the modified nuclear form factor
which takes into account the nonlocality associated
with A propagation in the nucleus. In modeling the
form factor, the isobar density matrix was para-
metrized in Ref. 1 as

@\ v la)=

e-Gl-FZ)Z/)?
(A2)372

palFy.F) = 20 0P (F)93*(F,) =
(18)

The form factor F is then evaluated for p-shell
nuclei using harmonic oscillator wave functions,

ot ol o[ (3-29)- £}

X6'02°2/46—K232/4Fc.m4(Q) (19)

with Q=4 -§, K=(+d')/2, 2=c2A2/(c? +1%/4),
a = (N -2)/3[(Z - 2)/3] for neutrons (protons) and
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¢ the harmonic oscillator parameter. F.,(Q) is
the correction due to the center of mass motion of
the target which we take from the static limit'! to
be exp(Q*c?/4A).

The choice of nonlocality given by Eq. (18) was
motivated by the fact that under closure p, reduces
to 63(f, - ,), a limit conveniently obtained by tak-
ing A=0. However, such a choice [pA being a
function of (¥, - T,) only] necessarily implies that
we are including only the situation where the
three-momentum of the isobar is the same in the
initial and final doorway states.!? In general this
need not be true. To allow for the momentum
spread introduced by interactions of the isobar
with the nuclear medium, we generalize Eq. (18)

to
-7~ 3 QZCZ) E22_<§_ KZB 2)
Fx; § ,q)—Z{l +a[(2— e vl Chuaray
X 12/ KB2 AR (Q) (20)
with
2y 2 2y 2
2 C 7\‘ 2. _C )‘z
& T2 and B, =z +2,2/4° (21)

where ), and ), are given by a single (dimension-
less) parameter A,

1 A
\ Y and A, =2 (22)
with ¢, as the on-shell relative momentum for the
pion-nucleus system, so that the closure limit is
again given by A=0.

The parameters of the isobar-doorway model,
the energy shift AE, width parameter 8, and non-
locality parameter A take into account not only
various many-body effects like true absorption,
Pauli blocking, and inelastic scattering but also
the effect of Fermi motion. The reason is that the
numerator in Eq. (17) is just the product V;,,V/ya
averaged over the nucleon and A wave function and
hence contains no rapid energy variation. Using
an appropriate transformation (including the “angle
transformation”) from 7-nucleon c.m. frame to
m-nucleus ¢c.m. frame, the only approximation
used in factorizing & out of the integral is that the
off-shell extrapolation factor g(g*)g(q*’)/g2(q¥) is
a slowly varying function of the momenta.

In general the parameters AFE and 8 would depend
on the pion-nucleus quantum numbers like I, J, T,
etc. In Ref. 1 this channel-dependence was in-
cluded for spin-zero isospin-zero targets by taking
a Fermi cutoff for AE, and (8, - 1),

AFE

BB = T explG-1)/00]

(23a)

and

_ B-1)
= el = 1)/80]

B, (23b)

where J,=q,R and 61,=¢,t, R and ¢ beingnucleusra-
dius and surface thickness, respectively. However,
in view of the large width of the doorway states, it
is not unreasonable to take AE and B8 to be channel-
independent quantities. It should be pointed out,
however, that even a channel-independent para-
metrization of the optical potential in the isobar-
doorway model does not correspond to taking the
eigenenergies of the (projected) total Hamiltonian
in the D space Hy,, +Hpo[1/(E = Hyo) Hop +Hppl1/
(E - Hpp)]H,p, as channel-independent quantities.
These eigenenergies include elastic widths and
shifts which in general depend on angular momen-
tum very strongly.

The parameters of the model are determined by
fitting elastic scattering data in the resonance en-
ergy region. The harmonic oscillator parameter
¢ is taken as 1.36, 1.64, and 1.77 fm for “He, '2C,
and '°0, respectively, as determined by electron
scattering experiments.'®* A typical fit in the
resonance energy region is shown in Fig. 2 along
with the predictions of the code PIPIT *° The

3
10 T T T T T T

So(7* 7+ )0 Ty = 114 MeV

10"+

%(mb/sr)

100+

1(52 1 I
o} 20 40 60 80 100 120
8, m(deg)

FIG. 2. A typical fit pion elastic scattering. %0(r*, 1%
180 at pion kinetic energy of 114 MeV: dotted curve—
prediction of the first order optical potential (Ref. 10);
solid curve—channel-independent isobar-doorway mod-
el. The data are taken from Ref. 15.
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TABLE I. Parameters of the IDM for 7-1%0 scatter-
ing. Quantities in parentheses correspond to channel-
dependent IDM .

