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Recent measurements of the sub-barrier fusion of "0with isotopes of Sm, which span the transition region from

spherical to deformed equilibrium shapes, are analyzed in terms of static and dynamic reaction models. The classical
equivalent-spheres method of incorporating the effect of nuclear deformation on heavy-ion fusion is shown to
overpredict the experimentally observed differences in the fusion cross sections. An approximate, classical estimate
of dynamic effects connected with the rotation of the target before fusion removes part, but not all, of this
discrepancy. Coupled-channels calculations, which treat dynamic effects through the excitation of the 2+ and 4+

levels, are also presented. An estimate is given of the effects one may expect to observe for fusion with a polarized
deformed target.

NUCLEAR REACTIONS Barrier-penetration analysis of v& &
for '60+ ' ' ' ' ' Sm,

E&~= 60-75 MeV, including effects of static deformation. Consideration of dynamic
effects. Coupled-channels analysis.

I. INTRODUCTION

When interest in heavy-ion-induced reactions
first developed nearly 30 years ago, it was rec-
ognized that the deformability of nuclei could have
consequences for the fusion of heavy ions. ' Re-
pulsive Coulomb forces were expected to induce
an oblate deformation, with the axis of symmetry
along the line connecting the centers of the col-
liding nuclei, resulting in an effective increase in
the barrier for fusion. 'The possible existence of
superheavy nuclei and the hope that they might be
produced by the fusion of heavy ions stimulated
further theoretical examination of this subject. '
Studies by Wong using the adiabatic approxima-
tion and by a number of authors who also con-
sidered the dynamics of the collision' ' indicated
that the observable effects of induced deforma-
tion were expected to be much smaller than orig-
inally estimated by Beringer. ' To this day, the
effect on the fusion cross section of C oulomb-
induced distortions of the nuclear surface has not
been clearly identified or isolated in an experi-
ment. This may be a consequence both of the
small size of the predicted effect and of other
effects involving deformation which can be much
larger.

Many nuclei possess an equilibrium deforma-
tion. We refer to this as static deformation, in
contrast to the induced deformation discussed
above. In their work on fission, Hill and Wheeler'
pointed out that the barrier for &-particle emis-
sion from a deformed nucleus should depend on
the angle of emission with respect to the axis of
the symmetry. Experiments on the angular dis-
tribution of 0. particles emitted by oriented "'Np
nuclei verified that emission in the direction of

the angular momentum vector was favored. Since
the angular momentuln of the ground state is ex-
pected to be collinear with the axis of symmetry
of the prolate '"Np nucleus, this experiment sug-
gested that the barrier for emission from the
polar region is, indeed, lowered. Recently,
Beck rman and Blann' have drawn attention to
the possible importance of deformation for the
emission of light particles from high-spin states
in nuclei. Rapidly rotating nuclei are expected to
be highly deformed, which in turn should influence
the transmission coefficients for particle emis-
sion as well as the barrier for fission.

The consequences of the above considerations
for the inverse reaction, the scattering, and the
capture of & particles by deformed nuclei were
examined by Rasmussen and Sugawara-Tanabe. "
Integration of the barrier penetrability over all
the angles of orientation for an unpolarized target
results in an increase in the fusion cross section
for deformed nuclei, which is pronounced at sub-
Coulomb bombarding energies. Thus, the effec-
tive barrier is lowered, or, equivalently, the ef-
fective capture radius is increased as a result of
static deformation. (The effects of static deforma-
tion are expected to be much larger than those for
Coulomb-induced deformation. ) Early measure-
ments of heavy-ion fusion cross sections for "Ar
+ ' 'Dy (Ref. 11) and for "Kr+ "Ge, "'Cd (Ref. 12)
indicated barrier radii of 1.45 (Ag +A2 ') and
1.32 (A,"~'+A, '~') for the deformed and spherical
systems, respectively. Wong"'" has incorporated
the effect of static deformation in the analyses
of a number of heavy-ion-induced reactions.

Several experiments have been designed spe-
cifically to reveal the effects of deformation on
the fusion cross section. Freiesleben and Huizen-
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ga" measured the fusion fission of 'He+ "'"'U
at sub-barrier energies and compared it with sim-
ilar measurements" for 'He+"'Pb, "Bi. On the
basis of the observed energy dependence, they did
not find any evidence for the effect of deformation,
even though the cross sections extended over five
orders of magnitude. Alexander et al." reexam-
ined these data from the point of view of the mag-
nitude of the cross sections. They fit the data for
'He+"'Pb and used this to predict the fusion cross
section for 'He+ "'U under the assumption that
"'U is spherical. This prediction resulted in an
underestimate of the observed cross section for
"'U. No quantitative prediction based on the known
deformation of "'U was made, however.

