
PHYSICAL REVIEW C VOLUME 23, NUMBER 1 JANUARY 1981

Radiative capture reaction 'He(a, y)'Be at low energies
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The radiative capture reaction 'He(a, y)'Be at low energies has been analyzed on the basis of the direct capture
model in order to provide a theoretical estimate of the stellar reaction rate. The scattering wave functions of 'He by
a and the bound state wave functions of 'Be were constructed by the empirical model, the phenomenological
Woods-Saxon potential model, and the orthogonality condition model; these models account for the measured

elastic scattering and excitation energies of the low-lying states of 'Be. The total cross section factors $(Ec ) of the
E l, M l, and E2 capture from the l = 0-3 partial waves clearly slow a rising behavior as the incident energy goes

lower, which agrees with the experimental data. The negative scattering phase shifts, which can be associated with

the presence of almost energy-independent inner oscillations in the relative wave function between 'He and a due to
the Pauli exclusion principle, seem to be responsible for this behavior.

NUCLEAR REACTIONS 3He (u, p)~Be at low energies; direct capture model anal-
ysis; othogonality condition model; calculated cr(E), S(E), and branching ratios.

I. INTRODUCTION

The radiative capture reaction 'He(n ry)'Be at
low energies has attracted much attention to
learning about the nonresonant direct capture
mechanism and applying the result to the termi-
nation of the proton. -proton chain stellar reaction.
This reaction is particularly interesting because
of the long-standing solar neutrino problem. The
detection of the solar neutrinos by Davis et g/. ' is
most sensitive' to the neutrino from the 'B decay,
which is produced directly by the proton capture
on 'Be formed from this reaction. The observed
solar neutrino flux is smaller by a factor of about
3 than that predicted with known nuclear reaction
rates. Over the past decade, this solar neutrino
problem has motivated many experimental and
theoretical attempts to understand this missing
strength.

Recently, an experimental attempt' to measure
the sHe(a, y)'Be reaction down to E, =100 keV
has been made using techniques improved through
their use in previous experiments~ ' The new
results (triangles in Figs. 1 and 2) showed defi-
nitely smaller cross sections at low energy
regions than the previous measurements (circles),
which favors an observed smaller solar neutrino
flux but seems to disagree with a theoretical pre-
diction made by Tombrello and Parker. There-
fore, we consider it very important to reexamine
in detail the theoretical calculation.

The total cross sections of the sHe(&, y)'Be re-
action at low energies can be well described by
the direct capture model." The use of this model
may be justified because there is no resonant
state at lower energies than 4.5V MeV in 'Be.

Although the calculation for this model is quite
straightforward, uncertainties lie in describing
the wave functions for the relative motion between
'He and and the final 'Be wave functions. The
He+& cluster approximation, ignoring P-Li and

other cluster components in the 'Be nuclear wave
function, may be useful in describing the reac-
tions performed at low energies of less than a few
MeV. This clustering nature is suggested by
these facts: (1) The 'He+& structure is quite
stable and binds together with only 1.58 MeV in
the ground state; (2) the srexcited state at 4.57
Me V is known to be the f wave resona-nt state de-
caying to 'He and tr; and (2) the p, n, and d sep-
aration energies from 'Be are much larger than
that for &. In fact, Tombrello and Parker' made
use of the Whittaker function for the bound states
of 'Be in which amplitudes were adjusted to re-
produce the experimental branching ratios and the
observed total cross sections. The scattering
waves were obtained from a hard-core potential
which reproduces experimental elastic scattering
phase shifts.

Our concern in this paper is to represent the
improved wave functions by using a more rea-
sonably attractive potential instead of a hard-core
potential' between clusters and by including the
effect of the Pauli principle in the orthogonality
condition model (OCM) s This model is based on
a microscopic description, and it is also best
suited to treat a clustering pheonmenon just as
the resonating group method ' does. The as-
ymptotic behavior of new wave functions should
explain the low-energy 'He+ Qt elastic scattering
data and the low-lying energy levels of 'Be. We
also attempt to give a theoretical limit for the

1981 The American Physical Society



B. T. KIM, T. IZUMOTO, AND K. NAGATANI 23

direct capture cross sections at very low bom-
barding energies of astrophysical interest.

