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A simple but fully three-dimensional cascade approach, appropriate for considering heavy-ion collisions at a few

hundred MeV per projectile nucleon, is applied to "Ne+ "'U. For impact parameters bN,„of0 and 5 fm the

calculated results include densities p(V, t) of nucleon masses during the collision and energy-angle distributions
d'n/dEdQ of scattered nucleon masses emerging from the collision. All of the present calculations use idealized

nucleon-nucleon interactions implying cross sections cr» that are purely elastic, isotropic, and independent of the
initial NN state. Some of these calculations also introduce excluded-volume effects, such as those associated with a
classical hard core in the NN interaction. The calculated density p(P, t) is quite sensitive to changes in the size of the
excluded volume {we tried hard cores of radius 0, 0.5, and 0,9 fm). However, it is only in the case of zero excluded
volume that pg, t) shows much sensitivity to changes in o» (we tried o» ——15.4, 25.4, and 53.1 mb). The
distribution d'n/dEdD is rather insensitive to the excluded-volume feature but does depend sensitively on o», on

the impact parameter b„,„,and on the emitted-nucleon characteristics E and D. For one particular set of NN

parameters —hard-core radius = 0.9 fm, o» ——25.4 mb —our cascade calculation reduces to a case in which each
nucleon is modeled precisely as a classical frictionless billiard ball (a "hard sphere") of diameter equal to the hard-

core radius. For this case our cascade results would be especially suitable for comparison with analogous fluid-

dynamic results —these latter to be computed using the known equation of state of a hard-sphere gas.

NUCLEAR REACTIONS High-energy heavy-ion reactions. Intranuclear cas-
cade calculations. Ne+ ~ U collisions at laboratory energies of about 200-400
MeV per nucleon of the projectile. Density of nuclear matter. Energy-angle

distributions of emitted nucleons.

I. INTRODUCTION

High-energy heavy-ion collisions (E~~„=100-
2000 MeV per nucleon) are currently receiving
much attention, both experimental and theoreti-
cal. There is special interest in central colli-
sions, where "central" implies that the nucleus-
nucleus impact parameter is small enough so that
a large fraction of the projectile matter makes
geometric contact with target matter. For such
collisions there is a chance of attaining nuclear-
matter densities several times ground-state den-
sity, and an associated possibility of developing
exotic phenomena (e.g. , density isomers, pion
condensates, quark matter). Several years ago
there was widespread optimism that, without

very strenuous efforts either experimental or
theoretical, physicists would soon find, in experi-
mental data, clear manifestations of exotic pheno-
mena. That optimism has since diminished. It
now seems that most of the already collected ex-
perimental data can probably be explained in terms
of ordinary nonexotic phenomena, and that models
which assume the development of exotic phenomana
during collision often predict final-state obser-
vables very similar to what can be predicted with-
out p.ssuming any exotic phenomena. These cir-

cumstances motivate intensified efforts of two
kinds:

(a) to identify and focus on observables sensitive
to transient exotic phenomena; but also

(b) to carefully investigate "ordinary" pheno-
mena, i. e. , to study the conseqgences of assum-
ing that in high-energy collisions of many-nucleon
systems, there are only mild changes in the nu-
clear properties and processes already familiar
from few-nucleon systems and low-energy many-
nucleon systems.

In this paper we report an investigation of type (b),
involving only ordinary phenomena.

Even when one is restricting attention to ordinary
phenomena, it makes sense to consider results
from a variety of theoretical approaches, because
at present there is no single method which is trac-
table and also a priori well justified. Some of
the methods exploited recently are fireball, fire-
streak, rows on rows, single- scattering knock-12 13

out, fluid dynamics, cascade ' (some-
times followed by statistical evaporation), and
many-body classical equations of motion "' '
using NN potentials. By and large, these meth-
ods use classical concepts. One way in which
these methods differ from each other is in the
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rigidity of their assumptions about the achieve-
ment of global or local equilibrium within speci-
fied geometric zones.

The theoretical results reported in this paper
were obtained by using a simple three-dimension-
al cascade scheme, SIMON. "" It is a simulation
code in which each nucleus-nucleus collision con-
sists of explicit nucleon-nucleon scatterings.
SIMON 's basic character ' is intermediate be-
tween those of a conventional cascade method
incorporating ++ cross sections, and a classical
~nations-of-motion method (CEOM) " ' incor-
porating +& forces. ' In the present SIMON

calculations we use idealized physical features.
For example, we use ÃN interactions consistent
with an N+ cross section that is purely elastic,
isotropic, and energy independent. However, in
comparison with some other approaches (fireball,
firestreak, rows on rows, or fluid dynamics),
SIMON is relative free of presupposed geometric
constraints and presupposed equilibrium conditions.
That is why it seems worthwhile to examine some
geometric and energetic aspects of heavy-ion
collisions modeled with SIMON . In this paper we

apply SIMON to collisons of Ne with U for Ne

beam energies of several hundred MeV per nu-

cleon. We report calculated densities p(r, t) of
nucleon matter during collision, and also energy-
angle distributions d n/dEd cosg of scattered mat-
ter emerging from collision. These quantities
are computed for impact parameters b„,„of0 and
5 fm. The results that we display are ensemble
averages, where an ensemble is a set of many
(=300) Ne+ "U collisions all identical in their
nucleus-nucleus impact parameter but randomly
different in some details of the nucleon degrees
of freedom.

Our results for p(r, t) and d n/dE dcos6 might
be closer to reality if, instead of being calculated
from the simple SIMON code, they had been cal-
culated with one of the present-day cascade codes
incorporating more realistic (energy- and angle-
dependent) NN cross sections. Such codes have
been used to produce results that agree nicely with
many experimentally determined "end- of- colli-
sion" data, e. g. , inclusive emission cross sec-
tions and two-particle correlations in emission.
(See especially Refs. 22 and 23.) However, SIMON

has some features which are not in any of the con-
ventional cascade ' codes. In particular,
SIMON has no need of depletion or rearrangement
recipes, "and SIMON allows the adjustment of
excluded-volume effects such as those associated
with a classical hard core in the NN interaction.
We have calculated results for several different
sizes of the excluded volume, and also several
different magnitudes of the assumed nucleon-nu-

cleon cross section cr«.
The basic scheme of SIMON could be retained

while refining the code to include more realistic
details such as energy-dependent NN cross sec-
tions and Pauli-principle corrections. However,
improved realism is not the direction in which
the present study extends work that was reported
in the first few papers' ' ' ' about SIMON. Rath-
er, our present study involves (a) some broaden-
ing in the range of idealized NN scattering models,
and (b) a more thorough investigation of the con-
sequent particle-density patterns and energy-
angle distributions. Obviously, our main con-
cern in this paper is not the close reproduction
of measured data. Rather, our main concerns
are to examine some gross features of SIMON-

calculated heavy-ion collisions, and to examine
some sensitivities of these features to variations
in the SIMON models.

We shall occasionally refer to "simple SIMON"

instead of just SIMON, " so as to emphasize that
we are using simplified assumptions within a
framework that is capable of incorporating more
realistic features.

There is one many-body problem for which
our simple SIMON code calculates exact re-
sults (exact except for machine roundoff). This
is the case of a nucleus-nucleus collision in
which every nucleon is modeled as a classical
frictionless billiard ball, i. e. , as a "hard sphere. "
A fluid-dynamic code could solve the same prob-
lem approximately, by using the equation of state
and transport properties of a hard-sphere gas.
Then a comparison between SIMON results and
fluid-dynamic results could teach us something
about the effects introduced by the instantaneous
local equilibrium assumed in fluid-dynamic ap-
proaches. A many-body billiard-ball model is
one of the several different SIMON models used
in this paper.

Section II describes our SIMON models. Sec-
tion III reports density patterns p(r, t). Section
IV reports scattered-particle yields d n/dE dQ.
Section V contains a summary.

II. slMoN MODELS AND METHODS

The basic scheme of the SIMON computer code
has been described previously. ' Although we
repeat a bit of the old material here, we empha-
size new considerations and describe some addi-
tional SIMON options for the NN interaction. Also,
as a way of supporting our S&&ON approximations,
we compare some recent experimental data with
results from a SIMog calculation reported several
years ago.

In simulating a Ne+ U collision, SIMON com-
putes classical trajectories for all 258 nucleons.
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The trajectories are determined by initial condi-
tions and by NN interactions. For these condi-
tions and interactions we have used several al-
ternative SIMON models, differing from each
other principally in the size of the nucleonic hard
core and in the magnitude of the NN cross sec-
tion. Although we do not regard the detailed nu-
cleon trajectories as realistic, we do expect that
gross statistical features of the NN energy ex-
changes, of NÃ momentum exchanges, and of mass
transport will be realistic. Because we are in-
terested in gross statistical features, we compute
ensemble averages of the results from many
separately simulated Ne + U collisions.

Below, subsection A describes a model which
treats every nucleon as a classical frictionless
billiard ball. Subsections B and C explain how
our other alternatives resemble this billiard-ball
model, and differ from it. Subsection D con-
siders ensemble averaging —in particular, en-
semble averaging after simulating many heavy-
ion collisions, rather than while simulating a
heavy-ion collision.

A. The many-body billiard-ball model

Consider 'Ne modeled as a collection of 20
billiard balls, striking U similarly modeled
as 238 billiard balls. All these billiard-baLl nu-
cleons are assumed to be perfectly smooth (i. e. ,
frictionless), all are assumed to have the same
mass, and all are treated in classical nonrelati-
vistic mechanics. Each is taken to have diameter
0.9 fm. The resulting cross section oN& is all
elastic and isotropic, with magnitude 25.4 mb.
Arguments defending this simple cross section
(and defending our other approximations) will be
presented shortly. We neglect nuclear binding
forces, and we neglect internal kinetic energy of
the precollision nuclei.

In this billiard-ball model the course of any
single Ne + U collision is determined com-
pletely once we specify the initial positions and
velocities of all 258 nucleons. For each of the
two precollision nuclei A we consider a sharp-
edged nuclear "probability sphere" of radius
1.&6A ' fm. We take the precollision positions
and velocities of these spheres to be consistent
with the nucleus-nucleus vector impact parameter
bN, U, and with the incident beam energy per nu-
cleon (E/A)e~xAeeM. Then within each nucleus we
choose initial positions for the A nucleon centers
at random, assuming that within each of the sharp-
edged spheres the probability density for nucleons
is uniform and uncorrelated except for the require-
ment that no two billiard balls overlap. For the
initial nucleon velocities we do not use any ran-
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FIG. 1. Experimentally determined nuclear (non-
Coulomb) elastic 1'' cross sections, for laboratory en-
ergies as marked (Ref. 35). For ij =nn or pp or pn, the
plotted cross section counts all emergent particles of
type i, not distinguishing between identically charged
projectile and target nucleons. This drawing of experi-
mental elastic cross sections has been published previ-
ously, in Ref. 27. For some estimates of nonelastic ef-
fects see Ref. 36. There it is estimated that in Ne
+ 3 U collisions the effective (Fermi-motion-smeared)
cross section 0(pp pn~) is about 0.6 and 3 mb at
(E/A)sE„M=250 and 400 NeV, respectively.

dom numbers, for, as mentioned previously, we
neglect the initial internal kinetic energies of both

Ne and U. Thus initially every nucleon has
the precollision velocity of its native probability
sphere Ne or U.

Next we discuss the goodness of some of the
physical approximations described above. Their
goodness depends, of course, on what kinds of
calculated results one considers (e.g. , on which
velocity regions one considers for nucleons emer-
ging from the heavy-ion collision).

Our billiard-ball cross section aN,~ is all elastic
and isotropic, with magnitude 25.4 mb. This is
roughly realistic for NN interactions at relative
energies 200-400 MeV, except for the experimen-
tally observed ' forward and backward peaking.
To see this, refer to Fig. 1 and realize that in
SIMON we should use "classical" cross sections
which count only scattered incident particles, and
which for pp and nn correspond to half the cross
sections plotted in Fig. 1. Thus as Fig. 1 shows,
in the NÃ c.m. system, in the angular region away
from the forward and backward peaks, the differ-
ential XX cross section that is appropriate for
stMON is about 2 mb/sr, i. e. , about 25/4v mb/sr.
In other words, oNN ——25.4 mb is a reasonable
choice provided that it is reasonable to ignore the
nuclear (and Coulomb) forward and backwa. rd
peaks. Below, we give some rough arguments
indicating why these peaks are not so important
for our purposes.

When all model nucleons are considered identi-
cal, exactly forward (0') and exactly backward
(180') elastic scattering each leave the partici-
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pating NN pair with exactly the same two momen-
ta as before the scattering. Thus when we neglect
some near-forward and near-backward scattering,
we are neglecting scatterings which leave NN

pairs with almost the same two momenta as they
had before scattering. However, we are still
including those NN scatterings which are most
important for effecting large changes in the trans-
verse momenta of two approaching nucleons, and
so most important for thermalizing the collided
matter during a heavy-ion reaction. This em-
phasis on "thermalizing" scatterings is a bias
familiar from the way that Bodmer and collabora-
tors ' choose NN c.m. cross sections to use in
classical equations- of- motion calculations of
heavy-ion collisions. Bodmer et al. concentrate
on fitting the 90'-emphasizing moment o "'-=f, (l
—cos 8)(do/dQ)dQ, rather than on fitting the total
NN cross section. In line with our emphasis on
thermalizing collided matter, when we examine
nucleon-matter velocity distributions at the end
of the modeled Ne+'"U collision, we pay atten-
tion to much of the spectrum but do not take seri-
ously any details in velocity regions near the ini-
tial Ne and U velocities.

These last-mentioned velocity regions tend to be
somewhat unreliable anyway, for some additional
reasons-our neglect of nuclear binding forces,
and our neglect of the internal kinetic energy of
both precollision nuclei. In some ways these two
simplifications tend to compensate for each other.
In both the precollision system and the collided-
matter system, binding forces influence nucleons
to stay together. Initial internal kinetic energy,
whether by itself or after combination with heat
produced by the heavy-ion collision, influences
nucleons to disperse from each other. By neglect-
ing both binding forces and initial internal kinetic
energy, we avoid either collapse or disintegration
of the initial projectile and the initial target. Al-
so, we avoid the expense of computing many in-
consequential NN scatterings, i. e. , those involv-
ing nucleons not yet perturbed by the collision of
Ne-projectile matter with U-target matter. After
the precollision stage, the high energy of the Ne
+ U collision helps to excuse our neglect of both
binding forces and initial internal kinetic energy.
Thus in real nuclei, one manifestation of the com-
bined effect of binding potential and internal kin-
etic energy is the nuclear binding energy, and for
the beam energies we consider, the binding energy
per nucleon is much less than the precollision
kinetic energy of a typical nucleon inside Ne rela-
tive to a typical nucleon inside U. (Of course,
simple energy comparisons do not tell the whole
story. A more thorough discussion would involve
vector additions of initial Fermi-motion velocities

with beam velocity, etc.)
Because simple SIMON neglects binding, all nu-

cleons which scatter at least once become part
of the calculated emitted-nucleon spectrum. Some
of the low-energy emitted nucleons should be rein-
terpreted as belonging to residual heavy frag-
ments, but we do not know which ones should be so
reinterpreted. Therefore, besides withholding
attention from emitted yields at velocities near the
original Ne and U velocities, we avoid con-
sideration of total emergent-nucleon cross sec-
tions (those calculated by integrating over all
energies of emergent nucleons).

For a modification to the above discussion of
SIMON s approximations, see Ref. 66. For ex-
tensions, see the next subsection.