The reactions of "Cl with the even isotopes of
Ni have been studied by Scobel et al."for E,~
= 91-170MeV. The deformations of the Ni iso-
topes, derived from the B(E2) value assuming a
rigid-rotor model, vary from P, =+0.18 to-
-0.2 for "Ni to "Ni. They used the "equivalent-
spheres" formalism of Kong'4 to analyze their
results and found that fits to the data were much
improved when deformation was taken into ac-
count.

Vaz and Alexander"" have made systematic
analyses of fusion and total reaction cross sec-
tions. 'They incorporate a, spectrum of barrier
heights having a uniform distribution varying from
Ep 4 to Ep + 4 in the expression" for the pene-
tration of a spherically symmetric parabolic po-
tential. Values of 4 ranging from -2 to -8 MeV
were deduced. Since both the effect of deforma-
tion and the inadequacy of a parabolic approxi-
mation for the barrier could influence the value
of 4, it is difficult to conclude that the experi-
mental data they have analyzed demonstrate the
effects of deformation. It is interesting to note,
however, that the system "Ca+ "S, involving a
doubly magic nucleus, had the smallest value of
4 (2.2 MeV), while the system "Ne+ "'U, in which
both target and projectile are strongly deformed,
had the largest value of 4 (7.7 MeV).

The fusion of the doubly magic system "Ca
+ Pb has been studied recently by Morrissey
et al." A comparison" of the cross sections for
this system with ~Ar+ U and Ar+ ' Ho as a
function of the ratio of bombarding energy to bar-
rier height suggests relatively lower cross sec-
tions for the fusion of spherical nuclei.

Even though the above studies strongly suggest
that the effect of deformation on heavy-ion fusion
is measurable and has been observed, it was felt
that some of the ambiguities and difficulties as-
sociated with these earlier studies might be re-
duced by additional experiments. In particular,
the choice of a spherical projectile, a series of

targets of the same element whose isotopes vary
from vibrational to strongly deformed, and an
experimental technique allowing precision mea-
surements far below the barrier would offer many
advantages. Such experiments on the fusion of
0+ 48, so, 52, is4Sm have been reported by Stokstad

et al." This article describes an analysis of
these results. Given the precision of the cross
sections for fusion, cr,„„and the known structural
characteristics of the Sm isotopes, it becomes
possible not only to establish more clearly the ef-
fect of deformation, but also to test the various
methods which have been put forth to calculate
cr,„, for deformed nuclei. Recently, experimental
data of similar quality for the fusion of "Ar
+ '"""""Smhave become available. These re-
sults are described in a separate publication. "

Section II describes the analysis of the data in
terms of the usual equivalent-spheres approxima-
tion and discusses possible reasons for its failure.
In Sec. III, calculations with a single averaged
spherical potential are described. Classical es-
timates of dynamical effects are discussed briefly
in Sec. IV. Coupled-channels analyses, which in-
clude both static and dynamic effects, are pre-
sented in Section V. A summary and conclusions
are contained in the last section, and an appendix
describes effects that might be observable in an
experiment using a polarized target.

II. EQUIVALENT-SPHERES ANALYSIS

'The equivalent-spheres approximation treats
the fusion of a spherical projectile with a de-
formed nucleus by replacing the latter with a
series of spherical nuclei of different radii. The
radius of a given sphere depends on the angle of
orientation, 8, of the axis of symmetry of the de-
formed target nucleus with respect to the initial
direction of the projectile through the equation

R, (8)=R,[1+Z~P~Y~O(8)].

The parameters P„(&=2, 4, 6, . . . ) and spherical
harmonic functions 1'o(8) describe the deviation of
the nuclear surface from a sphere with radius
R', . Since it is the shift of the nuclear surface that
is the relevant quantity and since this shift is pro-
portional to PP'„all values of P„given in this
paper are normalized to correspond to a standard
radius given by 1.2 A, ' ' fm, where A, is the atom-
ic mass (u) of the target nucleus.