We reformulate the radiative direct capture
cross sections with the first order perturbation
theory in Sec. II. In this section a brief introduc-
tion of OCM is also given. In Sec. III we present
the details of our model calculations. The phys-
ical aspects of our numerical results are discus-
sed in order to give the limit of stellar reaction
rates in Sec. IV. Finally, Sec. V presents our
conclusions.

II. FORMALISM

A. Radiative direct capture theory

The interaction Hamiltonian" responsible for
the radiative capture reaction is

Hgng= — j ~ A dr, (1)
where j is the nuclear-current density and A is
the vector potential in the radiation gauge, i.e.,
div A=0. In the first-order perturbation theory,
the radiative direct capture cross section af the
reaction A(a, y)B can be written in terms of the
transition amplitudes as

dA„ Ic Ic ) ke 2I~+1g ~,

projection) of nucleus A and c for the polarization
of the radiation, i.e., 0=+1. In the long wave-
length limit, the transition amplitude can be ex-
panded in terms of d functions with the electro-
magnetic multipole & as

BARBS. A

where k, is taken to be parallel to the z axis and

e is the polar angle of k„. We further decompose
the electromagnetic multipole transition ampli-
tude T„" „,in terms of partial waves E,j,:

p [ps' + ( )5(e+ l)pNX ]
cfa

x(f 01~M~ ~j M~)(XM~ —Mj~s j~M~).

(4)

For the E1, M1, and E2 transitions, which play
an important role in the low-energy capture pro-
cesses, the P's are

Ps" = f'oC(EX)l /, Is(l,OXO~l 0)

"W(&d. ~'Vs) i,s, i y

where l, is the orbital angular momentum of &+a
two clusters in the nucleus S, and

where k and k„denote the wave numbers of the
incident channel and the emitted gamma rays,
respectively, and m is the reduced mass of the
incident channel. I„(M„)stands for the spin (its

C(E1)=im ~ -~g z
mQ

C(E2) =z m' +
12 m''m '

a 41

+ 2 p„( )~»aI~ W(ll-j,l„I~Is) P, q

where p,~ and Z„are the magnetic moment and

charge of &, respectively. The overlap integral
Pis

energies rapidly decrease mainly due to the
Coulomb penetrability, it is convenient to use the
Coulomb-factored-out cross section S(E), the so-
called S factor, defined by

g I g f dr Ur spy l f o(E) =S(E)e~( 2~q)/E, (10)

where X, f is the radial distorted wave and Uf gg.~Nfa 1ylg
the radial part of the bound state wave function.
We chose the normalizations of these wave func-
tions used by Tamura. " Numerical evaluation of
the radial integral is necessary to obtain the
cross sections after a model is adopted to de-
scribe the relative motion between' and a.

Since the capture cross sections o(E) at low

where g is the Sommerfeld parameters and E is the
incident energy in the center of the mass system.

B. Orthogonality condition model (OCM)

Microscopic studies' "on interactions between
clusters showed that the Pauli effects are very
important. The role of exchange effects between
clusters can be understood' in terms of the OCM,
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which excludes forbidden states due to the Pauli
principle. This model gives a good agreement
with the result of the resonating group method'"
which starts with a microscopic many-body
Hamiltonian and takes into account a complete
antisymmetrization.