T, AE
(MeV) (MeV) B A
1142 4.07 1.264 0.38
(0.023) (1.538) (0.373)
1632 0.201 1.12 0.329
(=7.7) (1.333) (0.327)
2402 4,26 1.2 0.176
(11.99) (1.168) (0.135)

2Data from Ref. 15.

parameters of the channel-independent isobar-
doorway model are given in Tables I-III. For %0
the parameters of the channel-dependent IDM are
given in parentheses in Table I. In general, very
good fits to the data were obtained with yx® ranging
from 0.5 to 1.5 per degree of freedom. The para-
meters showed a large error and a strong correl-
ation at the minimum 2. However, no effort was
made to determine the correlation matrix due to
the large amount of computer time taken by the
momentum space code.

IV. 7° PHOTOPRODUCTION

Making the same approximations as for the op-
tical potential we write the transition operator as

1
E-M, - AE +ipT,/2

@\t = %@, k, E)p(@ - k) +

X [(E = M, +iT . /2)tR (@, K, E)F(; §,K)],
(24)

where not only the quantities AE and B are the
same as for the optical potential but also the form
factor F is the same. The reason for this, as
discussed earlier, is that in coherent 7° photopro-
duction the same doorway states occur as in elas-
tic scattering and the quantities AE, 8, and F are

TABLE II. Parameters of the IDM for 7-12C scatter-
ing.

T, AE

MeV) (MeV) B A
1202 19.9 1.26 0.368
148" 16.59 1.094 0.400
1502 19.87 1.065 0.45
162" -3.7 1.146 0.462
1802 12.59 1.186 0.336
2002 16.14 1.263 0.270
2302 19.9 1.160 0.112

aData from Ref. 16. bData from Ref. 17.

TABLE IIl. Parameters of the IDM for m-*He scatter-
ing,

T, AE

(MeV) (MeV) B A
1102 14.42 1.183 0.32
1502 14,42 1.0417 0.32
1802 0.87 1.055 0.113
2202 0.87 1.055 0.079

2Data from Ref. 18,

the property of these doorway states. The only
additional input to Eq. (24) is the amplitudes %
and t®, which we take as

. k* xg*

= BT e
and . (25)
k*xgx o flg*)
k*q* flgd)
with MN® and M® taken from multipole analysis
of Pfeil and Schwela'® and f, the off-shell form
factor. Here, k* and d* are the relative momenta
in the c.m. frame for the photon-nucleon and pion-
nucleon systems, respectively,

R =C.
b0 €

My
VS, y

=

(E - aﬁ) ’

(26)

e My .

T =7 @ -bD),

where a and b are evaluated by making a frozen-
nucleon approximation.

Although the transition operator Eq. (24) looks
like the pion-nucleus optical potential because of
the transverse nature of the photon field, there are
some important differences between the two when
we include the recoil corrections. We discuss
these differences in detail here. (Most of these
considerations apply to both the impulse approxi-
mation calculations and the isobar-doorway model
calculations.)

A. Phase space and flux factors

This correction is the same as for the optical
potential. The two-body amplitude in the pion-
nucleus ¢c.m. frame is related to the amplitude in
the pion-nucleon c.m. frame by

Eu(q*)E,(F")Ep(@)Ey(k*) /2
1@,k E) = [E,(Q)E,(k)EN(:/A)ENN(k /A)]

Xt(a*;ﬁ*v VSfN)) (27)

where we have used the frozen nucleus approxima-
tion to evaluate energies E, in the pion-nucleus
c.m. frame.
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B. Recoil corrections and Fermi averaging

For the pion optical potential, inclusion of recoil
corrections leads to the p wave in the pion-nucleon
c.m. frame feeding into the s wave.!° Although
there is no unique prescription for such an angle
transformation, using the momentum-conserving
form of the nonlocality we can show that

T [ar @ 016+ 8- 300, G+ Doy @
N

2 . b . -
Mr [ﬁ-q'—g(q—q’)z]F(x;q',q), (28)