Before considering the effects of deformation,
it is essential to be able to make a proper des-
cription of the fusion of spherical nuclei. In prin-
ciple, this could be done by calculating the nuclear
potential for the collision of two spheres using,
e.g, the proximity formulation, '4 a folding mod-
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el,"or empirical formulations. "'" In practice,
this is not possible because the cross sections at
sub-barrier energies are extremely sensitive to
slight changes in the radius or strength of the
nuclear potential. Thus, the use of a potential
a priori could introduce errors which would be
comparable to or larger than the effects of de-
formation. 'This problem is solved by empirically
determining a potential to describe sub-barrier
fusion cross sections for a system which is spher-
ical and yet otherwise similar to the deformed
system. An approximation to this ideal situation
is found in the samarium isotopes which, in the
neutron-deficient region, exhibit vibrational char-
acteristics ('"'4'Sm) and become strongly de-
formed as the neutron number reaches and ex-
ceeds 90 (~52 ~ ~~4Sm}.

The result of a search for a spherical potential
which reproduces the excitation function for the
fusion of "0+"'Sm is shown in Fig. 1. The fusion
cross sections shown here were calculated by
solving the Schr'odinger equation for a complex
potential and equating the fusion cross section
with the total absorption cross section. The po-
tentials used here would not reproduce the elastic
scattering and thus are not "optical model" po-
tentials. This procedure effectively removes from
explicit consideration all processes which cannot
be described solely by the penetration of a real,
one-dimensional barrier (e.g. , neck formation")

and makes it possible to focus on effects having
to do with the nuclear structure of the target.

The real part of the nuclear potential has a
liquid-drop form factor, "

V„(r)=Voexp[(R —r) jd], r&R
=Vo, r R,
(~ 1/3 +g 1/3)

(2)

(3)

A Woods-Saxon form factor was used for the
imaginary potential

r-R;
W(r)= W, I+ exp (4)

for which R,. =r;(A&' '+A. , ' ').
'The values of the reduced parameters which fit

the data for "0+"'Sm by assuming P, = 0.0 are
labeled as case (i) in Table I. As was found for
the systems in Ref. 27, the radii are smaller and

the diffusivities larger (in Table I) than those val-
ues which would describe the elastic scattering
(see Sec. V). Note that the imaginary potential
approximates a square well. 'The above real (nu-
clear plus Coulomb) and imaginary spherical po-
tentials are shown in Fig. 2 (labeled by P„= 0) for
the case of "0+"'Sm. 'The imaginary potential is
seen to extend slightly beyond the point where the
real potential reaches its maximum. The energy
dependence of o,„,depends sensitively on the lo-
cation of the imaginary potential.

'The calculation of the fusion cross section for
a spherical projectile of radius R~ and a deformed
target aligned at an angle 8 is done by solving the
Schrodinger equation for the real potential,

V [R (8),r] = V„[R(8),r]+ V [cR ( )8, r J, (5)

]02

E
&0"

b

W= W[R,.(8),r], where R(8)=R~ R+, (8) and R, (8) is
given by Eq. (I). A similar expression gives the
imaginary radius R;(8). The real and imaginary
potentials are assumed to be described by the
same deformation parameters. The Coulomb po-
tential V~ also depends on the deformation and

orientation of the target nucleus. For a nucleus
described by Eq. (1), we have used

[VRc( ),r8]= Q Vc~,
IPO

where
A=even

0
65 70 75

Elab (MeVj

FIG. 1. Cross sections for the fusion of ' 0+
+ST {Ref. 22). The full curves are fits to the

data as described in the text for the indicated values of
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TABLE I. Parameters of the real and imaginary potentials.

P (148Sm)
V(,

(Mev)
fp

(fm)
d

(fm)
W()

(MeV) (fm)
a;

(fm)

(i) '
(ii) '

(iii)
(iv)

0
0.10
0.13
0

-36.0
-36.0
-36.0

50

0.986
1.015
0.994
1.09

2.13
1.98
2.19
1.35

10.0
10.0
10.0
17.5

1.295
1.274
1.19
1.34

0.026
0.079
0.165
0.069

The real potential has a liquid-drop form factor (Ref. 27) [Eq. (2)1. The imaginary poten-
tial has a Woods-Saxon form factor.

Both real and imaginary potentials have a Woods-Saxon form factor.