The antisymmetrized 'He +& cluster wave
function is represented by vectors

1/2
ftth„x„)

with the channel wave function

a„.= @(o)[y, x y, ('He)]„ (12)

Hence, X is the eigenf unction of & with the
eigenvalue of unity in the following equation,

If we suppose 'He and & consist of only s-wave
nucleons with a common oscillator parameter v,
then the eigenfunctions of K (Refs. 9, 13) are al-
ways harmonic oscillator functions with an oscil-
lator quantum number N and an oscillator para-
meter( —', )v. The eigenvalues, then, are

where P's are internal wave functions of two
clusters, 8 is an antisymmetrizer between nuc-
leons in two clusters, and g is a radial function
for the relative motion. X is called a forbidden
state (FS) when Eq. (11) is identically zero. The
integral equation for & can be obtained by multi-
plying h„, in Eq. (11) and by integrating over all
internal coordinates as follows:

(1 -K) X"=0,
where the overlap kernel K is

( )
5(r, r)-

h. ' Sh. '). (14)fj +2 tj +2

incident wave of unit flux while the bound state
U

fI are take n. as

(e„le„&=(U, ll-KIU, )=1. (19)

Assuming that the multipole operators of elec-
tromagnetic transition conserve the orbital sym-
metry of the internal wave functions of 'He and
o (Ref. 15) and that He and o are made of s-wave
nucleons, the matrix elements of the multipole
operators in OCM can be obtained in exactly the
same form as Eq. (4) except th.".t the overlap in-
tegral of Eq. (9) becomes

f",,I., . . =((1 K)'~'U, , lr" l(1 K)'~'y, , ). (20)

In Ref. 15 a slightly different expression was used
for which we have checked the numerical equiv-
alence.

III. MODEL CALCULATIONS

The total capture cross section of the reaction
'He(a, r)'Be is a sum of cross sections leading to
the & ground state and & excited state in 'Be.
Throughout our calculations, we only considered
E1, M1, and E2 capture from l =0 —3 partial
waves. The magnetic moment of 'He used was
—2.13 p„. Since we were interested in very low
energies, we were obliged to carry out the inte-
gration to a large radial distance of 50-80 fm in
order to ensure the accuracy of our calculations.
We also had to be careful in generating accurate
Coulomb functions for large g and at large radial
distance. For the present calculations, we adop-
ted a computer program' which calculates the
Coulomb wave functions with the high accuracy of
at least 10 '. We now introduce three different
approaches in describing the relative motion be-
tween 'He and a.

&s = & (—,',)"—&(- p)" + (--',)". (16) A. Empirical approach

The OCM excludes & by using the overlap kernel
E and by solving the following equation for X, „.in
the matrix form ~

(1-K)' '(T, + V"' —E)(1-K)' 'X„=O,

where

(16)

and T is a relative kinetic energy between clus-
ters. The effective local potential V"' is usually
the direct folding potential and may be modified
if necessary. The nonlocal potential (1 —K)'~ 'V'"
(1-K)'~ is expected to include the contributions
not only from the direct process but also from the
exchange of nucleons. The radial wave functions
X» for the scattering states are normalized to an

The scattering wave X» in Eq. (9) was obtained
~a&a

by using the hard-core repulsion in order to re-
produce the low-energy experimental phase shifts.
The bound state wave function U, I was chosen tor~r~
be the Whittaker function associated with the
proper separation energy. Its normalization was
adjusted to explain both the experimental total
cross sections and the gamma branching ratios
between 2 ground and & excited states. This is
essentially the same as Tombrello and Parker's
calculations. ' We therefore summarize very
briefly the procedures of the calculations as fol-
lows.

(1) The empirical approach uses the hard-core
potential to obtain the distorted wave s. The s and
d-wave nuclear phase shifts were nicely reproduced
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by the ar-hard-core potential with a nuclear radius of
2.8 fm. The P and f-wave phase shifts forthe cen-

1.5 MeV were di-ter of mass energy greater than
hifts. Forrectly chosen as experimental phase shif s.

lessthan 1. e, w.5 M V here the observed values were
not avai a e, elable the hard-core phase shifts were

ake smoothmul zp ie yt' 1' db a factor of 6 in orderto makesmoo
phase shifts in the entire energy range consi ere .
The phase shifts obtained are compared with the
measured values" in Fig. 4.