B. Features common to all our SIMON models

For other SIMON models used in this paper,
we depart from the billiard-ball option but still
keep many of its simplicities. We always use
classical nonrelativistic kinematics. We assume
that each nucleon travels on a continuous path,
with constant velocity except for an abrupt change
each time it scatters with another nucleon. We
neglect the Pauli principle, nuclear binding, Cou-
lomb effects, and internal kinetic energy of the
precollision nuclei. We ignore pion production,
velocity-dependent interactions, and all other
effects inconsistent with cr» being purely elastic,
isotropic, and independent of the initial NN state.

All these simplifications make the computed
history of each 'Ne+' 'U collision completely
independent of the incident beam speed vN, „,ex-
cept for the rate at which the history proceeds.
For example, doubling the initial beam velocity
vN, U doubles all computed nuclear velocities
at any stage of the reaction. This scaling property
makes it appropriate to report SIMON results
using velocity units proportional to vN, U, energy
units proportional to the beam energy per nucleon
(&/&), ~, etc.

To the extent that different SIMON models invol-
ve similar simplifying assumptions, the billiard-
ball model and our other SIMON models deserve
similar criticisms and similar defenses. For
discussion relevant to the a Priori goodness of
SIMON 's assumptions, see Sec. IIA and the lit-
erature. ' ' ' ' As to a posteriori evaluation,
we consider here some results from a SIMON

billiard-ball calculation reported several years
ago. Figure 2 displays these old billiard-ball
results (black dots), in comparison with recent
experimental data' (dashed and solid lines) for
nucleon charges emitted from Ne+ U reac-
tions. In Fig. 2 we do not use ordinary energy
units such as MeV. Instead, in order to compare
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FIG. 2. Experimental and theoretical results plotted
using energy units ENU, where 1 ENU =

~4( (E/A)~~~M.
Here SIMON 's billiard-ball model results (BB) are com-
pared with the OBS (observed) and EST (estimated) re-
sults deduced by Sandoval et al. from their experimental
data (Ref. 39). Where a solid line overlays a dashed
line, the OBS and EST results essentially coincide. All
the results are for inclusive double-differential cross
sections describing emission of nucleon charges from
the reaction Ne+ 3 U. The energy units ENU are
chosen proportional to (E/A)B~„M, the laboratory beam
energy per nucleon, because such a choice for energy
units makes the BB results independent of (E/A)z&„M.
Some sample statistical-uncertainty bars are shown for
the EST data, but only in those regions where the bar
lengths exceed the diameter of the circle symbols
marking BB points. In addition to the statistical uncer-
tainties in the EST data, there is an uncertainty of
+20% in the absolute normalization. Where a displayed
BB curve stops short of the right axis, its next point
(and most succeeding points) would correspond to zero
calculated yield (i.e. , no counts in the bin).

simultaneously with the experimentally determined
data at two different beam energies-(E/A)~~
=241 and 393 MeV —we have plotted Fig. 2 using
energy units proportional to (E/A)~~. When
units with this proportionality feature are used,
simple SIMON 's results are independent of the
initial bombarding energy. (See the preceding
paragraph. ) The energy units used in Fig. 2 are
called ENU; and they are defined by 1 ENU=~(E
/A)~~, so that 1 ENU is 1 MeV when (E/A)~~
=241 MeV. Therefore in Fig. 2 the experimental
data can be considered as plotted in the usual way
for (E/A)~~ =241 MeV, but plotted in a rescaled
way for (E/A)e~ =393 MeV.

As Fig. 2 shows, simple SIMON reproduces the
major measured trends in energy and angle depen-
dence. The most prominent deviations occur in the
energy-angle regions of smallest cross section.

Before discussing Fig. 2 much further, we
stress again that in this paper our main concern
is not the close reproduction of measured data.
Rather, our main concerns are to examine some
gross features of SIMON-calculated heavy-ion
collisions, and to examine some sensitivities of
these features to variations in the SIMON models.
Figure 2 has been included mainly as evidence
that our billiard-ball model, and other SIMON

models which resemble it, are roughly realistic.
Since this point is conveyed without a detailed dis-
cussion of Fig. 2, we relegate most further ana-
lysis of this figure to Appendix A. However, two

features of Fig. 2 merit some attention here in
the main text: (a) one particular rescaling feature,
and (b) the arrow at e,„,= 30'.

(a) Figure 2 shows a close match between the

experimental data sets at (E/A)~~ = 241 and 393
MeV (light and heavy curves, respectively). That
nice match would suffer greatly if we were to
drop the rescaling device and so replace our ENU

plot with a simple MeV plot. In particular, sup-
pose we were to keep all the numerals on the ver-
tical and horizontal scales as now shown, change
their meaning to involve MeV (instead of ENU),
and then replot accordingly. The experimental
curves for (E/A)s~ =241 MeV would remain
exactly as now shown; but every point of the ex-
perimental curves for (E/A)~~ ——393 MeV would

change both in vertical and horizontal position.
These 393-MeV curves would be stretched out to
larger numerical values of &, . That is, on our
ENU plot of Fig. 2 the experimental data sets for
(E/A)~~ = 241 and 393 MeV extend to E,„,=195
and 120 ENU, respectively, ' but on an unrescaled
MeV plot both of these data sets would extend to
=195 MeV. The other prominent change would be,
qualitatively, like an upward rotation of the 393-
MeV experimental curves around a fulcrum at low
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E, (~20 on the horizontal scale). On the result-
ing MeV plot: For the case ~, =70', the 393-
MeV data would lie higher than the 241-MeV data

by factors of about 1.6, 2.1, and 3.2 at ~ t ——80,
120, and 195 MeV, respectively. For ~ t =110',
these discrepancy factors would be about 1.8, 2.8,
and 5.1 at E,„,= 80, 120, and 195 MeV, respec-
tively. For 8,„t=150', these discrepancy factors
would be about 3.2, 5.5, and 5.6 at ~ t =80, 120,
and 165 MeV. For the smallest angle shown,

~,„,=30', a conventional MeV plot would show

somewhat closer agreement between the 241- and
393-MeV data sets than is shown in our ENU plot
of Fig. 2. But for this angle, on either the ENU

plot or an MeV plot, the discrepancy between the
393-MeV EST data and the 241-MeV EST data
(where EST implies estimated) is ~ the difference
between the two 393-MeV data sets [EST and OBS
(observed) j that were deduced by the experimen-
talists from their measurements.

(b) Now we explain the arrow in Fig. 2. Though
shown here in connection with SIMON billiard-ball
results, arrows of this kind are relevant to results
from all our SIMON models. As Fig. 2 shows, at

, =30' our SIMON curve has a relative peak in

the region of emitted-particle energy ~ t =183
ENU. %'e interpret this peak as caused by par-
ticles emitted after "first scattering, " where by
first scattering we mean the SIMON scattering of
a previously unperturbed projectile nucleon with a
previously unperturbed target nucleon. Because
we ignore internal kinetic energy in the precolli-
sion projectile and target, and because we con-
serve linear momentum and translational kinetic
energy, particles emitted after first scattering
are restricted to a pure one-to-one correspon-
dence (E, , 8,„,}. This one-to-one correspon-
dence is given by

E~=-,'(E/A)a~~(1+cos28~) for first scattering.
(1)

This relation (1) is not peculiar to the bil-
liard-ball model; it is the same for all our
present SIMON results, because they all begin
with classically cold precollision nuclei and
they all conserve linear momentum and transla-
tional kinetic energy. The small arrow in Fig. 2,
which appears near the 30' curve, indicates the
first-scattering pair (E, , 8,„,}having 8, = 30'.
In our SIMON results of Fig. 2, the one-to-one
first-scattering correspondence {E, , 8,„,}is
effectively broadened because of the nonzero
widths of the energy-angle bins used in converting
discrete-particle information to a double-differ-
ential distribution. (See Appendix A.) In a real
20 2SSNe + U reaction, precollision Fermi motion
aLso broadens the one-to-one correspondence

(E,„,, 8, }. Broadening tends to wash out the
peaks. However, the 30' experimentally deter-
mined curves in Fig. 2 do seem to show, in the
region of ~, =180 ENU, some lifting of the down-

ward slope. This suggests that first scatterings
may have a non-negligible effect in shaping the real
energy-angle distribution. For ]9, =70' in Fig.
2, the first-scattering arrow would appear at
E,„,=28 ENU. (See Appendix A.) Beyond 90'
there are no first-scattering combinations fE,„,,
8 LAB}

Figure 3 is like Fig. 2 but shows the double-dif-
ferential cross sections versus angle instead of
energy. Again we see that simple SIMON repro-
duces the main trends of the experimentally de-
termined results, deviating most prominently in
the regions of smallest cross sections, i. e. , at
large angles toward high energies. For all three
energies shown in Fig. 3, the SIMON BB model
yields discernible peaks near the energy-angle
pairs indicated by first-scattering arrows. For
further discussion see Appendix A.

C. Differences among four AÃ scattering styles

Why have we tried NN scattering mechanisms
other than the billiard-ball model? Our main rea-
son is that the excluded-volume aspect of the bil-
liard-ball model seems unsatisfactory. To get a
realistic NN cross section (oN„=25mb) we must
use billiard balls of diameter =0.9 fm, but this
diameter restricts nucleon centers to be much
further apart than the minimum of =0.5 fm imposed
by the hard-core radius of a typical realistic NN

potential. The discrepancy becomes worse yet if
we continue to use the billiard-ball model while
exploring the effects of yet larger cr~„. However,
by departing from the billiard-ball mechanism we
can divorce the choice of 0» from the choice of
excluded volume.

Below, we list four NN scattering mechanisms,
i. e. , four "styles. " In describing them we denote
by Q~™=(8„'„',Q„'„')the scattering angles in the
NN c.m. system. (The polar angle 8„'N' is mea-
sured with respect to the direction of the +N rela-
tive velocity. ) We have, in order of decreasing
excluded volume:

(1) BB, meaning billiard-ball scattering, with
balls of diameter 0.9 fm.

(2) RC, meaning repulsive in-plane impact scat-
tering with billiard-ball core. Here if two ap-
proaching nucleons have impact parameter b»
~ (o„„/v),they scatter as soon as their sepa-1/2

ration decreases to b„&or to 0.5 fm, whichever
happens first. If b„&~ 0.5 fm then the scattering
is computed as if two billiard balls, each of dia-
meter 0.5 fm, were scattering from each other.
If 0.5 fm & b« ~ (~„/w) ', then P'„'„ischosen to'



DENSITY PATTERNS AND ENERGY-ANGLE DISTRIBUTIONS. . .

Ne + U ~ NUCLEON CHARGES + X

102

20 40 60 80
I

I
I

I
I

I
I

E - 69ENU
~OU t

0 20 40 60 80 100 120 140 160

~E/'~jE E~M
=

~""BB 250 MeV

101
Z.'
QJ

L

E

Q3

100

CG

a o

b
(U

10 ~ I I I I I I I I I I I I I I I I I I I I I I I

0 20 40 60 80 100 120 140 60 80 100 120 140 160
8

p f 0F N U C LE0N C H A R 6 E ( d e g )

FIG. 3. Same as Fig. 2, but plotted versus angle instead of energy. As in Fig. 2, the thin and thick lines refer, re-
spective]y, to experimentally determined results at (E /A)s~z~= 241 and 393 MeV. Each curve has an assigned (median)

energy E ~~ that is within 2 ENU of its label |'69, 105, or 183 ENU). For E,~~=183 ENU there are no experimental
points from (E/A)&z~~- 393 MeV because the experimental information stops at a considerably lower E,"„t.

give repulsive in-plane scattering, while 8„'„'
is chosen randomly assuming uniform distribution
of cose„„'within the interval [ —1, 1].

(3) RN, meaning repulsive in-plane scattering
with no core. This is the same as RC except that
the billiard-ball core is absent (shrunk to zero
size).

(4) 4vf, meaning 4w impact scattering. Here if
two approaching nucleons have impact parameter
&«- (o»/II) they scatter as soon as their sepa-1P

ration decreases to b«, and then the scattering
angle 0"," is chosen randomly assuming uniform
distribution within the entire solid angle of magni-
tude 4m. Note that this style allows attractive
as well as repulsive scattering. Just after an
attractive NN scattering, the two scattered nu-
cleons are again approaching each other, and the
new impact parameter will again be ~(o«/v)'
However, we avoid multiple sequential scatterings
of the same nucleon pair by imposing an extra
restriction-that if two nucleons have once scatter-
ed with each other they do not rescatter with each

other until at least one member of the pair has
scattered with a different partner.

The post-scattering nucleon speeds are always
determined by requiring conservation of linear
momentum and translational kinetic energy within
each NN event. Style BB conserves angular mo-
mentum too, within each NN event.

Style BB allows nucleon-nucleon separations
~0.9 fm, RC allows +0.5 fm, and RN and 4ml each
allow any separation ~0 fm. In choosing initial
conditions we impose these same minimum Ãf~

separations, except that for RN we require every
initial separation to be ~ 0.5 fm even though this
restriction ceases to apply after the collision be-
gins.

When using a given +N scattering style, we must
restrict ourselves to cross sections a» such that
the interaction range (v„„/v)' is ~ the minimum
allowed nucleon-nucleon separation. For BB and
RN we have used only the interaction range 0.9 fm,
implying o» —25.4 mb. For each of RC and
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4rI we have performed calculations using interac-
tion ranges 0.7, 0.9, and 1.3 fm, implying cr&„
=15.4, 25.4, and 53.1 mb, respectively.

For o~& fixed at 25.4 mb, the differences among
BB, RC, and RN are in their excluded-volume
aspects. Style 4wI stands somewhat apart from
the trio BB, RC, and RN because 471'I allows out-
of-plane scattering and attractive scattering, as
well as repulsive in-plane scattering. Style 4mI

is the only one, among our four, which allows the
NN distance of closest approach to be smaller than
the impact parameter b». The general lack of
constraints on 4rI make scatterings in this style
close in character to those in most conventional
Monte Carlo cascade calculations.

Impact
parameter

b NeU

(fm)

NN
scatter ing

style
NN

(mb)
Ensemble

size

BB

RC

RN

25.4

15.4
25.4
53.1

25.4

300

200
300
200

300

TABLE I. Standard ensemble sizes for various choices
of {bn,u, style, c„„).Except for Figs. 2 and 2, Tables
II and III, and Fig. 9, all the SIMON results reported in
this paper were calculated using the ensemble sizes
listed in column 4.

D. Ensemble averaging

4@i 15.4
25.4
53.1

300
300
199

For all our NN scattering models, we compute
statistical aspects of Ne + U collisions by taking
ensemble averages over the results calculated
from many different simulated collisions. For
example, we report ensemble-averaged density
patterns p(r, t).

An ensemble consists of many computed Ne2P

+ U collisions all identical in their gross initial
conditions and NN scattering rules, i. e. , all iden-
tical in vN, U, in the initial positions of their proba-
bility spheres, in scattering style, and in o».
The differences of detail, from one collision to
another within an ensemble, are caused by dif-
ferences among the ordered sets of random num-

bers which help to determine the nucleon trajec-
tories. In our billiard-ball model BB, each col-
lision-history proceeds deterministically once the
initial nucleon positions are set. Therefore in
style BB all differences among collisions are due
to differences in the initial random placement of
nucleons, within the fixed-position initial proba-
bility spheres. In our other SIMON models there
are further sources of differences, because in
these other models, random-number choices
help to determine not only the initial nucleon posi-
tions but also the NN scattering angles 0'„&

All the numerical results reported in this paper
were calculated using the ensemble sizes shown
in Table I. (Computing time is mentioned in a
footnote there. )

For results like d'n, ld&ido„ the final double-
diff erential proton yield per Ne + U collision,
there is little difficulty about the interpretation
of an ensemble average, ' for, aside from the re-
striction to a fixed value of the Ne+ U impact
parameter, d n~/d&~dQ~ is quite analogous to an
experimentally deter mined inclusive energy-angle
distribution of "singles. " In the case of nucleon
density, the idea of an ensemble average is less

BB
RC
4zl

25.4
25.4
25.4

300
300
300

' The ensemble sizes used for Tables II and III are
given in the tables themselves ~ The ensemble sizes used
for Figs. 2 and 3 are the same as those noted in Table II.