&0 I I I I I
and the P, are the Legendre polynomials. ~"""

For radii r&R, where R =1.25 (A ' '+A ' ')fm
is the Coulomb matching radius, the following
expression for the Coulomb potential was used:

2%+3 y "+~ ~A+]
Vo(r)= —— Vo,(R ), r&R . (6)

0)
2

L

55

P„= ( 0.27, 0.054,
-0.0&8 )

I I I I

9 &0

r (fm)
12 l3 14

I I I I I

This formula has a continuous first derivative
at r=R and for X= 0 is the expression for a point
charge and a uniformly charged sphere usually
used in optical model codes. The calculated cross
sections are not very sensitive to the precise form
of Eq. (6) nor to reasonable va.riations in the value
ofR

The dependence of the real potential on the angle
of orientation is illustrated in Fig. 3 for "9+ '"Sm;
the deformation parameters used here to describe
"'Sm are P„=(0.27, 0.054, -0.018) for X= 2, 4,
6, respectively. " Note that the height of the bar-
rier increases by about 9 MeV as 8 varies from
0 to 90 degrees. The potential for 8= 52.5' cor-
responds very closely to the spherical case. The
consequences of these different barrier heights
for the fusion cross section at a bombarding en-
ergy of 54.3-MeV c.m. (60-MeV lab) are shown
in Fig. 4. Here, the equivalent-spheres cross
section is shown as a function of the angle of
orientation and is seen to vary by over three or-
ders of magnitude.

The fusion cross sections shown in Fig. 4 have
to be averaged over all angles of orientation since
the target nucleus is not aligned. This average
is written

FIG. 2. The potentials obtained from fitting the data.
(a) The spherical imaginary potential (P), = 0), shown
here for 60+ +Sm, as obtained from fitting the data
for 0+ Sm with P~ = 0. The radial dependence obtain-ie 148

ed after deforming the potential and averaging it over
all orientations is also shown. (b) As above, but for the
real, Coulomb-plus-nuclear potential.

t/2
o,„,= o,„,(8) sin8d8

0

and has been evaluated numerically. 'The fusion
cross section weighted by the solid angle factor
sin 8 is also shown in Fig. 4 and is a maximum

(7)
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for a 15' angle of inclination.
An indication of the calculated sensitivity of

cr,„, to the magnitude of the deformation is given
in Fig. 5. The ratio of the 0,„, for the deformed

IOO

I I

16() 154

FIG. 3. The different barriers associated with differ-
ent angles of orientation, calculated in the equivalent-
spheres approximation. The lowest energy at which a
measurement was made (60-MeV lab) is indicated.

and spherical cases is plotted versus the quadru-
pole deformation parameter P, . A change in de-
formation from 0 to 0.3 causes a change of more
than an order of magnitude in o,„,. This sensi-
tivity is a consequence of the small barrier pene-
trability at this low bombarding energy. The lack
of symmetry about P=O is a result of the asym-
metry of the second Legendre polynomial.

Once the complex spherical potential has been
determined by fitting "0+ '"Sm with P„=0, values
of P may be deduced for the other Sm isotopes
by fitting the measured excitation functions for
o,„, In this procedure, the reduced radii x, and

r; and diffusivities d and a, are held constant, V,
and W, are constant, and the only cha.nges in the
spherical potential arise through the 4' ' depen-
dence of the radius. Such fits to the data are
shown by the full curves in Fig. 1 and have been
obtained for values of g, = 0.0, 0.14, 0.18, and
0.20 for '"'" ""'"Sm, respectively. Since P,
is treated as a free parameter, the values of P,
and P, were set equal to zero. Figure 6 compares
these deduced values of P, [curve (a)] with values
determined from o'-particle scattering, ""from
transitions in p. -mesic atoms, "and from reduced
E2 transition matrix elements. "'" In the latter
case, P, is defined by""

P, = [&(E2,0- 2)]'~'[3ZR, '/4v ] ',
where R, = l.2 A, a/3

The above procedure for determining the de-
formation of a nucleus through an analysis of a
fusion excitation function does not yield results
in agreement with other methods for determining

E

IO

160

20
6Q MgV Q+ $rn

P4=PS= 0

I

b

0.1

O
b
Al 5

b

I I I I I I I I

0 10 20 30 40 50 60 70 80 90
e (~)

FIG. 4. The dependence of the calculated fusion cross
section on the angle of orientation. The dashed line
shows the value of e(8) sine if the target nucleus is
allowed to rotate (under the influence of an electric
quadrupole moment) until the distance of closest approach
is obtained.