(2) The 'Be bound state wave functions were
d to be the Whittaker function with norm-assume o e

alization factors of 1.25 for the ground s a e n

1.05 for the first excited state. These normali-
zations were c osechosen so that the calculated cross
sections would reproduce the observed total cross
sections and the branching ratios between the

itions to the ground and first excited states.transi sons o
The calculated total cross sections g& „

section factors S(E), and branching ratios are
shown in Figs.. 1 2 and 3, respectively, where
three sets of experimental data are also dis-
playe . ed. ' Th data of Nagatani et al'. and Rolfs
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FIG. 2. The calculated 8 factors of 3He e p) ~Be.
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to the a groun an az d d — xcited states obtained from the
Woods-Saxon potential approach are also shown with
the solid lines.
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are only p o e1 tt d for low energies less than 300
ke V.keV. The sRolf ' data are normalized at 1500 e

The theoretical cross sections, r pre resented as
dotted lines in the figures, reproducroduce the data of

' et al. ' and
also confirm the previous calculation of
Tombrello and ar er.nd P ker' The calculated branching
ratios have a s gli ht energy dependence, but this

because ofcould not be experimentally proved because o
the large variations in the observed values.
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FIG. 1. The calculated total capture cross sections
of He(+, p) ~Be as a function of the center-of-mass en-

The dotted, solid, and dashed curves are theergy. T e o e
l a roach,t' l redictions from the empirica apptheoretica pre i
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l The data are obtained from Refs.proach, respective y. e

3, 4, and5.
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FIG. 3. The energy dependence of the branching
ratios. Otherwise the same as in Fig.
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B. Phenomenological potential approach

We attempt to construct a parity dependent,
local potential of the Woods-Saxon type with a
reasonable geometry which accounts for the bind-
ing energies of low-lying states in 'Be and low-
energy elastic scattering data. The potential is
found to be attractive, which contrasts with the
previous hard-core approach. The coupling with
reaction channels is neglected, and thus the po-
tential is real. Unfortunately, there is no guiding
principle for choosing parameters. We started
with the conventional bound state problem to ob-
tain the experimental separation energies of the
ground and first excited states of 'Be. Because of
ambiguities in the shape of the nuclear potential,
we still have continuous sets of parameters. We
then imposed the restriction that the potential
parameters should reproduce the position and
width of the f,&, resonant state at 4.57 MeV and

the measured total capture cross section. Care
was taken to include this resonance since the tail
of the resonance could have an influence on the
low-energy cross section. We examined a parity-
dependent potential (POT A), the geometries of
which are V„„=76.0 MeV, V,«-93.85 MeV,

a„„=a,~=a, , =0.70 fm. It reproduces well the
experimental phase shifts (Fig. 4) and low-lying
levels of 'Be (Fig. 5). The calculated o(E), S (E), and
branching ratios with )I» and g& generated by

a&e
this potential are shown with the solid curves in
Figs. 1, 2, and 3, respectively. We note again
that S(E) exhibits rising behavior as the beam
energy goes lower. The branching ratios are very
similar to those from the empirical approach.

C. Orthogonality condition model approach

20—
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a -40—
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———SA I TO (OC M)

P henomenolog

f7j -wave

l.0
I

2.0

Ec.M. (MeVj

I

3.0

He+ He elastic scattering

The OCM calculation of the 'He++ system have
been performed by several authors. ""We di-
rectly employed a potential suggested by Saito."
However, the potenital was slightly modified to
include the spin-orbit force so that the splitting
of the & ground and & excited states in 'Be could
be reproduced. The explicit form of the effective
potential is, in the unit of MeV,

V„„=-103.38 exp( —0.2009m')

+13.78 exp( —0.0913r') + V. . .
V,«=-88.00exp( —0 1644r')+ V... .