199 for Fig. 9 ~' An ensemble is a collection of heavy-ion collisions.
In one minute of IBM-360/91 CPU time, SIMON simulates
about 10 col].isions of Ne with U. The timing varies
with such things as bN, U, &z~, and the detail in which a
history of each heavy-ion collision is saved on magnetic
tape.

familiar. Each of our ensemble-averaged density
functions p(r, t) should be interpreted as an ap-
proximation to a function p& (r, t) indicating exPec-
tation values; and such an expectation-value func-
tion may or may not typify the nucleon-density
pattern developed in a single Ne+ U collision.

Reporting ensemble averages means reporting
inaccurate, incomplete information. We say in-
accurate because when we use finite ensembles,
we get mean values which are subject to statistical
uncertainty. We say incomplete because when we
report only ensemble averages, we are suppres-
sing information on fluctuations and correlations.
The suppressed information concerns collision
characteristics which, although they may be in
principle just as interesting as the reported mean-
value characteristics, are presumably described
by SIMON less realistically than the reported
mean-value characteristics.

However, presenting reports which suppress
information about correlations is not the same as
calculating collision-histories using a method that
suppresses correlations. SIMON, like other
many-body methods, does involve nucleon-nucleon
correlations while it is computing a heavy-ion
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collision. This matter is discussed further in
Appendix B, where we compare how various theo-
retical methods handle fluctuations and correla-
tions while calculating heavy-ion collisions.

III. PARTICLE-DENSITY PATTERNS

The main results of this section are in Figs.
4-10. These are plots of nucleon-matter density
functions p(r, t) at various times t during colli-
sions of Ne+ U. An introduction to these den-
sity figures is given in subsection A. The physi-
cal results are discussed in subsection B for head-
on collisions (bN,„=0), and in subsection C for
off-center collisions (b„,„=5 fm). Some com-
parisons with fluid-dynamic results are made in
subsection D.

A. Introduction to Figs. 4-10

1. Space and time coordinates

In considering particle-density patterns p(r, t)
we sometimes use cylindrical coordinates r, z, P
and sometimes use Cartesian coordinates x, y, z.
However, we always use a laboratory frame having
its origin fixed at the initial position of the U-
target center, its z axis in the direction of the
initial relative velocity vN,„,and its xz plane
(y = P = 0) coincident with the collision plane. We
characterize the reaction stage not by specifying
the time coordinate t in traditional units, but in-
stead by specifying

zg;U = the z displacement of the Ne center from the
U center, calculated by assuming that both
nuclei are unperturbed by the collision. (2)

In effect we are using time units inversely pro-
portional to vN, U. This allows us to report SIMON

results for p(r, t) without specifying the initial
beam energy. [See our remarks in Sec. IIB about
scaling, i. e. , using velocity units proportional to
vN,„,energy units proportional to (E/A)sEAu, etc.]

2. Technical problems

Next we discuss why, quite aside from the phys
ical approximations in our SIMON models,
displayed functions p(r, t) are only approximate
versions of the expectation-value functions we
want to know.

First we define expectation-value functions more
carefully. During the simulation of a Ne+ U

collision, SIMON computes the position of each
nucleon as a continuously traveling point in con-
tinuous 3-dimensional space. ' Therefore at
fixed time zN, „within a single SIMON collision,
the directLy calculated density of nucleons is very
spiky, ' it is a sum of 258 delta functions. If we

could average these delta-function results over an
infinitely large ensemble of collisions, we would
get an everywhere-finite exPectation-Value func-
tion"

ps(r, zN.'U)

—a differentdefinite function for each of our model
combinations (style, a«, bN,„j.These are the
functions whose general features we would like to
know; and these are the functions we would like to
compare for different combinations (style, o„„,
bN, ).

Now we define p more carefully. Since we can-
not afford to calculate p by using an infinite en-
semble, we try to approximate pq by simple finite
averaging. We average first within noninfinitesi-
mal volume elements of size =2 fm, and then fur-
ther, over a finite ensemble of =300 similar colli-
sions (see Table I). We do this for a set of 12
time-coordinate values zN,'U during collision.
What emerges is a finite array of density values,
corresponding to a finite array of mesh points
(r, z„,'„)„,where r„is an appropriate volume-
averaged vector coordinate characterizing the
volume element. Then whenever we convert this
finite array of density values to information for
a contour diagram, we introduce some interpola-
tion approximations. The finally displayed den-
sity functions are called p(r, zN~„), and they differ
from ps(r, z„,„)for three reasons:

(a) statistical uncertainty (because we have not
calculated p using infinitely large ensembles),

(b) nonzero space resolution (because we have
not calculated p using infinitesimally small volume
elements), and

(c) interpolation approximations.

All three items affect p(r, zN,'„)significantly.
Therefore we have been concerned with all three
items in preparing our figures, captions, and
text. In particular: (a) Some quantitative esti-
mates of the statistical uncertainty are presented
as error bars in Figs. 8 and 10 ahead. (b) For
most of our figures, the space resolution is ~1
fm and the associated details are given in the cap-
tions. (c) In all our plots, contour and other,
we have used very simple Linear interpolations.
This linear-interpolation choice is just a small
step beyond using histograms, and has the advan-
tage of retaining jagged features which serve as
constant reminders of the nonideal statistics and
imperfect space resolution.

As an example of how items (a), (b), and (c)
affect p(r, zN,'„),consider Fig. 4(a). This is a
precollision picture of p jpo, where po represents
normal nuclear density because
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p, =the magnitude of p inside our initial prob-
ability spheres.

Figure 4(a) shows two rather lumpy diffuse-edged
objects, just touching each other. What would
Fig. 4(a) show, instead, if we had calculated p by
using infinitesimally small volume elements, an
infinitely large ensemble, and an infinitely refined
contour-plotting routines In that triply ideal case
Fig. 4(a) would show pq.'two sharp-edged spheri-
cal nuclei, each of uniform density p/pp ——I, with
surfaces 1.66 fm apart. ' This initial discrepancy
between p and pg conveys an idea of how p may
differ from pq later during the collision too.

3. )afore about tsTpp

There are qualitative differences in meaning
between our contour plots of p(r, t) and some re-
lated displays in the literature. In our present
paper the plotted contours always refer to nucleons
per unit volume. In contrast, some other displays
in the literature involve densities integrated along
the direction y perpendicular to the collision
plane, so that the quantities displayed have units
nucleons per unit area. For example, some dis-
plays show point-nucleon positions, one dot per
nucleon, projected onto the collision plane xz but
altered slightly so as to make every nucleon-dot
appear separately instead of being shielded by
other nucleon dots. Such plots fold together den-
sity information and information about the occu-
pied volume's thickness perpendicular to the col-
lision plane, ' thus for example a uniformly dense
sharp-edged sphere would be pictured as a circu-
lar area with more nucleons/(unit area) near the
center than near the periphery. Turning now to
the familiar collision-diagrams of Amsden
et al. ,

' which display fluid-dynamic results,
we note these three features: (a) The dots repre-
sent projections of computational points (not nu-
cleon positions) onto the collision plane. (b) The
precollision pictures show circular areas which
are almost uniform in their dots/(unit area) be-
cause no antishielding alterations have been made,
and because the computational points are initially
placed in a rectilinear array leading to much
shielding. (c) During nuclear collisions, the dia-
grams develop crowded regions of dots/(unit area)
largely because of displacements ruining the
shielding, though partly because of real increases
in the points/(unit volume) and associated in-
creases in its projected version, points/(unit area).
In short, crowded areas of an Amsden et al. plot
tend to indicate disturbed matter, not necessarily
matter dense in nucleons/(unit volume). That is
a useful kind of display, but one should realize

the difference between that kind of display and
the contour diagrams of this paper.

In all our cylindrical contour plots (Figs. 4-7)
we show a cylindrically symmetrized function
p(r, t) versus z increasing from left to right, and
versus r increasing upward. L Fig. 4, in order
to make the collision easier to visualize, we have
also reflected the r ~ 0 plot downward through the
z axis, so that r increases both upward and down-
ward from the r=0 line.

In Figs. 4-7 a blank strip appears along each
z axis. Its presence is explained briefly in the
Fig. 4 caption and more thoroughly in Ref. 51.

B. p in head-on collisions

Readers who want to skim this subsection will
find its main points in paragraphs which begin
with an italicized word.

Figure 4 pictures the general course of a head-
on Ne+ "U collision. At each time stage, a20 238

five-pointed star shows where the center of an
unperturbed Ne projectile would be. High densi-
ties (p/p, ~ 2) develop soon after geometric con-
tact is made; then the near (struck) side of the U
target becomes blasted away, leaving a crescent-
shaped pattern. In the interior of the crescent,
p decreases gradually with time. Qn the far side
of the target there is a front of low density which
moves slowly outward into previously unoccupied
space. There are no signs of a discrete fireball
or a residual projectile. (The term "crescent"
may be slightly misleading. The contours plotted
in r, z space really imply the 3-dimensional con-
tours that would be generated by rotation around
the z axis. )

At all of the collision stages shown in Figs.
4(b)-4(e), the highest-density region is in the
interior near the collision axis, and it tends to
lag behind the star-marked point where the cen-
ter of an unperturbed Ne projectile would be.
This kind of lag is consistent with the behavior of
a shocklike zone, which would have shock-front
speed slower than the speed of unperturbed pro-
jectile matter.

Figure 4 demonstrates how, at any stage of the
collision, one can tell just from the density pat-
tern which regions of our model nuclei have al-
ready been perturbed significantly. Recall that
we neglect internal kinetic energy within both pre-
collision nuclei. Consequently at any point r, z
statistical fluctuations in the initial density pat-
tern persist with time until the nucleus-nucleus
collision causes nucleons to move to or from that
r, z. Note for example that in Fig. 4(b) there is not
yet any disturbance of the initial fluctuation evi-
dent between z =1 and z =2 at small r; and in Fig.
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FIG. 4. Contour plots showing time development of the nucleon-matter density ratio p 'po during head-on collision of
Ne with 3 U. Each five-pointed star indicates time by showing where the center of an unperturbed Ne projectile would

be. The densities p are obtained by averaging first within small finite volume elements, and then further over an en-
semble of several hundred collisions (see Table I). Cylindrical coordinates t, z, and ft) are used; and the space reso-
lution is ~1 fm because the volume elements are contiguous discs and rings each of dimension 4i = 0.8 fm, ~v=1.0 fm,
and b@= 2''. The area keyed {p /po) = 0.5 + 0.125 is bounded by contour lines for 0.375 and 0.625, and similarly for the
other keyed areas. Thus, in general, blank areas imply regions where p/po could be estimated by interpolation. An

exception is the no-interpolation blank strip along each z axis; there p/po could be estimated by extrapolation but not by
interpolation. For further explanation see the text of Secs. III. A and III. B.

4(c) there is still no disturbance of the initial
bumps at z ~ 0 in the contour p/po =0.875 that
forms the outer boundary of the diagonally striped
region p/po —1.0 y 0.125.

Figure 5 is the first picture indicating how

p(r, zN,'„)is affected by scattering style and a».
In Fig. 4, we showed time-sequenced information
for a single combination (style, v„„)-acombina-
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FIG. 5. Contour plots contrasting nucleon-matter densities calculated from two different NN scattering models: BB,
25.4 (upper) and 47II, 53.1 tlower). The contrast is shown for both an early stage (left) and a late stage (right) during
head-on collision of Ne with 38U. The key for p/pp is the same as that pictured in Fig. 4. For other conventions see
the caption to Fig. 4 and the text of Secs. III. A and III. B.

tion of intermediate character, (RC, 25.4 mb}.
Now in Fig. 5 we juxtapose, for each of two times
during the Ne+ U collision, a section above the
z axis corresponding to (BB, 25.4} and a. section
below the z axis corresponding to f4vi, 53.1}.
Figure 5 shows that the calculated density pattern
is indeed sensitive to the combination (style, o«}.
There is a sensitivity both early in the collision
(zN,'„=-6fm), and late (zN,'„=+9fm). Higher
densities are calculated for (4vl, 53.1}than for
(BB, 25.4}. This is consistent with the fact that
shocklike behavior is more likely to be produced
by short-range strong NN interactions than by
longer-range weak NN interactions. (Or, to
comment more simply, large hard cores inhibit
the development of high densities. ) Note that at
the early stage shown at the left in Fig. 5, model
(BB 25.4} does not produce even the overlap com-
pression p/p, = 2 (in fact, not even 1.875). In con-
trast, (4vi, 53.1}produces compressions =2.5.

As Fig. 5 indicates, the sensitivity to (style,
o»} is concentrated in the interior region where
high density exists. There is an apparent "heal-
ing, " i. e. , insensitivity to(style, o„&},near the
surface region in which 0.875& (p/po) & 0.125.

The very early stage z&,'„——-6 fm, shown at left
in Fig. 5, is prior to any of the perturbed stages
shown in Figs. 4(b)-4(e). This early stage has
one feature that is slightly different from what we
saw in Figs. 4(b)-4(e), viz. , the highest-density
region leads (rather than lags behind) the star-
marked point where the center of an unperturbed
Ne projectile would be. This happens because the
Ne projectile has radius 3.15 fm and its front edge

causes the earliest perturbation of the target.
Thus at the very early state zN,'„——-6 fm in Fig. 5,
the highest-density zone does trail behind the
place where the front edge of an unperturbed Ne

projectile would be. However, not enough time
has elapsed for the lag to develop so much that
the highest-density zone trails behind the place
where the center of an unperturbed Ne projectile
would be.

Note that in the early-stage diagrams of Figs.
4 and 5, within the still undisturbed region where
p/p, =1 (diagonal-line pattern), the statistical
fluctuations are particularly severe near the col-
lision axis z. This is typical; it happens because
in our cylindrical volume-element set (see the
caption to Fig. 4), the elements near the z axis
are especially small and so they tend to hold
rather few nucleons and give poor statistics.

Figure 6 shows density results for four different
NN-scattering styles but fixed 0«. All four pic-
tures are for the same stage of the collision: z&,'„
=0, when an unperturbed Ne projectile would be
centered within the U nucleus. As we look down

Fig. 6, from BB toward 4mI, we see higher central
densities. Recall that as the NN-scattering style
is changed from BB to RC, and then from RC to
RN or 4mI, there is a decrease in the size of the
hard nucleon core. Figure 6 indicates that this
decrease in core size leads to higher compressions
p/po. Style RN, which is like RC in some NN

features (repulsive in-plane scattering), but like
4vl in other NN features (no hard core during
scattering), gives a density pattern in between
those from RC and 4mI.
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FIG. 6. Contour plots showing nucleon-matter densi-

tiess

calculated by using four different NN scattering
styles (BB, RC, RN, and 47tl) all with the same NN

cross section (25.4 mb). The comparison is made for
head-on Ne+ U collision at a time corresponding to20 238

z"„~„=0, i.e., when the projectile center would coincide
with the target center if both nuclei were unperturbed.
The key for p/po is the same as that pictured in Fig. 4.
For other conventions see the caption to Fig. 4 and the
text of Secs. III. A and III. B.

At z N;„=0, the time stage shown in Fig. 6, our
model U target is almost unperturbed for z ~ 3 fm.
This is true for all the models in Fig. 6 (and for
BB it can be confirmed directly by comparing with
the left upper section of Fig. 5).