-0.3 -0.2 -0.1 0.1 0.2 0.3

FIG. 5. The predicted relative change in the fusion
cross section as a function of Q.
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FIG. 7. Measured and predicted ratios of the fusion
cross sections for 0+ +Sm and 0+ Sm. The pre-ig
dictions [curves (a)-(e)] are discussed in the text.

FIG. 6. Comparison of the values of Q deduced from
fitting crt with those deduced by other methods.

the deformation. Although the values deduced from
fusion shown in Fig. 6 exhibit the correct trend
with the mass of the samarium isotopes, the quan-
titative discrepancies are well outside the range
of experimental error. (Similar conclusions were
reached in the case of "Ar fusing with '"""""Sm,
Ref. 23.) In the remainder of this section, we will
examine a number of possible reasons for these
discrepancies.

The results shown in Fig. 6 for curve (a) im-
mediately suggest that the difficulty might be with
the assumption that '"Sm is spherical, i.e. , that

P, = 0. The fact that '"Sm exhibits a vibrational-
like energy spectrum implies that the time-aver-
aged value of P, is zero. The value of P, deduced
from the B(E2) value (by assuming a rotational
model} and from (x-particle inelastic scattering"
represents, effectively, a root-mean-square
(rms) value of a fluctuating quantity. Thus, while
in its excited 2' state and through zero-point mo-
tion while in its ground state, "the '"Sm nucleus
can be momentarily deformed. An approximate
way of treating this situation is to assign a per-
manent deformation to '"Sm. This produces a
distribution of barrier heights (see Fig. 3) just
as a fluctuating value of P, produces a distribu-
tion of barrier heights. (These distributions are
not necessarily the same, however. )

The values of P, indicated by curves (b} and (c}
in Fig. 6 result when the fitting procedure is re-
peated as above, except that finite deformations
of P, = 0.10 and P, = 0.13 are assumed for '"Sm.

The spherical potential, which is determined by
fitting the data for "0+ '"Sm under this assump-
tion, is of course dependent on the assumed value
of P, [The .parameters describing these poten-
tials are given in Table I as cases (ii) and (iii).]
While the use of a finite value of P, results in
somewhat larger deduced values of P, for
"'"'"'Sm, as may be seen in Fig. 6, signifi-
cant discrepancies still remain with values of P,
derived from other measurements.

The extent of the discrepancy between an analy-
sis based on the equivalent-spheres approximation
and the experimental results is demonstrated by
predicting o,„, for "0+"'Sm using the known de-
formation parameters for "'Sm: P, = 0.27, P,
=0.054, 1),= —0.018 (Ref. 29). These values for
P, and P4 agree well with other measurements and
analyses of a-particle inelastic scattering. '""
In the following, it is sufficient to consider only
the differences between "0+ '"Sm and "0+ '"Sm,
which we express as the ratio o,„,(154)/o, (148)
and show in Fig. 7. Curve (a), labeled P„=O, is
the ratio which would be expected if "'Sm were
spherical [as has been assumed for '"Sm, case
(i) in Table I] but with a larger radius given by
an A' ' dependence. Since the cross sections for
'"Sm and "'Srn were measured at the same lab-
oratory bombarding energies, part of the devia-
tion of the ratio from unity represents a trivial
laboratory to center-of-mass transformation.
This effect is rather small, however, and is
shown by curve (c), which corresponds to the
fusion of "0with fictitious spherical nuclei of
the same radius but having masses 148 and 154.
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Curve (b) isolates the effect of the volume change
on the radius and is the ratio corresponding to
fictitious spherical nuclei having identical masses
but radii differing in the ratio (154/148)'~', i.e. ,
differing by 1.2%%uo. Curve (d), labeled by the mea-
sured values of P„, is the prediction to be com-
pared with experiment. While producing good
agreement at the higher bombarding energies
(where the cross section is independent of defor-
mation), it exceeds the measured ratio at low
energies by nearly a factor of 3.

The expression for the change in radius with
orientation given by Eq. (1}does not conserve the
nuclear volume. To the order of terms in P', the
radius 8', must be decreased by an amount
fto, (1/4v)Z„P„'. This amounts to a decrease of
0.6%0 in the radius of "4Sm which, when included
in the calculation, yields curve (e) shown in Fig.
7. This correction produces a maximum change
of only -15% in the predicted cross section and
thus is not the origin of the discrepancy.