1 d
V = —1.60——exp( —0.1644r')s 1 .9~ 00

and U, I were obtained by solving the OCM
0 0 lylB

equation, Eq. (17), with this potential and by im-
posing appropriate normalizations and boundary
conditions. The forbidden states with the eigen-
value A.„= in Eq. (15) were Os and 1s for the s-

FIG. 4. Comparisons of the experimental and cal-
culated phase shifts. The dotted, solid, and dashed
curves indicate the theoretical values obtained from
the hard-core potential with a nuclear radius of 2.8 fm,
POT A, and Saito's potential in the OCM equation, re-
spectively. The data are from Ref. 17.

wave, Op for the p wave, and Od for the d wave.
The calculated elastic scattering phase shifts

and low-lying states of 'Be are displayed in Figs.
4 and 5, respectively. The direct capture cross
sections and branching ratios obtained are shown
with the dashed curves in Figs. 1, 2, and 3, re-
spectively. The results obtained are very similar
to the previous ones discussed in Secs. IIIA and
IIIB. The total cross sections are larger by a
factor of 1.2 than the measured ones. This is
mainly because we assuna the bound states in 'Be
are made of 'He and n clusters [Eq. (19)]. In the
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FIG. 5. The predicted low-lying level scheme of Be
from the POT A and OCM approaches along with the
experimental one. The cluster threshold energies are
also displayed.

calculation of the absolute cross section, we

should thus multiply the wave function by the
spectroscopic amplitude of this cluster configura-
tion. Alternatively, in this comparison, the
probability of the 'He+& clustering in the bound
states of 'Be is the inverse of this factor, i.e.,
1/1.2.

FIG. 6. The real part of the OCM radial wave function
of the sf/2 and p 3/2 waves for E, = 0.1 and 5.0 MeV.
The bound state wave function of the z ground state is
also plotted. The almost energy-independent inner
oscillations are clearly shown.

strates the almost energy-independent inner os-
cillation that gives rise to the inner repulsive
effect. Furthermore, this characteristic leads to
a unique shape of the overlap integral in the inner
region for a given multipole capture. We display
in Fig. 7 the real part of the radial overlap of the
E1 capture from the s wave which was obtained in
the H3T A approach. There exists an almost
energy-independent cutoff radius rc where the

RADIAL OVERLAP FOR Ei

IV. DISCUSSION

The numerical results obtained from the three
different approaches are basically the same, even
though they start with quite different types of po-
tential in generating the nulcear wave functions.
The success of the empirical approach can be
understood by examining OCM waves in detail.
The orthogonality condition, excluding the for-
bidden states due to the Pauli principle, yields
the almost energy-independent nodal points in
the relative wave functions between 3He and +
clusters. We plot the sg/2 and p, /, scattering
wave functions from the OCM for E, =0.1 and
5.0 MeV in Fig. 6. The P,/, ground state wave
function of 'Be is also shown. It clearly demon-

X
0 ~

8
r (fm)

I

10 I2
I

14 16 18

FIG. 7. The real part of the radial overlap for E1
from the s wave at E = 0.1 and 1.0 Me V obtained

CylGo

from the Woods-Saxon potential approach. The cutoff
radius ~&, where integration over zero to xz becomes
zero, is shown to be almost energy independent.
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r=0 to r~ becomes zero.overlap integral from r =

The same characteristic was also obtained in e
rts the use of the hard-OCM calculation. It supports e

existence ofcore potential for the analysis. The exi
r further imp ies1' that the capture process takingC

'
n onl contributes to theplace in the outer region on y

t t'ns and that the asymp o icmeasured cross sections,
hiftbehaviors of wave function,

'i.e. the phase s ' s
f attering wave and binding energies of 'Be,

a vital role in estimating the erosplay
The otentials employed for these ree po

uall well the observedapproaches reproduce equ y
shifts (Fig. 4) and binding energies of Bephase s s

esults. The Pauli(Fi . 5), giving us the same resu s.
al t an understanding of theeffect which was cruci o an

s not affect much the magni-reaction process does not ec m
1 thtude of the cross section since 'it corrects on y e

r art of the wave function.inner par
eral h sical aspectsWe now turn to discuss severa p y

'

w ch we observed in the numericical results.