Eiguxe 7 is a systematic array showing sensi-
tivity both to NN scattering style and to 0». The
time in Fig. 7 is zNeU = -3 fm. At this time per-

turbation is confined to z & 1 fm and therefore to
save space we show only the regions where z ~ 1.
It is near the time z&,'„—-3 fm that most of our
models give their maximum p/p, . (This can be
verified, for some models, by comparing analo-
gous sections of Figs. 4-7, i. e. , sections which
show results from the same (style, o«j at dif-
ferent times zN,'„.) Figure 7 confirms, for the
time zN,'U —-3 fm, what; Figs. 5 and 6 showed for
other times: that as core size is decreased and

g» increased, the collided matter tends to attain
higher nucleon-matter densities and somewhat
larger regions of high density. Note the attain-
ment of compression p/po =3.0 for (4mi, 53.1}.
Note also that the sensitivity to style is greater
for larger o&&. There is a general foreshortening
of the density pattern as v&& is increased. This is
consistent with the idea that large cr» promotes
shocklike behavior.

At the extreme left in Fig. 7 there are two dia-
grams marked 0» —0. These diagrams extend
the range of our sensitivity-to-0» results. They
are also useful, as will be shown soon, for illus-
trating some effects from statistical fluctuations
and nonzero space resolution. But first we explain
how these two 0« ——0 diagrams were calculated,
and why they differ from each other. Both these
o» —0 diagrams show unperturbed density func-
tions. To calculate each, we simply displaced an
ensemble-averaged initial-Ne density function so
as to center it at z =-3 fm, and then superimposed
it on the ensemble-averaged initial-U density func-
tion. The upper a« ——0 diagram in Fig. 7 was
calculated using the initial density patterns of the
(RC, 25 41 ensemble; the lower, (4wi, 15.4). The
two 0„„=0diagrams differ mainly because of
statistical fluctuations (and the degree of statisti-
cal fluctuation may differ for RC and 4ml because
of the difference between RC and 47II restrictions
on initia. l NN separations).

Suppose that there were zero statistical error,
perfect space resolution, and no inaccuracies
introduced by interpolation. Then each of the
two ONN ——0 diagrams in Fig. 7 would show an area
of p/po ——2 with sharp circular edge, surrounded
by an area of p/po= 1 with sharp circular edge.
Instead, Fig. 7 shows 0» ——0 diagrams with gentle
space gradients of p, approximately as gentle as
those in our v» & 0 diagrams. This reminds us
again that, because of nonzero space resolution,
our pictures may not convey a very good idea of
how sharp the space gradients of pq would be.

The two v« ——0 diagrams in Fig. 7 differ most
obviously near small r. This jibes with a fact
mentioned previously, that the statistical fluctua-
tions tend to be particularly severe near small ~,
where our volume elements are small. There
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FIG. 7. Contour plots showing sensitivity of nucleon-matter densities to details of the NN model. Results are shown
for three different NN scattering styles (BB, RC, and 47II) used with various NN cross sections (0~~=0, 15.4, 25.4, and
53.1 mb). All results are for head-on Ne+ U collision at a time corresponding to zN~~„=-3 fm, i.e., when the pro-
jectile center would be just 3 fm short of reaching the target center if both nuclei were unperturbed. (It is near this
time that most of oup models give their maximum p// po ) The bottom right diagram (47rI, 53.1) shows a small region
(the innermost black-marked region) where p/po= 3.0+ 0.125. For other conventions see the caption to Fig. 4 and the
text of Secs. III. A and III. B.

are some other minor problems too, near small
In general, our contour figures are somewhat

ambiguous in that singly bounded blank areas
could imply densities higher or lower than that of
their surrounding patterned areas. In perturbed
zones during early or middle stages of the colli-
sion, such singly bounded blank areas usually cor-
respond to higher density, ' but in the lower-left
a~~=0 diagram of Fig. 7, the central blank area
happens to correspond to lower density, p/po
& 1.875. We mention one other kind of uncertain-
ty near small r.' Note that several of the v» ——0
diagrams in Fig. 7 (i. e. , several of the diagrams
which describe perturbed collided matter) show
their highest-density regions away from the smal-
lest-r line, instead of touching the smallest-r
line. This kind of result indicates a torus of
highest density, instead of a central lump of high-
est density. At present we do not know whether
such toroidal patterns should be attributed to

statistical fluctuations, or to dynamic causes that
would give toroidal patterns even in pq.

All of the foregoing p figures shosu contour plots.
Together they indicate that the highest densities
tend to occur near the collision axis and near the
time zN,'U ——-3 fm. Figure 8 concentrates on these
high-density conditions, ' it shows noncontour plots
of p/po vs z along the collision axis at z„,'„=-3
fm.

Before discussing the main content of Fig. 8,
we comment on its format and its statistical-un-
certainty features. The noncontour format of
Fig. 8 has several advantages. It allows us to
show ensemble-averaged functions p(r, z„,'„)more
directly (without the extra screen of p/po bins);
it allows us to exhibit results for several different
p functions all very close together (within the
same plotting area); and it facilitates the display
of statistical-uncertainty bars. These bars are
helpful for deciding whether the difference between
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one p function and another is statistically signifi-
cant or not. In order to increase the statistical
signif icanc e, we have computed p for Fig. 8 using
disc-shaped volume elements larger than the on-
axis discs used for Figs. 4-7. (If the same
small on-axis discs were used, then the points in
Fig. 8 would vary much more erratically and
would have uncertainty bars twice as long. ) For
quantitative details about the volume elements
and uncertainty bars in Fig. 8, see its caption.

In Fig. 8 all of the BB, RC, and 4mI p results
have their peaks at z =-4 fm. However, we see
some clear differences in the peak p value, and
also in the shape of the peak. The three separate
panels (a}, (b), and (c) show sensitivity: (a) to
NN-scattering style at fixed &x«, (b) to o«at
fixed style RC, and (c) to v~„atfixed style 4zi.
For our first look at Fig. 8, we ignore the results
for RN (symbols &&} and for v« ——0 (dashed line).
That is, we consider only the BB, RC, and 4mI

results. Then Fig. 8 reassures us that, despite
our problems of statistics and space resolution,
the following differences are systematic and sta-
tisticially significant:

(a) pl4v1, 25.4j& pIRC, 25.4j & p(BB, 25.4j in the
peak region (i.e. , at z = -5, -4, -3 fm).

(b) plRC, 53.1j, QRC, 25.4}, and pIRC, 15.4}are
successively less steep in their falloff Bp/Bz be-
yond the peak at z =-4 fm. This is evidenced
especially by the results at z =-1 fm.

(c) p[4vl, 53.1j & pl4vi, 25.4I & /4vl, 15.4) in the
peak region (z =-5, —4, —3 fm). Furthermore,
these three p functions are successively less steep
in their falloff Bp/Bz beyond the peak at z =-4 fm.
This is evidenced for example by the results at
z =-1 fm.

Obviously, our NN scattering style strongly influ-
ences the degree of sensitivity to v&„~ For RC
there is no significant sensitivity of the maximum
p/po to v~„,while for 4ml there is considerable
sensitivity. The insensitivity for RC suggests that
we should not have taken very seriously the Fig. 7
result showing a small black region (p/po =2.5)
for (RC, 25.41. Apparently the volume and the
number of counts associated with that small black
region are themselves so minor that little statis-
tical significance is impiied. (Indeed, this was

Ne+ U. . . . b =O. .. . z"=-3 fm
NeU
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FIG. 8. Comparisons showing how nucleon-matter densities along the collision axis z vary with NX-scattering style
(see left panel) and with 0~~ in mb (see center and right panels). All results are for head-on Ne+ 38U collision at a
time corresponding to z" =—zN, U=-3 fm [see Eq. (2)j. It is near this time that most of our models give their maximum
p/ po. The space resolution in this Ggure is somewhat poorer than in preceding figures, but the statistics are better;
for here the plotted densities are averages within disc-shaped volume elements with the usual cylindrical symmetry
around the z axis, and with the usual z thickness bz =1 fm, but with outer cylindrical radius br=1.6 fm instead of 0.8
fm. Thus, each of these on-axis discs has a volume-weighted average r of 1.07 fm instead of 0.53 fm. On some of the
plotted points, statistical-uncertainty bars are shown. Each is drawn to represent a fractional uncertainty ~Q/+ in the
value of p/po, where g is the total number of nucleons calculated to be in the volume element, accumulated over the
pertinent ensemble of collisions. {Exception: when+=0, the bar is drawn to represent an uncertainty of 1 in Q.) See
also the text of Secs. III. A and III. B.
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already suggested by the absence of any black re-
gion in the fRC, 53.1}diagram of Fig. 7.)

Next we consider the RN results (symbols x) in

Fig. 8. The p function from RN (a style which
is like RC in some ways but like 4vi in other ways)
shows values falling between p values from RC
and 4mI. However, the results in Fig. 8 show
some features which are not systematically se-
quential for the entire quartet BB, RC, RN, and
4mI. Possibly this nonsequential behavior is due

to statistical fluctuations. More likely, it reflects
truly nonsequential behavior of the pz functions.
Recall that BB, RC, and RN form a sequence de-
creasing in core size; they are all restricted to
in-plane repulsive NN scattering. In contrast,
4mI is alone in using 4r isotropic +N scattering.

Finally we consider the cr„„=0result (dashed
line) in Fig. 8(c). Note that the rise and fall of
the (4vl, 53.1}p function resemble, in steepness,
the rise and fall of the a» ——0 p function. Also,
recall that these O.„N——0 results would be infinitely
steep if there were zero statistical error, perfect
space resolution, and no inaccuracy from inter-
polation. " This suggests that pz for (4vl, 53.1}
may also have a very sharply bounded dense re-
gion, and more generally, that our space-resolu-
tion problems may mask a strong sensitivity of
density gradients to aNN.

C. p in off-center collisions

For off-center collisions pg does not have cylin-
drical symmetry, and therefore we switch to a
Cartesian coordinate system for contour displays.

Readers who want to skim this section will find
its main points in paragraphs which begin with an
italiciz ed word.

Figure 9 shows four successive time stages of
p(z, x, t) in a central slice around the collision
plane (zx) during off-center collision of 'Ne with

U. The results were calculated for JRC, 25.4}
at impact parameter bN, U

——5 fm. Before com-
menting on the space resolution and statistical
fluctuations in Fig. 9, we summarize the physical
results. For the case of off-center collision, we
see some features similar to those seen for b„,

„

=0. However, for bN,„—5 fm these features are
mainly confined to the upper part of the system
(»0 in our diagrams). High densities develop
soon after geometric contact is made. A s the
collision proceeds, the struck portions of the tar-
get become blasted away. In the upper part
of the system, the density decreases gradually
with time while a front of low density moves out-
ward and upward into previously unoccupied space.
The density in the lower part of the system is
somewhat disturbed, but not nearly so much as

the upper part. Again (just as in head-on colli-
sions) we fail to see a discrete fireball. How-

ever, for bN, U
—5 fm we do see a weak "cap"

from the projectile. This cap is a low-density
remnant of the projectile —a part which has travel-
ed through only a small portion of target matter
and has escaped NN scattering.

The contour diagrams in Fig. 9 appear more
jagged, fluctuation-plagued, and surface-diffuse
than those in our bN, U ——0 contour plots, e. g. , Fig.
4. The underlying causes are the ensemble sizes
(199 in Fig. 9, 300 in Fig. 4) and, more impor-
tant, the sizes and shapes of the volume elements
(see the captions to both figures). Concerning the
many blank sections within the diagonally pattern-
ed p/po =1 region of Fig. 9, some represent fluc-
tuations upward and some downward. Obviously,
many of the minor features observable in Fig. 9
should not be taken seriously. There is particular
doubt about features in neighborhoods where cros-
sed contour lines appear, because such crossings
indicate local ambiguities in the interpolation
evaluation of p/po.

'
For bN,„—5 fm, we have calculated Ne+ U

collisions using styles BB, RC, and 4mI but always
with a» ——25.4 mb. In general, we find that the
peak values of p increase as we change from BB
to RC to 4mI, and the peak values are similar to
those achieved in head-on collision. Figure 10
illustrates these (expected) results by showing the
sensitivity of density to NN scattering style at
times and places where p tends to be large. For
more details, see the next two paragraphs.

Figure 20 displays noncontour plots of p versus
z as calculated from BB, RC, and 4@I for three
successive times z~N, U

=- z" during off-center col-
lision, and for several alternative sets of the z-
indexed volume elements within which p is aver-
aged. Our main reason for showing this variety
of times, and this variety of volume-element sets,
is that BB, RC, and 4@I differ in the coordinates
(r, f) at which maximum p occurs. However, at
each fixed time the main qualitative features are
the same for all three volume-element sets.

Because the volume-element sets of Fig. 10 are
too complicated to describe in the caption, we
describe them here. In all the sets, every volume
element is symmetric with respect to the xz plane
(as pz is). Furthermore, all the sets have their
volume elements concentrated rather near the z-
directed line defined by x =4.52 fm, y =0. A

particular volume-element set is labeled by its
x, the volume-averaged x which characterizes
every one of its elements. The label x =4.52
refers to a set of disc-shaped elements; each is
cylindrically symmetric about the aforementioned
z-directed line (x =4.52 fm, y =0), and each has
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FIG. 9. Contour plots showing time development of the nucleon-matter density near the collision plane xz during Ne
+ 238+ U collision at impact parameter QeU= 5 fm. Each five-pointed star indicates time by showing where the center of an
unperturbed Ne projectile would be. In contrast to the preceding figures, this figure uses Cartesian coordinates. The
space resolution is»1.2 fm because the plotted densities are averages within contiguous volume elements each of di-
mension M=1.2 fm, Ay =1.5 fm, hz=1.5 fm, all lying within a slab of thickness Dy =1.5 fm symmetric around the col-
lision plane xz. Thus, each of these elements has a volume-weighted average I y I of 0.38 fm (not 0). For further ex-
planation see the text of Secs. III. A and III. B.

outer radius 1.6 fm with z thickness 1 fm. The
label @=5.20 refers to a special set of half discs,
the upper (large x) halves of the x =4.52 discs;
the label x =3.84 would refer to the lower halves
(but that set is not used in Fig. 10). The label
x =x& refers to a p-dependent set such that at any
z, the upper or lower half disc is used, whichever
half gives the greater p. Thus in the Fig. 10
plots marked &=x&, we are comparing the peak
values of p obtained from BB, RC, and 4wI.

D. Differences from fluid-dynamic results

Here we briefly compare our density results with
those from some recent fluid-dynamic calculations.
We consider the results of Tang and Wong for

Ne+ Au at (E/A)sFAM =250 MeV —results cal-
culated for head-on collisions assuming two al-
ternative viscosities, small and large. Also, we
consider some results of the Frankfurt group
for Ne+ U at (E/A)~~=400 MeV-results cal-
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FIG. 10. Comparisons showing how the NN scattering style affects peaks in the nucleon-matter density near the col-
lision axis during off-center Ne+ U collision (bN = 5 fm). The comparisons are made among three different NN-

scattering styles (4~I, RC, and BB) all used with the same NN cross section (0~&=25.4 mb). Results are shown for
three successive times during collision —times corresponding to P —= zN~«= 0, 3, and 6 fm [see Eq. (2)]. For ~ =3 fm
three plots are included; they correspond to three alternative sets of the volume elements within which p is averaged.
For the meanings of the three different labels x, see the text of Sec. III. C. At some of the plotted points, statistical-
uncertainty bars are shown. These are drawn using the same ~g/& prescription mentioned in the caption to Fig. 8.
See also the text of Secs. III. A and III. C.

culated for head-on and off-center collisions,
assuming small viscosity. All of these fluid-dy-
namic calculations lead to collided-matter den-
sity contours that are more flattened than ours at
the struck side of the target. For head-on colli-
sions calculated with small viscosity, the Tang-
Wong and also the Frankfurt calculations lead to
maximum densities roughly like ours, p/pp 2.
However, in the Tang-Wong small-viscosity cal-
culations, high compressions are retained for a
longer time than in our results. When. large vis-
cosity is assumed, the Tang-Wong calculations
give maximum p/pp only =1.3. For head-on colli-
sions the Frankfurt calculations show maximum
p/p, at a time that is roughly similar to ours,
zN,'„=-3fm. For small and also large viscosity,
the Tang-Wong compression maxima occur some-
what later, zN,'U =5 or 6 fm. For off-center colli-
sions with AN, U —5 fm, the Frankfurt fluid-dynam-
ic calculations show a collective effect not found
in our SIMON results: a projectile fragment which
appears to be "bounced off" the target. This frag-
ment, which has p/pp& 0.4, is quite clearly sepa-
rated from the residual target.