One may question the assumption that the radius
of the spherical potential used as a basis in these
calculations actually increases as 4' ', a less
rapid rate of increase with neutron number would
bring the prediction into better agreement with
the data. There is evidence from isotope shift
measurements" and from electron scattering"
that the rms charge radius increases less rapidly
than &' '—in fact, at about half this rate. This
effect has an explanation in terms of an increase
in the depth of the proton potential as neutrons
are added, and thus does not require that the
radius describing the mass distributions (to which
the fusion cross section is sensitive) vary at a
rate other than A' '. Even so, were the rms
radius to vary as A. ' ', the predicted ratio at 60
MeV would be lowered by only 10%a.

The calculation of the ratio o,„,(154)/o, „,(148)
with the known values of P„shows little sensitivity
to whichever of the potent:ials in Table I is used.
This may be understood from Fig. 6, which shows
a decreasing relative sensitivity of the deduced
value of P to the spherical potential used, once P
becomes large (&0.2}.

In the proximity formulation for the potential
energy describing the interaction of heavy ions,
the strength of the real potential is proportional
to a generalized radius of curvature at the point
where the gently curved surfaces of the nuclei
come into contact. '4 Since the radius of curvature
of a deformed nucleus is by definition not constant,
the factor Vo in Eq. (2) acquires an angular de-
pendence as well. "'" Furthermore, as may be
seen by an inspection of the inset in Fig. 3, the
shortest distance of separation between projectile
and target is no longer (because of the finite size

of the projectile) along the line joining the centers
of the nuclei. Both these effects have been con-
sidered by Randrup and Vaagen" for the case of
"O+ '"Er. Because of the similar deformations
of the nuclei '"Er and '"Sm, their results are
directly applicable to our case. The effect of the
angular dependence of the radius of curvature is
to reduce the strength of the real potential at val-
ues of 8&45', i.e. , at angles for which the shift
in radius associated with deformation would in-
crease the strength of the potential for a given
separation of the centers. Thus, this effect by it-
self should improve the agreement with experi-
ment and does indeed, as shown by curve (a) in
Fig. 8. However, the effect of the finite size of
the projectile is to increase the strength of the
potential (for a given separation and orientation),
and when this is included as well, curve (b) is
obtained. Thus, the inclusion of the additional
angle-dependent terms for the nuclear potential
does not, on the whole, improve the agreement
between theory and experiment and, in fact, in-
troduces an additional discrepancy at the high
bombarding energies (see Fig. 8). This is not
to suggest that these angle-dependent effects are
not present, however, since there may be other
problems with the basic equivalent-spheres ap-
proximation.

In order to check whether the discrepancy be-
tween theory and experiment might arise from
some feature of the present analysis which in-
volves integration of the Schrodinger equation for
a complex potential, an analysis was undertaken

I I I I
I

I I I I
I

! I I
I

I I
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018), UNCORRECTED
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160 + 148S
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I—
60 65 70 75

lob ( M~V )

FIG. 8. Predictions of o-~ (154)/az (148) which take
into account the "second-order" dependence of the real
potential on the local radius of curvature and on the
finite size of the projectile (Ref. 39).



288 R. G. STOKSTAD AND E. E. GROSS

using the "inverted parabola" approximation for
the barrier. In this case, there is no imaginary
potential and the transmission coefficients are
given simply by the Hill-Wheeler expression. '
'The procedure was to search for a Woods-Saxon
real nuclear potential that would reproduce the
"0+ '"Sm data when the combined Coulomb, nu-
clear, and centrifugal potentials were approxi-
mated by an inverted parabola. In this manner,
deformation could then be introduced via the
Woods-Saxon form factor. It was not possible to
fit the entire range of the excitation function for
"0+"'Sm with a single potential. Since three or
four adjacent data points could be fit very well,
however, an energy-dependent potential was in-
troduced. When this was done, the ratio o,„,(154)
/o, „,(148) calculated for the known deformation
parameters was very close to curve (d) in Fig. 7.
This suggests that any calculational procedure
using a particular real potential or complex po-
tential will produce the same results for "0
+ "'Sm, provided that this procedure reproduces
the experimental data. for "0+ '"Sm. This can be
understood by writing