A Multipole and partial wave contr&but&ons

In the reactions at low energie,ies the s wave
d

' ates the scattering; therefo re the E1 cap-omin e
~ ~

he crossture shou m eld ake a large contribution to the
ns. This is clearly shown in Fig. 8 wheresections. T is is c

h artial waved's lay each multipole and eac par iwe isp
in to thecontri u ionb t to the cross sections lead' g

ground state from the Woods-Saxon po n ia
1. The s-wave contribution is more appre-

zero while theciable when energy approaches zero, w

loo
I I I I I I I I

d wave becomes significant as energy goes higher.
E1 from the s wave andIn the low energy region, E1 from e

d wave is mucch larger than E2 from the p and
that allr M1 from the p wave. We note that a

contributions are smooth over the enti gy're ener
region considered.

B Anisotropy of radiation

If the s wave is dominant, the a gan ular distribu-
f the radiation should be isotropic.ic. There-tiono e r

aves in thefore, the effects from other partial wave
reaction process canan be clearly seen in the angu-
lar distribu ion. nt' I the experimental measure-

t the observed total cross sections weremen s~ e
determine yd b assuming an isotropic radi
We can pre icd t the uncertainty based on this

~ ~ ~

assumption from the theoretical angular distri-
We show several angular distributions at

different energies in Fig. 9. t
around 90' because100 keV, there is a broad peak aro

of interference weenuet the s- and d-wave contri-
hich is characteristic of the E1 capture.

However, as the incident energy goes ig er,
E2 and M1 captures come in. The gu
butions lose a symmetry around 90'nd 90' and show a

to the constructiveslight backward-angle rise due to t e c

lo
PARTIAL WAVE
CONTRIBUTIONl-0IOo-

I
' ' ' '

I

MULTIPOLE
ION
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N
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FIG. 8. Partial wave and multspoi le contributions to
n lead' to the 2 ground statehe cap ure cross sec io g

' ed from the Vfoods-Saxon potential approac . eobtaine rom
d ve similar features.other approaches demonstrate very s'

I I I I I I

0 40 60 80 IOO 120 I40 l60 l80
8 (deg)

9. A lar distributions of the capture cross
ea z d t t obtained from thelead' to the ~ groun s a e

oo s- ' h. The dashed lines showWoods-Saxon potential approac . e
the isotropic s-wave contribution.
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interference of E2 with E1. It is worth noting that
the uncertainty of the total cross sections due to
anisotropy in the energy range we calculated is at
most 8g.

I.O

0.9

C. Branching ratio

The branching ratio comes mainly from the dif-
ference of the spin factor 21~+1 and the binding
energy of two final states 4, I . The low energy1~Ig'
Wentzel-Kramers-Brillouin (WKB) calculations7
for the E1 capture from the s wave showed
S(2 )/S(a )=Es(~ )/2Ea(2 )=0.37, where Ea is the
binding energy. In fact, the energy dependence of
branching ratios is very weak, as seen in Fig. 3,
and three different model calculations again give
almost the same results.

0.8

Or7

0.6

D. Shape of S(E)

In order to obtain the S factors at very low
energies, say several keV, of astrophysical
interest, experimental S factors measured at
higher energies are extrapolated using theoretical
predictions. It is thus important to investigate
the origin of the envelope of S(E). Let us consider
sider the E1 capture from the s wave which is a
dominant process at very low energies. If we ad-
mit the hard-core potential with a radius r~, the
distorted wave for l = 0 in the external region is

0.5

0.2—

O.I—

0 I I I I I

200 400 600 800 IOOO )200
Ec.m. (ke&)

y.„,&,
——F,+ e"0sin &,(G, +iFJ,

where &0 is the s-wave nuclear phase shift and

&, and &0 are the s-wave regular and irregular
Coulomb function, respectively. The S factor
then becomes

S=
I Mz + tan 8,v'So

I
'cos'8 „

where
eo 2

S&=A dr Urf, f=F0 or Go.
Tg

& is the geometrical and dynamical factor for E1
due to the s wave in Eqs. (2) and (4). For the
charged particle scattering at low energy, tan &,
is proportional" to 2vqk exp( —2vg). The propor-
tional constant has a very weak energy dependence.
In Fig. 10, we plot VS+ and 2vgk exp(-2wq) WSs ver-
sus E c.m. leading to the & ground state (solid
curves) and to the —,