Sen
where
v My . .
* = (d - bp)
and
- My ;- -, > =
*! — r +ad-q’)l. 29
d —[mq bE+3-d)] (29)

Thus, at forward angles, where the elastic scat-
tering cross section is large, the contribution of
the correction terms being proportional to ( - §’)?
is small. However, for the 7°-photoproduction
operator, similar estimates give

3 [ E X0 03@ +E - D, 5+ 000, )
N

M2 q.b ab > . - >
o~ +i4 =2 .
Sox 1 5t3-3 kxdF(x; 4,k). (30)

Thus the recoil corrections also go as k x 4q. Tak-
ing a~k,/M, and b~w,/My we see that these
amount to about a 25% increase in cross section
over the whole angular range. Again, as in the
case of the optical potential, this gives us a way
of including Fermi averaging, as the only quantity
we are factorizing out in writing Eq. (24) is the
off-shell extrapolation factor f(g*)/flq¥).

C. Center-of-mass motion

We include this in the same way as for the opti-
cal potential by multiplying the form factor with
Fen(@-Kk) =exp[(k - §)c?/4 A].

D. Off-shell extrapolation

Whereas for constructing the pion optical poten-
tial we use the Londergan-McVoy-Moniz (LMM)?°
off-shell extrapolation for the 7N T matrix, for
the (y,n°) T matrix we use the form factor sug-
gested by Blomgvist and Laget

f(q*)=(1—+:w,—2)m, (31)

with 7,=0.00552 MeV~!. Of course other dynami-

cal models would lead to a different off-shell ex-
trapolation. Fortunately, the results are not very
sensitive to the actual value of the cutoff parame-
ter, as can be seen from Fig. 3, where we com-
pare the full calculation with that corresponding

to the zero range calculation: f(g*)/f(g¥)=1. The
effect of putting the form factor at the 7NA vertex
is to lower the (y,n°) cross section by a small
amount.

Also shown in Fig. 3 is the result of doing an on-
shell calculation by taking the distortion operator
Qd,7)=9({,3)6d ~-3’). In this case the cross
section is lower than that for the full calculation.
This implies that the distortion operator not only
provides a damping mechanism but also a focusing
effect.

The calculations are done using a multipole ex-
pansion of the 7°-photoproduction amplitude T y 0.
Taking the pion distortion operator as

@leln=Y “'—‘Z;’—"’Y,,(a'wr,@ (32)
im
and
F(x; §K) =) Fy (g, R)Y £,@)Y, () (33)
Im

and putting in various kinematic effects discussed
here we get

Tyro= ‘I'fﬁ) + Tffn ) (34)
IG‘ T T T
06 - Oly, %)% i
Ey =246 MeV
% 04l B
=
E
b F e _
helhe] ;
02F 4 , i
s ",
// \\\
i/
S \\\_“. _
7 \¥
1 | I |

6 n(deg)

FIG. 3. Effect of including the off-shell form factor
at the TN A vertex: solid curve—full calculation; dotted
curve—no form factor. The dashed curve results from
an on-shell approximation (see text).
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where
+ 1/2 .
rtomsu Do |t o
J
(35)
with
T§M=qu;[F,-l(q’,k)—Fm(q’,k)]
’ %
x;(&*))ﬂ,(q’,q)dq,
° (36)

M'R= I SenEa(kR)EA(q) ]112
“\5:AEx(®/AE,(a/A)

x<1 +Q +2_Q>A11Y_z_ki MR(q*,k*,‘/’S,N),
2 272 )5S, q )

and

E-M,+il,/2

5:
E-M, - AE +ifT, /2’

(38)

M being the photon polarization and S,, the invar-
iant mass of the pion-nucleus system. The im-
pulse approximation (which we use for the nonres-
onant part) is obtained by taking § as 1 and F,(q, k)
as p,(q,k)—the angular decomposition of the nu-
clear density. The photoproduction cross section
is then given by

do
d_sz=%;%|7'7'0}2, (39)

In the absence of the corrections A and B, the
quantity in square brackets in Eq. (37) would be
just unity. Putting in these recoil corrections in-
creases the cross section by a factor of 2 to 2.5
in the resonance energy region.?? These correc-
tion were neglected in the earlier calculations of
Saunders?® and Woloshyn®. The reasonable agree-
ment of the PWIA calculations of Refs. 23 and 6
with the experimental data of Davidson,? as re-
ported by Saunders, can at most be described as
accidental.