IV. FINAL ENERGY-ANGLE DISTRIBUTIONS

In our present simple SIMON models, all particle
emission consists of scattered nucleons, each un-
bound to any other particle. That is why, in Figs.
2 and 3, we compared SIMoN 's emission of scat-
tered protons with experimentally determined
emission of nucleon charges, the latter summed
over discrete protons and larger emitted nuclei.
Similarly, SIMON s emission of scattered nucleons
would be compared with experimentally determined
emission of nucleon masses, the latter summed
over discrete nucleons and larger emitted
nuclei.

Figures 11-16ahead show how some ensemble-
averaged yields d n/dEdQ from Ne+ U are
affected by bN,„,by +N scattering style, and by
eN&. Two kinds of yields are considered. Fig-
ures 11-13deal with proton yields in the labora-
tory frame, and Figs. 14-16 with nucleon yields
in the "equal- speed" frame. Conventions for
these figures are explained in subsection A. The
physical results are discussed in subsections B
and C.
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A. Introduction to Figs. 11-16

1. Basic definitions, LAB and ES frames, MeV

We consider first the ensemble-average proton
yield per Ne+ U collision.

np
2

np
3

dE' " dQ " d&""~d 8 " d~~P

(4)

Each function d n~/dE~ dQ~ is calculated for
fixed impact parameter b„,„,fixed NN scattering
style, andfixed a». The symbols n~, F~, and

Q~ refer to the number, laboratory kinetic ener-
gy, and laboratory velocity angle (with respect to
the projectile direction) of scattered protons near
the end of a Ne + U collision. By "near the
end" we mean at a time tsTpp such that the center
of an unperturbed Ne projectile would be about
three U radii past the center of an unperturbed

U target. (Details about t»o~ will be given
later. ) Our present SIMON code does not label
individual nucleons as being in a specific charge
state. However, we compute energy-angle distri-
butions for protons by taking, for each energy-
angle interval, ~ times the number of nucleons
originating from Ne plus~ times the number of
nucleons originating from ' U. Because Ne is
so much lighter than U, the laboratory frame is
close to the c.m. frame of the entire colliding
system. Furthermore, it may be considered close
to the rest frame of the excited residual target.

Besides the proton yields of Eq. (4), we consider
ensemble-averaged nucleon yields defined in a
similar way.'

d nN d n&
2 3

dgEsdgEs dFEsd eESd~ averaged over
w

(5)

Here the superscript ES denotes the equal-speed
frame, in which the two initial approaching nuclei

Ne and U have equal speeds —,'vN, U. This ES
frame is the N~ c.m. frame for first scattering,
i. e. , for the SIMON scattering of a previously un-
perturbed Ne nucleon with a previously unperturb-
ed U nucleon. The ES frame is a useful one if
the energy-angle distributions are dominated eith-
er by first-scattering products, or by matter
thermalized and emitted shortly after the first
contact of the Ne and U surfaces.

As noted in Sec. II B, simple SIMON's results
are completely independent of (E/&)ewLM provided
that we use time units inversely proportional to
vN,„,energy units proportional to (E/&)aaAM, etc.
In Figs. 11-16we have used such energy units,
letting

1 MeV =~(E/&)azAM

so that 1 MeV =1 MeV when (E/A)aEAM =250 MeV.

(6)

2. More about bN, U
and energy-angle bins

Because of the p average in Eqs. (4) and (5),
each value d n/dEdQ describes the contribution
to d a/dEdQ from a cylindrically symmetric ring
of Ne projectiles all incident at scalar impact
parameter bN, U. Such a contribution would be
weighted by 2mbN, „dbN,

„

in the integral over im-
pact parameter. The contribution from bN,„—0
has zero weight, but contributions from bN,„=5

fm have major importance for the middle range
of ~~ and 8~ . This importance is indicated by
Table II, which shows bN, „dn~ /dE~ dQ~ as a
function of b&,

„

for the particular combination
(BB,o„„=25.4 mb).

Next we describe some details affecting the
energy-angle resolution and statistical uncertainty
in Figs. 11-16. The (E~, 8~ ) bins used in
Table 0 are a subset of those used for Figs. 11-
13. The complete set consists of contiguous two-
dimensional bins. These bins have energy widths
nE=rE, =20 MeV (with centers at 10, 30,
50, . . . MeV}; and they have angular width either
68~ =10' (for bins centered at 20', 30', . . . ,
160') or n8~ =15' (for bins centered at 7.5',
162.5'). For a single bin i, the @-averaged en-
semble-averaged yield Y& is ealeulated as

d2n 1 1 x
dEdQ, 2v (ensemble size) r En( cos8)

(7}

where ensemble size is the number of collisions in
the ensemble. For proton yields, X is the total
count of protons in bin i accumulated over all col-
lisions in the ensemble; nE and a(cos8) are the
appropriate spans of bin i. When labeling proton
yields, and also when plotting them, we associate
each yield Y& with its bin-center combination
(E~, 8~ }. Thus each yield Y, is plotted as a
point rather than a histogram level. If the plotted
points are connected, they are connected with
straight lines.

For nucleon yields in the ES frame, the above
description holds after several obvious changes:
nucleon replaces proton, N replaces p, ES re-
places LAB. But there is also another small set
of changes: For nucleons the angular widths are
given by a( cos8„)=-0.1, and when plotting we
use the angular bin-center coordinates cos~„
=-0.95, —0.85, . . . , +0.95. Furthermore, when
plotting nucleon yields vs && we sometimes con-
sider larger-than-standard bins, formed by com-
bining standard bins so that gE„=20MeV but

~

n(cos8„')
~

& 0.1.
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3. More about tsTpp

Our cutoff time t»&» affects d n, /dE, dQ~

strongly for ~~ =10 MeV, but only weakly for
E~ & 3p MeV. This conclusion follows from an
investigation we made in which we computed some
BB energy-angle yields with and without time cut-
off. (In the ensembles without cutoff, each 'Ne
+ U collision was allowed to proceed until its
natural end, that is, until all its 258 nucleons had
positions and velocities such that no more NN

scatterings could occur. )

By artificially terminating at time t»o» we
are neglecting NN scatterings that occur late
during each heavy-ion collision. Such NN scat-
terings are mainly of the kind that further therm-
alize a residual excited target consisting of low-
energy particles plus not-yet-scattered particles.

This explains why the main changes induced by
cutoff at t»o~ are in the region of nuclear energies
close to zero in the laboratory frame. But in that
low-energy region, SIMON results tend to be
somewhat unreliable anyway, for other reasons:
Our simple SIMON code neglects internal kinetic
energy in the precollision system, and neglects
binding and Coulomb forces throughout.

4. Statistical uncertainties and square-root-scale
plotting

We want to see how energy-angle distributions
vary with +N scattering style, with a&N, and with

For help in deciding whether variations are
statistically significant, we include in our figures
some statistical-uncertainty bars. To keep all
these bars roughly similar in length, we plot most

TABLE II. Relative contribution to d op/dE& do& from proton yields for different impact
parameters bN« in collisions of Ne with U. All results were calculated using the NN scat-
tering style BB, with oz&=25.4 mb. Here E&~ and 0&~ are the medians of energy-angle bins
having full widths &Ep~ =20 MeV, &0&~=10'. The unit MeV is defined in Eq. (6).

ELAB

Impact
parameter '

bNCU

(fm) 90'

bN, Ud n&/dE&~ &&~ (in units of 10 fm MeV sr )
at various 0&~

30' 60' 120'

50 1.03
3 ~ 10
5.17
7.24
9.30

49
150
169
110

22

44
111
132

80
10

23
64
56
26

4

5
11
11

3
0

70 1~ 03
3.10
5.17
7.24
9.30

28
94

126
58

7

30
83

106
60
15

13
25
20
21

1

90 1.03
3.10
5.17
7,24
9.30

19
68

103
51

7

19
58
58
31
63

6
12
10
4
0

110 1.03
3.10
5.17
7.24
9.30

16
56
87
53
18

14
40
54
22

0

150 1.03
3.10
5.17
7.24
9.30

7
31
79
55
13

5

15
16
17

0

'The five bN, U values correspond to 0.1, 0.3, 0.5, 0.7, and 0.9 times 1.16 (20 ~ +238 ~ )
fm. The ensemble sizes were 350 for bN«=5. 17 fm, and 150 otherwise.
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yields on a square-root scale (instead of a linear
or log scale). There are more general reasons,
too, for choosing a square-root scale. Details
follow.

First we explain why all bar lengths are simi-
lar, within a given square-root-scale plot. (By
similar we mean within a factor of =2, which is
much more similar than they would be on a linear
or log scale. ) The uncertainty bar drawn on each
yield Y& is based on a rough estimate of the sta-
tistical uncertainty in st for bin i; see Eq. (7).
Consider first the case of nucleons, for which&
is a direct count. In this case we take the uncer-
tainty in X to be +~& when X& 0, and 1 when +
=0. It follows that the uncertainty in X ' is
about +-,' when St & 0, and 1 when% =0. [To see
this, just expand (X+ ~X in a Taylor series
around % ', and realize that since X is an inte-
ger, %)0 means X~ 1.] For protons the argu-
ment is a little more complicated, because for
protons % is not a direct count but is a weighted
sum of two different direct counts. {See the first
paragraph of Sec. Df A 1. The complication is
easy to handle because Q =Pgg. ) For protons as
well as nucleons, we conclude that the magnitude
of the uncertainty in% is approximately a con-
stant when X & 0, and is twice that constant when

=0. Then to use this information for esti-
mating the uncertainty in Y, , we invoke Eq. (7),
taking the square root of both sides. We conclude
that the magnitude of the uncertainty in Y, is
roughly independent of St but varies as ((ensemble
size)[DER( cos8)]&) . The latter variation is
mild, within any one of our square-root-scale
figures, for the following reasons. Our widths
b,& are constant at 20 MeV, our standard widths
n( cosset ) are constant at 0.1, our widths
n(cos&~ ) vary from least to greatest by a factor
of 5.1, and our ensemble sizes range only from
199 to 300 (see Table I). In short, within any one
of our square-root-scale figures, the magnitude
of the statistical uncertainty in Y", -a magnitude
that is rePresented by the length of the associated
uncertainty bar —varies only mildly. Since all
statistical-uncertainty bars would be roughly equal
in length, we do not show very many explicitly, '

a few samples are enough.
More generally, by plotting most yields on a

square-root scale {instead of a linear or log scale),
we are distributing the proper proportions of plot-
space to yield-curve sections of differing magni-
tudes. Here "proper" implies that if two bumps in
a yield curve have about the same height, then
both bumps have about the same statistical signi-
ficance (even if one of these bumps occurs in a
large-yield section of the curve while the other
occurs in a small-yield section). It is just this

kind of equity which is assured by choosing a
scale that makes all statistical-uncertainty bars
similar in length. To state the case another way'.
When we draw a graph showing curves of yield vs
energy or angle, we want to devote most of the
plot area to larger-yield portions of the curves,
where functional variations are statistically more
significant. Conversely, we want to avoid devoting
large amounts of space to details of the statistical
fluctuations that plague small-yield portions of our
curves. On a log scale these statistical fluctua-
tions in small-yield curve-portions loom large,
taking up proportionately more space than they
are worth. A linear scale causes problems of
the opposite kind: it inhibits examination of all
detail except in curve sections showing our lar-
gest few yield points. A square-root scale is the
right compromise. A related advantage is this:
A square-root scale, unlike a log scale, allows
us to plot, explicitly, yields which are calculated
to be zero (no counts in the bin).

5. Choice of energy-angle ranges in laboratory-frame
figures

In each of Figs. 11-12 we plot d n~ldE~ dfI~
vs 9~ for two energy groups, ~~ =70 and 150
MeV. When (EjA)~~ ~250 MeV (so that 70 MeV
~70 MeV), both 70 and 150 MeV are away from the
the small-energy region that may be seriously
affected because our SIMON models neglect .~X
binding forces and neglect internal kinetic energy
of the initial nuclei. Furthermore, as Figs.
11-13indicate directly, our displays avoid those
regions at large angles and/or high energies
where small calculated yields lead to vexy serious
statistical unc ertainty. Finally, by comparison
with Figs. 2 and 3 it may be seen that, for the
most part, Figs. 11-13avoid those regions at
large angles toward high energies where SIMON 's
proton-emission results (integrated over impact
parameter) disagree by orders of magnitude with
experimentally determined r esults.

B. Laboratory-frame results for proton emission

Here, and also in the next subsection, when we
assess the sensitivity of yields to style, to 0«,
and to b„,„wegenerally have in mind a compari-
son with statistical uncertainty. Therefore a big
change in yield is one that looks big on our square-
root-scale plots, where the ordinate increases
linearly with the square root of yield. Readers
who want to skim this subsection will find its main
points in paragraphs which begin with an italicized
word.

Eigure ll shows head-on-collision results. The
left panel displays sensitivities to scattering style
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(with a&& fixed at 25.4 mb), while the central and
right panels display sensitivities to g„„(forstyles
RC and 4vl, respectively). A first look shows
this: Within the exhibited range of NN scattering
styles and e«, the function d n~/dE~ dfl~ shows
much more sensitivity to cr„„than to style. There
is especially striking sensitivity to oN„when 0~
& 60' and E, =150 MeV (as opposed to 70 MeV).

In the same energy-angle regions cohere Fig. 11
shoes greatest sensitivity to g», larger o» pro-
duces smaller yields.
The enhanced multiple scattering caused by lar-
ger o&„is shifting the scattered-proton yield to
other energies and other angles. Multiple scat-
tering promotes thermalization in the overall
c.m. system, which is close to the laboratory
system. Therefore we expect that large o» will
promote shifts toward large laboratory angles and
also toward small laboratory energies (yet smal-
ler than 70 MeV). These expectations are consis-
tent with the results shown in Fig. 11 (and also
Fig. 13 ahead).

Closer examination of Fig. 11 shows that, for
both 70 and 150 MeV, the three smallest-angle
points (8~ =7.5', 20', 20') involve some fluctua-
ting angular behavior and quite noticeable sensi-
tivity to scattering style as well as to o». These
fluctuations with angle change (indeed fluctuate)
with energy. ' The fluctuations seem to have sta-
tistical significance, but at present we do not
really understand them. We speculate that they
a,re associated with low-multiple scattering (e. g. ,

with doubly-scattered protons) and with the geo-
metry of the target and projectile surfaces. We
suspect that these fluctuations would be suppressed
by assuming diffuse surfaces for the precollision
nuclei.