' excited state (dotted
lines). It is apparent that the negative phase
shifts always make the S factor rise at a slope
steeper than that of S& as E, approaches
zero, while the shape of S(E) with positive phase
shifts can be determined by the magnitude of the
phase shift. In other words, an S factor that is
more flattened than S~ or even decreasing may be
obtained only with the positive phase shifts.
Hence, the shape of S(E) at a low energy region

FIG. 10. ~5+ and 2~k exp (-2m') vS& versus E,
The solid and dotted curves are for the 2 ground and
zl- excited states, respectively

depends largely on the sign of the phase shift.
We also notice that the branching ratio with neg-
ative (positive) phase shift is bigger (smaller)
than Sr (2 )/Sr(& ) in the energy region considered.

The question is whether we can assign the def-
inite sign of the phase shift in the relative wave
function. Our OCM study has shown that the ex-
change effects give rise to the almost energy-in-
dependent nuclear inner oscillation in the relative
wave function between 'He and &, this oscillation
plays an equivalent role to a strong repulsive
core in the effective potential. The hard-core
always gives negative phase shifts as long as
~~&X, where %. is the wavelength in the incident
channel. This is actually the present case. Ex-
perimental phase shifts were also shown to be
negative. This result implies that the S factor's
rise toward lower energies is essential.

E. Absolute value of S factor

We should admit that the absolute magnitude of
the S factor cannot be uniquely determined from
the approaches mentioned so far. Uncertainty
arises with the ambiguity of the nuclear potential
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and the approximations made for the cluster
treatment of the system, long-wavelength limit of
the radiation, etc. The OCM approach using the
Saito potential, which accounts very well for the
scattering problem, overestimated the cross sec-
tions because the amplitude of the 'He+a clus-
tering configuration for 'Be was assumed to be
unity. The geometry of the nuclear potential was
chosen so that various experimental facts were
reproduced. However, it could not determine a
unique potential. For example, if we use POT B
without any orthogonality conditions, which re-
produces experimental data with the same quality
of fit as that with POT A and which has geome
tries of ~„„=75.0 MeV, V'«~=92. 5 MeV, V,.,
=a«~=a, , =0.60 fm, we obtain an S factor small-
er by 20%. The accurately measured spectroscop-
ic factor of the 'He+a clustering, root-mean-
square radius, and electromagnetic properties in
'Be could reduce the uncertainties mentioned
above. In the present approach, it is probably
necessary to renormalize theoretical values to
a measured capture cross section which is ex-
perimentally reliable.

ture model in order to study the nonresonant
direct capture reaction mechanism and to obtain
stellar nuclear reaction rates. The 'Be nuclear
wave function and the distorted waves in the in-
cident channel were constructed with (1) purely
empirical elastic scattering data, (2) the phenom-
enological Woods-Saxon potential, and (3) the
Saito potential in the OCM equation. In each ap-
proach, the reaction mainly proceeds through the
E1 transition by means of the s wave in the low
energy region. These approaches consistently
show that the S factors rise as energy goes to
zero, which agrees closely with the experimen-
tal data.& ' This behavior seems to be initiated
by the negative phase shifts which can be ex-
plained by the presence of energy-independent in-
ner oscillations due to the exchange effects in the
relative motion between 'He and n. Because of
uncertainties in the He+ & clustering component
in 'Be and the nuclear potential geometry chosen,
no approach gives an absolute value of reaction
rates. If the theoretical values are normalized to
the experimental value of S = 0.275 keV b at E,
=1000 keV, our three approaches yield S(0)=0.48
+0.01 keV b and dS(0)/dE= ( 2.9~0.2) &&10-' b.

V. CONCLUSIONS

We have analyzed the 'He(c', y)'Be reaction at
very low energies on the basis of the direct cap-
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