In Fig. 4(a) we show the comparison of the plane
wave calculations with the distorted wave calcula-
tion for the channel-independent IDM at E =254
MeV. The calculations shown are (a) PWIA where
no distortion and no modification to the transition
operator is included, (b) PWMIA where no distor-
tion is included but the modifications to the transi-
tion operator because of isobar dynamics are in-
cluded, (c) DWIA where full distortion effects are
included but no modifications to the transition op-
erator are included, and (d) the full calculation
where the many-body effects are included so as to
modify both the transition operator and the distor-
ting potential. As can be seen, the operator modi-

T I I I
06 |- *0(y,70)0  Ey =246 MeV-

8. m.(deg)

T [ [
06 =%(y, 790 E, =246 Mev]
1«: 0 -"';/ \\\
} 4 — ::'/ \-\.. —
5 ;///'\ %
'g|% /] \ % 7
oz 4 y .
/// \‘,
J \ x\’\ (b—)—
N\
| | N ™Sl
O 20 40 60 80

6, n(deg)

FIG. 4. (a) Effect of including many-body effects in the
optical potential and the transition operator on %0(y, 7%
160 for the channel-independent isobar-doorway model:
dotted curve—plane wave impulse approximation cal-
culation; dashed curve—plane wave calculation with the
transition operator modified; dash-dot curve—distorted
wave impulse approximation calculation where many-
body effects are included only in the optical potential;
solid curve—full calculation where the many-body ef-
fects are included both in the transition operator and the
optical potential. (b) Same as (a) except for the chan-
nel-dependent isobar-doorway model.
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fication is very significant. Thus, in this energy
region a DWIA calculation where the many-body
effects are included only in the pion distortion op-
erator would have limited validity.

In Fig. 4(b) we show the similar results for
channel-dependent IDM (where we allow the para-
meters AE and 8 to be I dependent). It is interest-

@lral @)= [ @17, |0)0@ 394"

ing to note that, although the isobar effects in the
operator modification and the distorting potential
are different for the two cases, the final results
are very nearly the same. This can be easily un-
derstood by looking at the elastic scattering am-
plitude and m°-photoproduction amplitude. Neglec-
ting constants, these are essentially given by

A5 [ [ s re anaaee] ~2C S @ (40)

and

@l 7,40l = f q" 1,0l BT, §")d %"

7?113&‘;‘[[ 84" flg* )F(@",K)(d, q")d

where I [I] is the integral in the square bracket in
Eq. (40) [(41)]. To the extent that g=~fand ¢’ ~k,
i(g)~1'(¢). Thus, in any model where the many-
body effects are parametrized through the optical
potential, the quantity I is what is determined by
fitting the elastic scattering. The two parametri-
zations of the isobar-doorway model which lead to
the same elastic scattering will therefore give the
same 1(§) and hence the same (y, 7°) cross section.

In Figs. 5 and 6 we give our predictions for the
angular distribution for =° photoproduction on 2C
and %0 along with standard DWIA calculations
(using prpPIT'® wave functions). In Figs. 7 and 8,
the corresponding integrated cross sections are
given, together with those for PWIA. Whereas
the angular distribution for the isobar-doorway
model and DWIA are different at higher energies,
the integrated cross sections are very close for
the two calculations. The reason for this is that
the differential cross section for the isobar-door-
way model is slightly larger at larger angles
(where siné is larger) which compensates for the
smaller value at the peak. Thus the experimental
test for our model would be provided by measure-
ment of both the differential and total cross sec-
tion.

In Figs. 9, 10, and 11 we compare the predic-
tions of the isobar-doorway model with the exis-
ting data®:?° for coherent (y,7°) reaction on '*C
and *“He. Despite the suggestions® that Davidson’s
data for *2C(y, 7°)*3C includes considerable contri-
bution from noncoherent processes, we obtain rea-

1 . - = (41)
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FIG. 5. Angular distributions for %0O(y, r%!%0 at lab-
oratory photon energies of 246, 294, and 371 MeV:
dashed curve—DWIA calculation using PIPIT wave func-
tions; solid curve—channel-independent isobar-doorway
model.
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FIG. 6. Angular distributions for 2C(y, % !2C at lab-
oratory photon energies of 254, 273, 292, 311, 340,
and 368 MeV: dashed curve—DWIA calculation using
pIPIT wave functions; solid curve—channel-independent
isobar-doorway model.

sonable agreement with it. As pointed out earlier,
the conclusion reached by Saunders?® that PWIA
calculations describe the data fairly well may be
due to neglect of various kinematic correction
factors in that work. For “He(y, n°)*He, the agree-
ment is reasonable despite limited amounts of data
available in the resonance energy region.