In Fig. 11 there appear several vertical arrows.
These indicate first-scattering combinations
(E~, 8~ }, i. e. , combinations which could result
from the SIMON scattering of a previously unscat-
tered Ne nucleon with a previously unscattered U

nucleon. For each curve of Fig. 11, all first-
scattering contributions would fall within a single
energy-angle bin, i. e. , would contribute to a
single point. (See Sec. IIB and Appendix A for
discussion of first-scattering combinations (E, HI.

and their effective widths —these widths being
dependent on the widths of our energy-angle bins. )
Since large cr~ encourages multiple scattering,
we expect that as o&„increases, the relative im-
portance importance of first-scattering contribu-
tions will decrease. Figure 11 confirms this.
Here are some details: For cr» ——15.4 mb, Fig.
11 includes four curves, and everyone of these four
has a peak clearly implying a first-scattering con-
tribution. For g» —25.4 mb, Fig. 11 includes
six different curves, and together these show two
fairly clear first-scattering peaks, plus three bul-
ges which are possibly associated with first scat-
tering. For oNN ——53.1 rnb, Fig. 11 includes four
curves, but only one of these shows a peak in the
bin to which first scatterings would contribute.
There seems little tendency for first-scattering
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contributions to be sensitive to NN scattering
style. If there is any such tendency, it is this:
At large vN&, style 4~I suppresses first-scatter-
ing contributions more than RC does.

We can also use Fig. 11 to look for some sec-
ond-order eff ects concerning sensitivity. One
question is: How does v«affect sensitivity to
style? We have already noted that at v« —25.4
mb, the energy-angle yield of protons is not very
sensitive to style. At smaller cr» we would expect
even less sensitivity but at larger o«greater
sensitivity; we expect this because smaller cr&&

means longer mean free path and presumably less
dependence on the nonasymptotic details of any
particular ÃN scattering. Our expectation is con-
firmed, but only mildly, by comparisons across
panels in Fig. 11. (This particular second-order
effect seemed stronger for particle density p.
Looking back at Fig. 7 we see that for o&N ——15.4
mb, p looks rather insensitive to the change from
RC to 4mI; but for v« ——53.1 mb, p looks quite
sensitive to this change. ) Another question about
second-order sensitivity is'. How does scattering
style affect sensitivity to 0&&? Figure 11 indicates
that the sensitivity of yield to cr« is very similar
for RC and 4mI, and if not exactly the same, then
a little greater for RC than for 4III. (This particu-
lar second-order effect differs from that observed
for particle density p. Looking back at Fig. 7,
we see that p looks rather insensitive to a&& for
RC, but is clearly sensitive to o» for 4ml. )

Next gue extend our consideration to off-center
collisions. For bN, v

—5 fm, calculations were
made with several different NN scattering styles
but only our standard cross section, cr« ——25.4
mb. These calculations showed the energy-angle
yield to be only mildly sensitive to style-about
as sensitive as was shown for b„,v =0 in Fig. 11.
Therefore we have limited our displays of off-
center results to style RC.

Figure 12 shows off-center RC results (dashed
lines), compared with head-on RC results (circle-
points), for two emitted-proton energy groups,
E~ =70 and 150 MeV. At 70 MeV for all angles,
the yields from b„,„=0(open circles) exceed those
from 5„,„=5 fm (dashed line); but in the energy-
angle region(150 MeV, &4 ~ 50'} the opposite
ordering is seen. Our explanation is as follows.
The total number of scattered particles, and the
relative importance of multiple scatterings, are
both greater for bN, v ——0 than for bN, v ——5 fm be-
cause bN, v ——0 offers more opportunity for &+
scattering. Thus the overall yield of scattered
protons is greater for bNv ——0 than for bN, v ——5

fm, but in a limited energy-angle region the doub-
le-differential yield may be smaller for bN, v ——0
because stronger multiple scattering has the effect
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FIG. 12. Double-differential scattered-proton yields
in the laboratory frame, per Ne+ U collision, at
head-on impact (bN, U= 0) and at off-center impact (bN«
= 5 fm). Results are shown for two different proton en-
ergy groups: E&~ = 70 and 150 MeV. All results here
were calculated using the NN scattering style BC with
0.„~=2544 mb. For explanations of the energy units
MeV, the arrows, and the statistical-uncertainty bars,
see the caption to Fi g. 11 and the text of Secs. IV. A and
IV. B.

of shifting finally-emitted protons to other energy-
angle regions. In particular, the bN, v

—0 yields
have a greater tendency to resemble a laboratory-
thermalized contribution. At E~ = 150 MeV
(heavy curves in Fig. 12) the shifting effect is
strong enough so that the yields from 5„,„=0(cir-
cle points) fall below the yields from tI„,„=5 fm
(dashed curve). In contrast, energies near 70
MeV are important enough, in a distribution that
is approximately laboratory-thermalized, so that
the multiple-scattering transfer away from 70 MeV
is too mild to destroy the feature of greater emis-
sion for bNyv =0 than for bNyv = 5 fm.

Obviously there is a close resemblance between
our discussions of the sensitivity to o«as shown
in Fig. 11, and the sensitivity to bN, v as shown in
Fig. 12. Increasing ~& and decreasing bN,„each
produce both more scattered particles and also
more scattering per particle. ' Thus, increasing



318 E. C. HAL BERT

(T«and decreasing bN, „eachlead to the same sort
of competition —competition between an increased
overall yield, and a decreased proPo&ion-of-yield
within a limited energy-angle region. Of course
the details of the ensemble-average multiple-scat-
tering history (e.g. , urhich first-scattered nucle-
ons get rescattered before emerging) are deter-
mined by several interacting influences: cr„)v, the
macroscopic geometry of the nuclear collision,
and the microscopic geometry of the &N scattering
style.

Figure 13 is another display of d n~ I
dE~ do~, but it shows this yield plotted against

instead of ~~

Before analyzing this figure in detail, we
describe its main purposes and its special
features. Figure 13 illustrates the sensitivity
to e» for bN,

„

fixed at 0. Also, Fig. 13 com-
pares yields from bN, U=O and bN, „=5fm for
bN,„—5 the sensitivity of yield to style is about
as mild as was shown for bN,„——0 in Fig. 11;
therefore we have limited Fig. 13 to RC results.
Note the change in vertical scale at 0.04 (MeV sr)

In order to retain the advantages of a square-root
scale for most of the yields plotted, and yet in-
clude the large yields which occur at low E~
we have used a square-root scale in the lower sec-
tion and a log scale in the upper section.

To begin our detailed analysis of I'ig. 13, we
concentrate on the b„,„=0results (drawn with
thick curves and points) and ignore the bN,„—5

fm results (lightly drawn). We see that for the
lowest energies (E, ~60 MeV), and for all en-
ergies at large angles (II~ =110'), the yields
from bN, U

——0 vary directly with v~„; i.e. , larger
cr« leads to larger yield. This behavior is con-
sistent with our previously mentioned notions that
large crNN gives more scattering, that more scat-
tering implies more multiple scattering, that mul-
tiple scattering tends to concentrate yield in a
thermalized contribution, and that thermalized
contributions dominate at low energies and at
large angles. In the energy-angle region (Er,
~60 MeV, e~ ~40'j, the yields from b„,„=0
vary inversely with o», and we conclude that in
this energy-angle region, nonthermal contribu-
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tions are important. At the intermediate value
=70', the yields from bN,„—0 are relatively

insensitive to cr«. In the regions near the first-
scattering arrows of Fig. 13, the yields from
fb„,„=0,o« ——15.4 mb} show clear peaks when

~ 40'. For the higher cr„„values,the first-
scattering contributions must have considerably
less relative importance, because they do not
give obvious peaks.

Still focusing on bN,„——0 results, we now con-
sider more carefully some details about the widths
of the bN,„——0 first-scattering peaks. The formula
for first-scattering energy-angle combinations is
obtained from Eq. (1) by interpreting (E, , &,„,)
as (E~, H~ ). The centers and the widths of
our proton energy-angle bins are specified just
before Eq. (7), and the consequent widths of
SIMON first- scattering contributions are discus-
sed in Appendix A. Using all this information,
one can calculate that in Fig. 13, first-scattering
contributions should affect the yield results at two
energies in the 0-15' panel (230 and 250 MeV)
and at three energies in the 40' panel (130, 150,
and 170 MeV). In the 0-15' panel, the only clear
first-scattering peak for b„,„=0 is for cr« ——15.4
mb (short dashes), and it shows the expected
width. In the 40' panel, the only clear first-scat-
tering peak for bN,„—0 is again for 0« ——15.4 mb

(short dashes); but close examination shows that
this peak is shifted a little to lower energies —or
perhaps it is simply broadened; in any case it
starts at 110 MeV rather than 130 MeV. One

might think this shift, or slight broadening, is due

simply to statistical uncertainty. However, look-
ing back at the first- scattering peaks in F igs.
11-12 (peaks that should be only one bin wide), we

see some hints of broadening on the low-~~ side.
That is, for several of these single-bin peaks, the
neighboring lower-energy bin has a yield which is
higher than one would expect by extrapolating from
the slope at yet lower energies. We shall return
very soon to this matter of shifted or broadened
bN, U

——0 peaks, but before that, we consider the
results shown in Fig. 13 for bN, U

—5 fm.
In Fig. 13 the results for (b»„——5 fm, o»

=25.4 mb} are shown as lightly drawn dashed
curves. In general, they lie rather close to the
curves for LbN, & ——0, o« ——15.4 mb}, which are
shown as thick short-dashed curves. This close-
ness is consistent with our previous remark that
the effect of increasing b„,

„

is similar to the
effect of reducing cr». The most noticeable dif-
ference between the results for (b„,„=0, 15.4 mb}
and (b„,„=5 fm, 25.4 mb} is in the 0-15' panel
of Fig. 13. Consider the very broad peak given
by b„,„=5fm near the first-scattering arrow.
This peak covers many more ~, points than the

two points (at 230 and 250 MeV} which can be asso-
ciated with the width of our energy-angle bins. This
broad peak is not just a statistical fluctuation, for
we find the same broadness in our other yield re-
sults for bN,„——5 fm, e. g. , in results from BB and
4vl (not illustrated). Our explanation is only
speculative. We speculate that double scattering
(as opposed to single or highly-multiple scatter-
ing), coupled with geometric effects, leads to
broad peaks of this kind. There is probably a
relation between the hints of broadness that we
see in the bN,„——0 peaks of Figs. 11-13, and the
broadness of the peak for bN« ——5 fm seen in the
first panel of Fig. 13. Of course, in real heavy-
ion collisions, initial Fermi motion (which our
SIMON models neglect) would also broaden such
peaks.

A.ll of the preceding results and discussion sup-
port these ideas: Several different kinds of con-
tributions make up the emitted-proton energy-
angle yield, and furthermore, the proportions
of these contributions vary with the energy-angle
region and g«. As Fig. 11 indicates, first scat-
terings do not dominate the emitted-proton yield,
nor is the thermalized contribution all-important.
A simple fireball model cannot be appropriate
for all of the conditions described in Fig. 11.
(Suppose that a simple fireball model were appro-
priate for all the o«choices, scattering styles,
and energy-angle regions of Fig. 11. Then the
computed yields would be insensitive to 0&„and
to scattering style for all of the energy-angle re-
gions shown and there would be no first-scattering
peaks either. ) We find that the sensitivity of yield
to o» varies with energy-angle region, and to a
lesser extent this sensitivity varies with 0» also.
The variation of these sensitivities, as well as the
variation of the energy-angle yield itself, indi-
cates a variation in the proportions of different
sources of contributions to the yield.

The complexities of the mixture of thermalized
and nonthermalized contributions- in particular,
the sensitivities of this mixture to energy, angle,
cr«, and bN, U

—argue for using detailed cross sec-
tions d v&~/dE»ass and a fully three-dimension-
al cascade code, if one wants to calculate the de-
tailed consequences of assuming that only ordinary
physical phenomena occur during high-energy
heavy-ion collisions. (Of course, there remains
the problem of whether free N& cross sections are
realistic effective ones, when combined with the
other features of a particular intranuclear cas-
cade code. )

C. ES-frame results for nucleon emission

In the equal-speed (ES}frame, the two initial
approaching nuclei Ne arid U have equal speeds
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-', vN,„.As remarked earlier, this frame would be
especially convenient for energy-angle distribu-
tions dominated by fir st- scattering contributions.
Suppose that all emitted nucleons were first-scat-
tered nucleons. Then all would have E» = , (E/—

A)eEAM =-62.6 MeV, and consequently all would be
in our energy group characterized by the median
E„=70MeV (since this group spans 60 to 80
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MeV). The angular distribution would be isotropic.
However, for our models this supposition of
"first scattering only" is far from the truth.
Figures 14-16 show that d n/dE// dQ// is far from
being confined to the energy group E& =70 MeV,
and is far from being isotropic either in this en-
ergy group or others.

Figure 14 shows head-on-collision results. In
general, Fig. 14 contrasts insensitivity to NN

scattering style (see uppermost section) with posi-
tive sensitivity to o~ (lower two panels). For de-
tails about statistical uncertainties, see the cap-
tion. In both of the energy groups considered in
this figure, ~„=70and 130 MeV, the nucleons
emitted near cos~ =-1 have very small energies
in the LAB system, i. e. , very small energies in
the rest frame of the residual target. This im-
plies that the large backward peaks in this figure
can be associated with a thermalized contribution.
It is away from this thermalized region (i. e. , it
is in the region 1 & cos8& ~-0.5) that we find
yield varying inversely with crN„. Such behavior
is consistent with notions already mentioned sev-
eral times previously, in connection with Figs.
11-13: Increasing 0« increases overall scatter-
ing, particularly promotes multiple scattering,
thereby increases thermalization, and thereby
shifts emitted-particle yield away from energy-
angle regions less favored by thermalized contri-
butions and toward energy-angle regions more
strongly favored by highly thermalized contribu-
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previously unscattered U nucleon. In this figure all
yields are plotted in a log scale (in contrast to the
square-root scale used in preceding figures). On the
circle-point curves, statistical-uncertainty bars are
shown wherever they would extend beyond the circle
point. On the other curves, only a few samples of sta-
tistical-uncertainty bars are included. For further ex-
planation see the text of Secs. IV. A and IV. C.

tions.
Figure 15 includes results for the same two

energy groups, E„=70and 130 MeV; but it in-
cludes results from bN, U

—5 fm as well as bN, „

=0. Since there is little sensitivity to NN scat-
tering style, we have restricted this figure to
style RC. Again we see large thermal peaks to-
ward cos8„'=-1. Comparison with Fig. 14 indi-
cates that increasing bN, „hasthe same qualitative
effect as decreasing o«. As noted earlier, this
is understandable because increasing bN, „and
decreasing a» both decrease the opportunity for
NN scattering.

Figure 16 shows head-on-collision results for

d n/dF~ dA„plotted vs F-„'. The sensitivity to
o~ is shomn for three different angular groups.
Of these three, the group involving largest yields
is in the back-angle region (cose„=-0.9 to -I.0),
where Figs. 14 and 15 show their thermal peaks.
The medium-yield group (marked I23') corres-
ponds to cos~A ——-0.5 to -0.6, mhich is the gen-
eral angular region where Figs. 14 and 15 indicate
a transition between more-thermal and less-ther-
mal character. The lowest-yield group (marked
O'-78 ) stretches from cos6y —1 to cos0& —0.2
and thus corresponds to the near-isotropic por-
tions of both the 70- and 130-MeV E„groups
in Figs. 14 and 15. All the arrows in Fig. 16 mark
the unique first-scattering energy F-„=62.5 MeV.
However, the broad peaks at this energy are not
associated with first scattering. (If they were,
then the angular distribution would be isotropic
and would be confined to a single &„bin.) Be-
cause the yield magnitudes vary so greatly, we
have plotted all yields in Fig. 16 using a log scale,
not a square-root scale. In the uppermost angu-
lar group the yield varies directly with o«, in the
middle group the yield varies little with 0~„,and
in the lowest angular group the yield varies in-
versely with 0». As noted several times previ-
ously, direct variation suggests more-thermalized
contributions while inverse variation suggests
less- thermaliz ed contributions.