d0' d(X de
dP dE~ dP

and identifying do/dEs with the change in cross
section for a small change in bombarding energy
and dEs/dP with the change in an effective bar-
rier height produced by a small change in defor-
mation. The differential ratio do/dEs is very
large, extremely sensitive to the choice of the
spherical potential, and varies rapidly with bom-
barding energy. The ratio dEs/dP is small, not
very sensitive (within reason} to the particular
choice of the spherical potential, and is indepen-
dent of bombarding energy. Forcing any calcula-
tion to fit the data for "0+ '"Sm guarantees that
the quantity do/dEs will be the same in all cases,
and it is this fact that is responsible for the equiv-
alent results obtained for the parabolic approxi-
mation (with an energy-dependent potential) and the
Schrodinger equation plus a complex potential.
We conclude from the above that the failure to re-
produce the experimental data must rest with
more fundamental aspects of the equivalent-
spheres method.

There are several approximations made in the
equivalent-spheres treatment that may affect the
results in a significant way. The first of these may
be called the "head-on" approximation. The spe-
cification of the orientation of the deformed nucle-
us only in terms of a polar angle [Eq. (I)] is equiv-
alent to the assumption that all collisions are cen-
tral, i.e., correspond to an orbital angular mo-
mentum l =0. Since the centrifugal barrier cannot

be neglected in the barrier-penetration problem,
finite impact parameters have been considered by
the addition of the usual centrifugal potential
h'l(I+1)/2 pr' for the collision of two point masses.
However, this does not eliminate the need for an
additional coordinate, an azimuthal angle, to spec-
ify the separation of the nuclear surfaces for finite
impact parameters. If we define o, =vX'(2l+1)T„
where T, is the fusion transmission coefficient,
then the l values for which o, = ~o, (max) are l = 10
and 20 at 60- and 70-MeV lab bombarding ener-
gies, respectively. Equating an impact parameter
b =l/k, where k is the wave number, we have b/R
= 0.2 at 60 MeV and 0.4 at 70 MeV for "0+' 'Sm.
As expected, the head-on approximation is more
appropriate, the lower the bombarding energy.

Another assumption has been that the diffusivity
of the nuclear potential is the same on all points
of the nuclear surface. Since there is no a priori
reason to doubt this assumption, it does not seem
worthwhile to introduce additional (and ad hoc)
free parameters to describe this effect.

As noted earlier, the vibration of the nuclear
surface through quadrupole oscillations in the
ground state (zero point motion) and excited states
has not been treated properly in the present calcu-
lations which consider only static, permanent de-
formations. Since the amplitudes of the vibrational
motion may be calculated from the known proper-
ties of the low-lying levels, it should be possible
to include these effects without the introduction of
additional free parameters. ""

All of the foregoing calculations employ a static
approximation, viz. , that the deformation, excita-
tion, and orientation of the target nucleus do not
change as the projectile approaches. Dynamic
effects will be considered in Secs. IV and V.

III. CALCULATIONS WITH A SINGLE AVERAGED
SPHERICAL POTENTIAL

It is of interest to ask what results are obtained
if, instead of averaging the cross sections calcu-
lated for potentials corresponding to different ori-
entations as in Eq. (7}, the potential itself is first
averaged over all orientations and a fusion cross
section then calculated. The potentials are aver-
aged in the same way as the fusion cross section,
~.e.,

rl 2

V(r, P), IV(r, P) = V(r, P, 8), W(r, P, 8)sin8 d8.
0

The radial forms of the resultant potentials are
shown in Fig. 2. The ratio for fusion with'"Sm and
"'Sm calculated with these potentials is shown by
curve (a) in Fig. 9. Comparison of curves (b) and
(c), for which only the imaginary potential and then
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only the real potential were averaged, respective-
ly, indicates that the gross discrepancy at high en-
ergies is associated with the imaginary potential.
The averaging procedure in this case simply
makes the nucleus appear too large [see Fig. 2(a)].