Finally we compare our results with the calcu-

o(mb)

05+

1 L 1
220 260 300 340 380
Ey (MeV)

FIG. 7. Integrated cross section for ¥0(y, 1%)1%0 as a
function of photon energy E,: dotted curve—PWIA cal-
culation; dashed curve—DWIA calculation using the
PIPIT wave function; solid curve—channel-independent
isobar-doorway model.
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FIG. 8. Integrated cross section for 2C(y, 7% 2Cas a
function of photon energy E,: dotted curve—PWIA cal-
culation; dashed curve—DWIA calculation using the
PIPIT wave function; solid curve—channel-independent
isobar-doorway model.



360 A. N. SAHARIA AND R. M. WOLOSHYN 23

o
N
T
~
\\
AN
)
/
7

1 T T T T T T T
L ZCly, 7o) Ey = 250 MeV
04 -

Rl e
> i/ \
E - /' AN
b i ’ %
Ul% / — \ "‘~._

/

/ .

;7
»/
v
Y/
L] L1 1
o} 10 20 30 40 50

8c.m(deg)

FIG. 9. Comparison of the channel-independent isobar-
doorway model prediction for the angular distribution of
2¢(y, 7% 2C at photon energy of 250 MeV with the data of
Davidson (Ref. 24). See Fig. 4 for the meaning of dif-
ferent curves.

lation of Koch and Moniz® which included the same
kinematic effects described in this section as well
as effects due to isobar dynamics in a T-matrix
formulation of the isobar-doorway model. The
PWIA results of Ref. 9 for %0(y, 7°)*%0 are quite
similar to those obtained here. Our distorted
wave calculations, where many-body effects are
included only in the optical potential but not in the
transition operator (dashed-dot curves in Fig. 4),
are also in close agreement with the DWIA results
of Ref. 9. We attribture the ten to fifteen percent
difference to differences in the models for the el-
ementary (y,n°) process. Below photon energies
of 300 MeV the final results are very different.

A much larger reduction of the amplitude due to
isobar modification in the production operator was
found by Koch and Moniz and their final cross sec-
tions are about a factor of 2 smaller than ours.
This difference probably reflects the ambiguity

in the parametrization of the coupling to @ space
which is treated differently in the two calculations.

V. CONCLUSIONS

We have shown that the many-body effects mod-
ifying the isobar propagator play an important role
in determining the transition operator for (y, 7°)
reactions. Within an isobar-doorway model we
show that the modifications to the transition oper-
ator for the coherent process are the same (neg-

T T T T T T T T
4 04 -
He(y,m0)"He Ey = 330 MeV
50 - -1
40 | .
% 30} |
>
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20| I |
10 .
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0 20 40 60 80 100 120 140 160 180
6. m(deg)

FIG. 10. Comparison of the channel-independent iso-
bar-doorway model prediction for the angular distribu-
tion of *He(y, 7%)*He at photon energy 330 MeV with the
data of Staples (Ref. 25).

lecting small recoil effects) as those to the pion-
nucleus optical potential. The (y, 7°) reaction
therefore provides an unambiguous test of isobar-
doorway models which require phenomenological
information to describe pion elastic scattering.

In this paper we present results for coherent 7°
photoproduction on *He, '2C, and 'O for photons
in the 200 to 380 MeV energy range. Our calcu-
lated photoproduction cross sections are not sensi-
tive to the choice of a channel-dependent or chan-
nel-independent parametrization as long as the
models are constrained to describe pion elastic
scattering equally well. Also, the variations due
to different off-shell extrapolations of the input
multipole amplitudes are sufficiently small to
permit a good test of the isobar-doorway models.

Our calculations are in good agreement with the
limited existing data. More systematic measure-
ments are needed to put our model to a more ri-
gorous test and to distinguish between different
approaches used to incorporate many-body effects
in the pion-nucleus interactions.
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