V. SUMMARY AND COMMENTS

We have reported on a detailed examination of
results calculated with a simple model: a much
idealized though fully three-dimensional cascade
model for Ne+ U. We have looked at gross
features and studied their sensitivities to a few
variations of the model. Our hopes are the usual
ones-that the trends and sensitivities are reliable
even if the absolute answers are not. The gross
features considered are particle densities p(r, f)
during collision, and emitted-particle distributions
d n/d&dQ after collision. Our sensitivity studies
have involved variations of the impact parameter
AN, U, of the nucleon-nucleon cross section a»,
and of excluded-volume restrictions associated
with a classical hard core in the NN interaction.
Our excluded-volume feature is related to the in-
compressibility K and to "stiffness" as discussed
in connection with equation-of- state treatments. '
Also, our use of alternative NN scattering styles
is analogous to the use of alternative scattering-
equivalent NN Potentials in many-body classical
equations-of- motion calculations. ' In presenting
our sensitivity results, we have indicated some
mays to pay careful attention to the uncertainties
associated with converting digital-statistical in-
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formation to continuous properties such as p(r, f)
and d n/dEdQ.

For impact parameters b&,„—0 and 5 fm in Ne+" U, we calculate that during the collision,
maximum compressions p/pa of about 2 or 3 may
be achieved over spatial domains of =1 fm and
time spans =3 fm/veawa. Quantitative results de-
pend on details of the assumed NN scattering
style and o«. The maximum achieved compres-
sion generally increases as excluded volume de-
creases and as o~ increases. When the diameter
of the excluded volume is changed from 0 to 0.5
fm (and when a restriction to in-plane repulsive
scattering is concurrently invoked), then the max-
imum achieved compression decreases —from
=2.5 to =2.1 when a&„—25.4 mb, and from =2.9 to
=2.5 when o&&

——53.& mb. This suggests that
p(r, f) might be somewhat overestimated by con-
ventional cascade calculations that lack any ex-
cluded-volume feature (besides lacking any re-
striction to in-plane NN scattering).

Our maximum compressions p/pa calculated
with o» ——25.4 mb are similar to those found in
(not-quite-analogous} calculations ' for ' U+" U.

The sensitivity of p/p0 to our NN interaction is
mainly concentrated in the high-density interior
region of the collided system. There is not much
sensitivity in the low-density regions that form
the periphery of the collided-matter system.
Similarly, at times long after initial Ne+ U

contact, the emitted scattered-particle yields
d n/dEdQ show rather weak sensitivity to changes
in our NN scattering style (provided that o« is
kept constant}. This general result —that our NN

scattering style influences transient insternal
densities p(r, f) quite significantly, but influences
end-of-collision asymptotic distributions d n/
dEdo, rather weakly —is reminiscent of results
obtained in a recent classical- equations-of- motion
(CEOM} study by Bodmer, Panos, and MacKellar.
In this CEOM study, two alternative acattering-
equivalent NN potentials were used. In classical
calculations for the collision of one nucleon with
another, these two scattering-equivalent potentials
give (by design) essentially the same asymptotic
results. In classical calculations for colliding
many-body systems (20+20 and 40+40), these
two scattering-equivalent NN potentials lead to
different density patterns p(r, f) during the colli-
sion, but to quite similar energy-angle distribu-
tions of particles emitted near the end of colli-

31sion.
We do find that our SIMON-calculated functions

d n/dEdQ are quite sensitive to changes in a~&
from 15.4 to 25.4 to 53.1 mb. The character of
the changes in d'n/dEdQ indicates that there are
changes in the distribution of the number of scat-

terings suffered by a nucleon before being emitted.
Such changes in scattering-frequency distribution
were discussed only qualitatively in Sec. IV; be-
cause there we were concentrating on energy-
angle-binned information, and at present we do
not have energy-angle-binned information on the
distribution of scatterings per emitted nucleon.
In Table IG now, we show some relevant informa-
tion that we do have.' energy-angle-integrated re-
sults for the scattering-frequency distributions
as a function of fb„,„,style, o«). Table III sup-
ports, explains, or extends some of the remarks
made in Sec. Dl about yields for b„,„=0and 5 fm.
For example, Table III indicates that the emitted-
particle yields are more sensitive to 0&& than to
the NN scattering style; that an increased cr„„
leads to increased overall yield and to enhanced
multiple scattering, ' and that a decreased b&,

„

produces effects similar to those produced by in-
creasing o«. Table III tends to support a suppo-
sition made in Appendix A about b&,„-integrated
emission. ' that if our energy-dependent v» is too
small an effective cross section, then we under-
estimate the importance of multiple scattering
(and so underestimate the post-collision proxi-
mity to global thermal equilibrium).

The simple-SIMON study reported in this paper
was started with the idea of complementing, and
guiding, improvements of the SIMON code to make
it less idealized and more realistic. Meanwhile
other cascade codes, with more realistic details,
have beendeveloped and shown to be economically
feasible and also successful in reproducing many
experimentally observed data. Nevertheless,
it still seems to us that the SIMON method has in-
trinsic advantages. In particular, SIMON 's method
allows incorporation of the excluded-volume fea-
ture, and it obviates the need for a separate deple-
tion or rearrangement recipe —a recipe whose
adjustment to fit experiment may obscure the im-
portance of other physical effects. Therefore
improvements in SIMON 's realism may still be
very worthwhile. In any event, the results of our
simple-SIMON study should be useful for several
reasons:

(1}The role of excluded-volume effects has not
been studied much, in other cascade-model work.

(2) Particle-density results have not been re-
ported in as much detail, from other cascade cal-
culations.

(3) The contribution of first-scatterings to
emitted-particle energy-angle distributions has
been considered here in a way not reported for
other cascade studies.

(4) Our sensitivity results for energy-angle
yields argue against reliance on thermal-equili-
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TABLE III. Ensemble-averaged number N (v) of nucleons that have scattered v times during
a ~Ne+ U collision. Above the dashed horizontal line, the entries are arranged to illustrate
the insensitivity of N(v) to NN scattering style. Below the dashed horizontal line, the entries
are arranged to illustrate that with reference to the standard combination (b N~&= 0,os =254),
the effect of increasing b NeU from 0 to 5 fm is similar to the effect of decreasing az& from
25.4 to 15.4 mb.

Impact
parameter

~NATU

(fm)

NN
scattering

style
Cutoff Ensemble

(mb) time s ize
N{v)

v=0 v=1 v=2 v~ 3

RC
4mi

BB
BB
RC
4wl

RC
4xl

15.4
15.4

25.4
25.4
25.4
25.4

53.1
53.1

tsTop
tsTo~

&( )
&sTo~

tsTop

tsTop

tsTor
tsToe

200
300

200
300
300
300

200
199

141
148

47
77
82
93

15
28

49
42

72
65
58
49

40
35

30
27

50
41
43
34

48
33

38
41

91
75
75
82

155
163

BB
BB
RC
4ml

25.4
25.4
25.4
25.4

t()
tsTop
tsTop

tsTop

50
300
300
300

58 76
129 50
140 42
143 41

48
31
30
29

77
48
46
45

RC
RC
RC
RC

25.4
15.4
25.4
53.1

tsTop

&sr'
4rop
tsTor

300
200
300
200

140 42
141 49

82 58
15 40

30 46
30 38
43 75
48 155

4vrl

47(I

4xI
4' I

25.4
15.4
25.4
53.1

&sTol

~sTo~

terna
~sTop

300
300
300
199

143
148

93
28

41
42
49
35

29
27
34
33

45
41
82

163

An entry t(~) implies no time cutoff. An entry ts~p implies cutoff at a time such that the
center of an unperturbed Ne projectile would be 3 U radii past the center of an unperturbed U

target.

brium or extreme single-scattering models, and
instead support the idea that complicated intra-
nuclear cascade calculations (incorporating de-
tailed && cross sections) are needed in order to
describe the incompletely thermalized end-of-
collision system.

(5) Our results from the billiard-ball model (of
which only samples have been reported here) are
available to be compared with results that could
be calculated from a fluid-dynamic model for a
hard-sphere gas. Such a comparison could teach
us something about the effects of the instantane-
ous-local-equilibrium assumption in fluid-dynam-
ic models.

Also, the goodness of "scaling" for experimental
data has not been pointed out previously, to our
knowledge. (See Figs. 2 and 3.)

What has been omitted from this study, but
might be worth doing in the future? Several cate-

gories follow:
(a) straightforward extension of the present sen-

sitivity studies (e. g. , variation of o~s for coBi-
sions with b„,„=5 fm);

(b) improvement of our SIMoN models toward
realism (e.g. , to incorporate precollision Fermi
motion, binding, and better N& cross sections);

(c) extension of the investigation to further ob-
servables (e. g. , to multiplicity distributions and
to particle-particle correlations);

(d) extension of the investigation to further cur-
rently unmeasurable features (e. g. , to distribu-
tions of the number of scatterings suffered by nu-
cleons emitted in specified energy-angle bins).

Other physicists are presently working on (b)-(d),
to improve our simple SIMON models toward real-
ism and then to extend their use. We believe that
substantial improvements over the realism of our
simple SIMON models should be made before
SIMON is used much to study other kinds of ob-
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servables or nonobservables. We believe this be-
cause the correctness of many results will depend
on the balance (i. e. , on the degree of mutual can-
cellation) of various qualitative trends —and if the
quantitative description is too sloppy, then correct
balances can be achieved only by accident. Some
of the aforementioned extensions (c), (d) have al-
ready been made, or could be made, with other
(non- SIMON) codes that have many realistic fea-
tures. ' However, the most thoroughly develop-
ed of these other codes ' do not incorporate the
feature of excluded volume, and it would be good
to allow this feature (as SIMON does), because its
effects seem to be significant for density results.
Of course SIMON and other cascade models share
some of the same defects. For example, when

compared with CEOM methods, SIMON and also
conventional cascade' schemes are generally in-
ferior in their treatment of potential-energy ef-
fects. Indeed, there are many realistic features-
e. g. , binding, precollision internal kinetic energy,
and strong interactions at low NN energies —which
present conceptual (and economic} difficulties for
any cascade scheme proceeding by discrete NN

scatterings. Cascade and CEOM methods have
some important advantages over fluid-dynamic
methods. Cascade and CEOM methods both avoid
major assumptions about local and global equili-
brium. Cascade methods, and to a lesser extent
CEOM methods, allow the incorporation of infor-
mation about experimentally determined NN cross
sections. On the debit side, both of these mainly
classical microscopic approaches, cascade and
CEOM, may turn out to be less flexible than fluid-
dynamic approaches for modeling some of the be-
havior associated with quantum mechanical aspects
of a many-body system. Also, cascade and
CEOM methods may be less convenient than fluid-
dynamic approaches for considering exotic pheno-
mena, because exotic phenomena are often thought
of in terms of the bulk properties of nuclear mat-
ter.

The preceding paragraph lists only some of the
reasons why a variety of theoretical approaches,
each having its own advantages and disadvantages,
should still be used. Methods combining different
approaches, e. g. , combining microscopic and
fluid-dynamic treatments, deserve special con-
sideration and development.
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APPENDIX A: FURTHER DISCUSSION OF FIGS.
2 AND 3

We start by describing the energy-angle bins
that were used in computing the SIMON BB distri-
butions of Figs. 2 and 3. Then we explain how

these bins broaden the SIMON first-scattering
peaks. Finally, we discuss reasons for the devia-
tions between theoretical and experimental re-
sults in Figs. 2 and 3.

The SIMON BB results in Figs. 2 and 3 could
have been drawn as histograms, for these results
were calculated using contiguous (& „&,„,} bins.
Each bin had energy width 20 MeV=—20&~ ENU;
and each had angular width 10' (for bins centered
at 20', 30', . . . , 160') or 15' (for bins centered
at 7.5' and 172.5'). But instead of drawing histo-
grams, we have assigned the average cross sec-
tion within each bin to the median ~, and median

8, of that bin, and then connected the resulting
points with straight dotted lines.

SIMON s first-scattering one-to-one correspon-
dence (&, , &,}is given by Eq. (1). In Figs. 2

and 3, ~, and 8, r efer to an emitted nuc leon-
charge (in SIMON, an unbound proton). With the
energy-angle bins described just above, the
SIMpN contributions that are assigned to ~, = 30'
consist of all scattered protons having 8,„tin the
angular span 25' to 35'. Then from Eq. (1), the
corresponding first-scattering energies &, (e, )

range over three neighboring energy spans. This
explains the width of the BB peak at the 30' arrow
in Fig. 2. Similarly, the first-scattering contri-
butions that are assigned to VO' in Fig. 2 range
over three neighboring energy spans; these stretch
from 0 to 60 MeV (=58 ENU) altogether. But in
Fig. 3, all the first-scattering contributions as-
signed to a given median energy fall within a single
energy-angle bin (one energy span, and also one
angular span).

In Fig. 2 the smallest-energy portions of all the
curves for 8, =70', 1.10', and &50' have been
omitted, both to avoid overlapping curves and be-
cause the SIMON model has several special prob-
lems there. Despite these problems in the small-
energy region, the agreement with experiment is
not so bad there. The 30' results at low energy
are all included, and are typical of the magnitudes
and agreements found at the other angles. The
rest of this Appendix is speculative.

What about the serious disagreements between
theory and experiment seen in Figs. 2 and 3 at
back angles toward high energies? We propose
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two principal causes. The first is our neglect of
any internal kinetic energy of random motion with-
in the precollision projectile and target. We have
already mentioned (in Sec. II B) that in a real
heavy-ion collision, initial Fermi motion broadens
the one-to-one first-scattering correspondence
(E, , 8, j that holds in simple SIMON . Initial
Fermi motion is one kind of internal kinetic ener-
gy of random motion. As such, initial Fermi mo-
tion would permit first-scattering combinations
(&, , e,„,) with &, exceeding (E/A)~~ or with

exceeding 90', two phenomena strictly for-
bidden in simple-SIMON first scattering. More
generally, we can expect that for nucleons emitted
after multiple scattering too, simple SIMON will
underestimate the importance of high energies and
backward angles in the laboratory frame. This is
consistent with the general nature of the system-
atic deviation between SIMON BB results and ex-
perimentally determined results in Figs. 2 and 3.
Indeed, for the kind of energy-angle distributions
shown in Figs. 2 and 3 (decreasing exponentially
with energy, at back angles toward high energies),
an underestimate of the importance of back angles
and high energies suggests an underestimate of the
degree to which global thermal equilibrium has
been attained. Global thermal equilibrium means
a randomization of nucleon velocities in the over-
all Ne+ U c.m. frame. Initial Fermi motion
gives a, head start toward attaining such random-
ization, so neglecting Fermi motion tends to un-
derestimate that attainment.

Our oversimplification of the N+ cross section
may similarly give too weak a push toward a glo-
bally equilibrated spectrum, and this is the sec-
ond cause which we propose for the systematic
deviation between experiment and theory in Figs.
2 and 3. Suppose that our choice of o«were an
underestimate of the effective N& cross section.
Then multiple scattering would not be promoted
strongly enough; therefore global equilibrium
would not be promoted strongly enough, and con-
sequently we would underestimate the emitted-
particle yield at back angles toward high energies.
Without substantiating the entire argument, we
explain here why we believe that our choice of v«
for Figs. 2 and 3 was an underestimate for some
purposes.

The value cr~~ ——25 4 mb, which we used in the
SIMON computations for Figs. 2 and 3, was chosen
to be appropriate for first scatterzngs, at relative
energies ~„&of several hundred MeV. But after
nucleons have scattered a few times, their rela-
tive energies tend to be lowered, and for &&&

~100 MeV the pertinent empirical cross sections
are considerably larger than o« ——25.4 mb. For
example, for &&& =50 MeV a better choice would

be 0„„~100 mb."' ' Although this seems like
a large difference, there exists a crude defensive
argument for retaining the smaller v» that is
appropriate to first scatterings. That is, once a
set of nucleons has become approximately ther-
maliz ed, there is no great harm in underestimat-
ing the frequency of their scatterings with each
other, because such scatterings will mainly ex-
change energy and momentum without seriously
changing the overall velocity distribution. Still,
it seems reasonable to suspect that o&& ——25.4 mb
will incorrectly inhibit the approach to thermal
equilibrium. [For small E„„,there is some com-
plication in choosing an optimum effective cross
section o„„(F«).The choice is complicated by
several considerations, e.g. , by Pauli-principle
effects and by the more doubtful validity of binary-
scattering cascade models as g„,„

increases. ]
Some other causes too may contribute to the

systematic deviation of theory from experiment in
Figs. 2 and 3. For example, a too-low 0«would
suppress "shadowing. " Shadowing promotes a ten-
dency for escaped particles to be those whose
last scattering set them assay from the bulk of nu-
clear matter. Thus for a small projectile hitting
a large target, shadowing tends to favor emission
with 8,„,& 90' at the expense of ~,„,& 90'. In
this way, a too-low cr&& would lead to an underesti-
mate of the relative importance of larger e,„,.
Recall also that simple SIMON 's angle-indepen-
dent cr„„ignores the enhanced back scattering of
Fig. 1. Of course, the detailed deviations between
a realistic NN cross section and SIMON 's simple
a» may lead to a variety of quantitative deviations
between SIMON 's results and experimentally deter-
mined heavy-ion reaction results.

In the preceding paragraphs giving possible rea-
sons for experimental-theoretical deviations, we
have emphasized emission at large ~,„,and high

because it is in these (smaller-yield) areas
where Figs. 2 and 3 show the most pronounced
deviations. Now we turn the discussion to low
energies, E"", & 50 MeV. For small emitted en-
ergies, SIMON's neglect of binding forces tends
to allow the escape of nucleons that should really
be bound in the residual target. The neglect of
initial kinetic energy tends to compensate for this
mistake. The neglect of enhanced forward ÃN

scattering (Fig. 1) and of Coulomb scattering
probably affects the emitted-proton yield most
strongly at small angles and low energies.

The scaling device used in Figs. 2 and 3 leads to
fairly close agreement between the experimentally
determined results at two different bombarding
energies, (&/A)~~ =241 and 393 MeV. The most
remarkable agreement of this sort occurs for8, =150', in Fig. 2. But this is just the region



326 K. C. H ALBERT

of Fig. 2 where SIMON (which suggested the scal-
ing device) gives its worst agreement with experi-
rnent. Recall that we have speculated above that
SIMON fails at back angles partly because we ne-
glect precollision Fermi motion. Note also that
precollision Fermi motion is a fact (in addition to
energy-dependent && interactions, and relativis-
tic mechanics) which spoils the exactness of the
scaling device as an equalizer, for real heavy-ion
collisions. Can the effects of precollision Fermi
motion be important enough to disallow qualita-
tive agreement between our SIMDN results and
the experimental results at 150, and yet be so
similar for (E/A)azAu = 251 and 393 MeV as to
allow agreement between these two sets of scaled
experimental data at &50 ? At present, we do not
know the answer.

Another unsettled matter is this' . Which of the
two bombarding energies, (E/A}~~ =241 or 393
MeV, is more favorable a priori for agreement
between SIMON's results and experimentally deter-
mined data? There are qualitative arguments on
both sides. There should be better agreement with
the 393-MeV data (i. e. , worse agreement at 241
MeV) because SIMON neglects nuclear binding,
precollision Fermi motion, Coulomb effects, and
the Pauli and uncertainty principles. There should
be better agreement with the 241-MeV data (i. e. ,
worse agreement at 393 MeV) because SIMON ne-
glects relativistic effects and pion production.
Figures 2 and 3 show that in fact, the quality of fit
turns out to be about the same at both beam ener-
gies.

Finally, let us make very explicit our diffidence
about all the foregoing speculations. SIMON 's
oversimplifications may introduce enough errors
in varying directions so that no great confidence
can be placed in arguments, applied to specific
energy-angle regions, which attempt to correlate
the goodness of SIMON 's assumptions with the
goodness of SIMON's fits to experimental data.

APPENDIX B: FLUCTUATIONS AND CORRELATIONS
DURING HEA VY-ION COLLISIONS

Here is a list of classical theoretical methods
arranged, roughly, in order of increasing atten-
tion paid to fluctuations and nucleon-nucleon cor-
relations during the course of simulating a heavy-
ion- collision history. '

One- fluid dynamic s,
Boltz mann equation,
"Conventional" cascade schemes,
SIMON,

Classical equations of motion.

In the rest of this appendix we explain why we or-
dered the above list as shown.

Conventional one-fluid-dynamics methods deal
with position-dependent particle densities p(r, t),
momentum densities, and energy densities. How-
ever, these methods have nothing to say about
particle-particle correlations within a single nu-
cleus-nucleus collision, and they have very little
to say about the position-dependent particle-mo-
mentum distribution. One has to go outside
fluid dynamics in order to interpret the energy
density as implying either a second moment of
particle momentum, or a full-blown local parti-
cle-momentum distribution (e. g. , of Maxwell-
Boltzmann form}.

The Boltzmann equation deals with a rather gen-
eral single-particle distribution function f,(r, v, &).

This implies greater flexibility than there is in
fluid-dynamic approaches (even when the latter
are extended by interpreting the energy density to
imply a local momentum distribution, as suggested
above). In particular, the Boltzmann equation
involves particle-velocity moments going beyond
the simple triad consisting of single-particle den-
sity p(r, t), mean velocity J vf, d'v, and width
characteristic f v'fqd'v. However, the Boltzmann
equation by itself says nothing at all about parti-
cle-particle correlations. Many- particle corre-
lation functions [e.g. , two-particle correlation
functions f2(r„v„r~,v„t)] do not appear in the
Boltz mann equation.

Conventional cascade calculations use space
cells, time steps, NN cross sections, and Monte
Carlo methods. They describe the target matter
that has not yet interacted with projectile matter,
and/or the projectile matter that has not yet inter-
acted with target matter, in terms of a not-yet-
interacted density function p'"' that is constant
within each space cell (like a histogram). Dis-
crete baryons are introduced, one or two per ++
scattering, as the cascade process produces cas-
cade particles resulting from interactions with the
note-yet-interacted matter. The occurrence of
such interactions depends on Monte Carlo pro-
cedures. These Monte Carlo procedures allow
the production of v discrete cascade baryons even
in a space cell that, just before the production,
had p'"' times volume less than v. This circum-
stance necessitates the use of a "depletion" or
"rearrangement" prescription —a prescription
which spreads the reduction of the density func-
tions p'"' over several or more cells so as to con-
serve the total number of baryons. Even when
discrete cascade particles are involved, particle
positions and event locations are described only by
specifying the pertinent space cell. For example,
the calculations do not involve detailed trajectories
seithin a space cell. Conventional cascade calcula-
tions are often described as being based on the
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Boltzmann equation, or being a way of performing
Boltzmann- equation calculations. However, con-
ventional cascade calculations do not suppress
particle-particle correlations to the same extent
that these correlations are suppressed in the
Boltzmann equation. As indicated in our preced-
ing paragraph on the Boltzmann equation, starting
with a definite one-particle distribution function
fq(r, v, t =0), a Boltzmann-equation calculation can
lead only to a unique time-developed form
fq(r, v, f). In contrast, a cascade scheme can be
used to generate an ensemble of many different
nucleus-nucleus collision histories. Therefore a
cascade scheme does allow the evaluation of n-
body distribution functions f„(r„v„r„v~,. . . , t)
pertinent to one nucleus-nucleus collision. Be-
cause the initial conditions are not homogeneous
in space, the functions f„will in general differ
from products of functions fq. To put it another
way, each cascade-calculated collision history in-
volves a sequence of casually related abrupt-scat-
tering NN events. Within each history, classical
correlations are only pally suppressed, by the
above-described uses of space cells and deple-
tion- spreading volumes.

SIMON, unlike conventional cascade calculations,
simulates a heavy-ion collision by computing the
position of every nucleon as a continuously travel-
ing point in continuous three-dimensional space.
During a simulated collision, no space cells or
pre-established time steps are used (except inso-
far as each computer word has a finite number of
bits). For the simulation of a heavy-ion collision,
continuous density distributions are invoked only
as the basis for a precollision Monte Carlo pro-
cedure which fixes initial point positions for all
nucleons. This precollision Monte Carlo pro-
cedure introduces fluctuations of a sort not inclu-
ded in conventional cascade calculations; but this
difference is probably not important. What is
more significant is that SIMON uses no ad hoc de-
pletion prescription, because there is no need to
spread any density depletion. SIMON, unlike con-
ventional cascade calculations, does introduce

some correlations connecting the impact param-
eter b« in a microscopic event, with the NN state
resulting from that microscopic event. (Details
depend on which NN scattering style is chosen. )
However, we make only the following mild claim
that the presently included b«correlations are
realistic. ' that there can be some reality intro-
duced by virtue of an excluded-volume effect, and
by virtue of a restriction to in-plane scattering.
There are other aspects of SIMON's b„„depen-
dence which are not satisfying. That is, our pres-
ent ÃN scattering styles introduce some unsatis-
fying correlations between prescattering b„„and
post- scattering nucleon trajectories. (For ex-
ample, it is improper to use a style that describes
all NN events as repulsive seatterings, and so
never allows the distance of closest approach to
be smaller than b« )Apa. rt from correlations
involving b», because of the oversimplified o»
used in the present study our SIMON calculations
ignore much of the experimentally observed cor-
relation between prescattering energy ~«and
post-scattering velocity angles 0«. In contrast,
such correlations are now included in conventional
cascade calculations that incorporate realistic
cross sections d o„„/dE„„dQ«2

Classical equation of motion -(CE-OAf) methods
use NN potentials. These NN potentials imply
various spatial, energetic, and directional aspects
of the NN interaction-aspects different from
those that can be introduced by SIMON via v» and
hard- core considerations. Thus, it may be that
CEOM methods can introduce some kinds of real-
istic correlations beyond those possible from
abrupt-scattering cascade calculations.

Obviously, the above five paragraphs fall far
short of describing all differences among classi-
cal methods. For example, some conventional
cascade calculations neglect interactions between
cascade particles, while SIMON has no such limi-
tation. As another example, simple SIMON cur-
rently ignores an initial-density feature which
some other calculations do take into account: dif-
fuse edges of the initial colliding nuclei.
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os&MD&'s emitted charges are all unbound protons. (See
the first paragraph of Sec. IV.) The stMox cross sec-
tions in Figs. 2 and 3 were calculated using a trape-
zoid rule and results computed at five discrete impact
parameters b &«,. see footnote (a) to Table II.
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other. This definition of repulsive applies to scatter-
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separations. See the next-to-last paragraph of Sec. II.
C.
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Figs. 4-7? These figures show contour plots of p dur-
ing head-on collisions. For head-on collision p& has
cylindrical symmetry. Because of that, we compute p

by averaging within cylindrically symmetric volume
elements, and by assigning the average p in a given
element to mesh coordinates which are the volume av-
erages of r and of z within that element. For Figs.
4-7 the volume elements of smallest r are discs with
outer radius Ar = 0.8 fm, and consequently volume-
averaged radius r„=&br=0.53 fm. Since there are no
mesh points with cylindrical radius &0.53 fm, the con-
dition r & 0.53 fm defines a region where p/po cannot be
obtained by interpolating between values calculated at

mesh points. Therefore we avoid drawing contour
lines in this region of no interpolation; and the result
is a blank strip along each z axis in Figs. 4-7. Why is
the~e no analogous blank area in Fig. 9? For off-center
collisions, the reflection symmetry of p dictates that
we compute p by averaging within volume elements
symmetric with respect to the xz plane, and by assign-
ing the average p in a given element to mesh coordi-
nates which are the volume averages of x, ) y ), and z
within that element. The associated region of no inter-
polation would be ( y [ & 0.75 fm; see the caption to Fig.
9. However, this region does not appear explicitly in
the xz plotting area of Fig. 9.
If we had not neglected internal kinetic energy of the
precollision nuclei, then perturbation would propagate
somewhat more rapidly within the collided system.

~30f course the microscopic behaviors underlying large
I Bp/Bz I are quite different for (4zi, 53.1}and c„„=0.
For (4si, 53.1}the steepness is associated with a
shocklike zone populated by scattered nucleons travel-
ing in many different directions, with many different
speeds. For f7~~= 0 the steepness is associated with
the sharp front of an overlap zone in which unperturbed
Ne nucleons (all of velocity v &~U) travel freely through
unperturbed U nucleons (all at rest).
The crossing segments are, typically, diagonals inside
a small quadrilateral formed by contour lines. %'ithin
such small quadrilaterals our key patterns have been
applied somewhat arbitrarily.
In our coordinate system, 4.52 fm is %e median x of
the overlap region that would be swept out when a
spherical Ne projectile of sharp-edged radius 1.16 A'
= 3.15 fm traverses (without perturbation) a spherical

U target of sharp-edged radius 1.16 A' 3= 7.19 fm,
the impact parameter being b &«=x&«=5 fm.

56Here is an illustration of how the fluctuations with an-
gle change with E, : In the left panel of Fig. 11, for
8&~s ~ 30', consider the circle points (HC, 25.4}. Note
the very strong similarity between their angular de-
pendence at EpLAB =70 and 150 Mev. Such a similarity
does not hold for any of the bins centered at 50, 90,
110, 130, or 170 MeV (as we conclude from results
computed by us but not displayed in this paper).
This qualitative result is so plausible that we have
omitted any explicit evidence for it here in Sec. IV.
However, quantitative evidence for it appears in Table
III, within Sec. V.
M. I. Sobel, P. J. Siemens, J. P. Bondorf, and H. A.
Bethe, Nucl. Phys. A251, 502 (1975).

59See Appendix B.
See Sec. II. B.

6'C. Y. Wong and J. A. McDonald, Phys. Rev. C 16,
1196 (1977).

62There is at least one other feature of our computation
which slightly suppresses emission at low energies.
This is the tsTo~ feature discussed in Secs. IU. A. 1 and
IV. A. 3. However, Figs. 2 and 3 are rather little af-
fected by this feature; see Sec. IV. A. 3.

63A two-Quid model (see Ref. 17) introduces some rather
restricted kinds of contributions to particle-particle
(Quid-fluid) correlations, and to higher moments of the
momentum distribution.
In detailed fluid-dynamic calculations of heavy-ion col-
lisions (see for example Ref. 16), the usual way to
compute an emitted-particle energy-angle distribution
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is to take into account the mean velocity but not the
thermal energy of each fluid element. That is, it is
assumed that every nucleon within a given Quid ele-
ment has exactly the same velocity (equal to the Quid
element's mean velocity) so that the post-collision
emitted-particle energy-angle distribution has width
only because different fluid elements have different
mean velocities. This picture is very unlike the sim-
plest fireball picture (Ref. 11), in which every matter
element within the macroscopic fireball has the same
mean velocity so that the post-collision emitted-parti-
cle energy-angle distribution has width only because
there is a thermal distribution of aprticle velocities
within each matter element.

In Ref. 21 the depletion prescription is described as
being self-consistent. In Ref. 22, two alternative de-
pletion prescriptions were used: fast rearrangement
(spreading the depletion over an entire nucleus) and
slow rearrangement (small depletion-spreading vol-
ume).
This is a comment to qualify paragraph 5 of Sec. II. A.
Although exact backward scattering (like exact forward
scattering) leaves the overall nucleon-momentum distri-
bution unchanged, exact backward scattering (unlike
exact forward scattering) does introduce some changes
in fine details of the nucleon-momentum distribution as
a function of nucleon position and nucleon charge.