Another method of effectively taking an average
before calculating the cross section is to use
spherical potentials in which the radii (for the real
and imaginary potentials} have been scaled not as
A' ' but by the ratio of the half-density radii as
determined by elastic electron scattering. The
increase in radius for '"Sm is, in this case, twice
the increase given by an A' ' scaling and repre-
sents the effect of deformation. Such a procedure
results in a ratio at 60-MeV lab, which is about
60%%ug of the measured value. This and the results
shown in Fig. 9 demonstrate that averaging the
potential in the manner given by Eq. (8} is not a
correct way to treat the effect of deformation in a
static calculation. Indeed, elementary compari-
sons of a rotational or vibrational period and the
collision time indicate that it is the cross section
which should be averaged.

equivalently, an increase in the barrier for fusion.
Such effects have been considered by a number of
authors for much heavier systems than the one
studied here and were found to be small. "

Classical calculations of the collision of 60-MeV
"0with '"Sm have been performed by Levit ' for
a central collision. A value of 6.6 eb (P, =0.33)
was assumed for the intrinsic quadrupole moment
of '"Sm. Figure 10(a) shows the amount of angu-
lar momentum transferred to the target by the
time the projectile has reached its distance of
closet approach as a function of the initial angle of
orientation. Taking the maximum value of 2.55

60MeV 0+ Srn

IV. CLASSICAL DYNAMICAL EFFECTS

The nucleus may undergo a change in shape and

in orientation during the collision. As a result of
this, the separation of the nuclear surfaces of
target and projectile will be increased and some
kinetic energy of relative motion will be converted
into rotational energy and/or energy of deforma-
tion. These particular dynamic processes cause
a reduction in the cross section for fusion or,

I I I I )
I I I I

i
I I

Jv(r, p, e) dQ
V(r, P) =

fdA
50

( ) P), = (0.27, 0.054, -0.018)

I I
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I I
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FIG. 9. Predictions in which the deformed potential
is averaged over all orientations before calculating the
fusion cross section.

FIG. 10. Classical dynamical calculations of the
angular momentum X (a) and angle of rotation b, 8 (b)
attained by the deformed nucleus by the time the pro-
jectile has reached the distance of closest approach in
a head-on collision (Ref. 42).
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implies that an upper limit of ~ 130 keV of kinetic
energy is lost to rotation. Raising the barrier or
lowe ring the bombarding energy by 130 keV c.m.
results in an 110k decrease in the cross section.
The amount of rotation undergone by the target
when the projectile has reached the distance of
closest approach is shown in Fig. 10(b)~ The ef-
fect of this on the cross section is calculated by
shifting the curve v(8}sin8 by an amount appropri-
ate for each initial orientation. This produces the
dashed curve shown in Fig. 4 and a 32 /0 reduction
in the cross section. The combined result is a
reduction by a factor of 1.5 in the predicted fusion
cross section for 60-MeV "O + '"Sm and thus, by

itself, can account for about half the discrepancy
shown in Fig. 7.

Dynamical effects should be present for both the
rotational nucleus ' Sm and the vibrational nucleus
'"Sm; however, the relative sizes of these effects
for the two nuclei will determine whether the pre-
diction shown in Fig. 7 is brought into better
agreement with experiment. It would be of value
to have classical dynamical calculations of the
type performed by Riesenfeldt and Thomas' for
vibrational motion since these, together with cal-
cul ations of the dynamic effects of rotation as de-
scribed above, could answer this question.

V. COUPLED-CHANNELS CALCULATIONS

Both the statics and the dynamics of the fusion
of nuclei having deformed equilibrium shapes are
included in a coupled- channels treatment of the
reaction. In such a tre atment, inel astic excitations
are considered explicitly through the inclusion of
specific levels in the calculation, while the imag-
inary potential then represents al 1 other inelastic
processes, including fusion. Two different p roce-
dures are followed in comparing the results of
these calculations to the data. The first compari-
son (a) is in complete analogy to the foregoing
analyses . Thus, the same empirical spherical
potential for which the calculated aR reproduces
the fusion of "O+'"Sm (P = 0) will be used to pre-
dict the fusion cross section for "4Sm (P a 0) with
the definition

=- O z —O ~' —0'4' ~

The second comparison (b) will use optical poten-
tial s obtained from fits to measured elastic and in-
elastic scattering of "O by """Sm (Ref. 43).

The coupled- channels calculations we re pe r-
formed with the code EG&8" written by J. Ray nal .
Partial w ave s through l = 300 and a radial inte gra-
tion out to r = 70 fm in steps of 0.06 fm were found
to give sufficient precision in the calculation of
of fi

which at low ene rgies is the di ffe rence of

large and ne arly equal quantities, o „and o; and
Q'4+ ~

Procedure t'a) . Since EGIs uses Woods -Saxon
form factors for both the real and the imaginary
potentials, potential set (iv) in Table I was deduced
by fitting o f~s for '0 + "'Sm assuming P = 0 and

equating the total reaction cross section a „with
0,„,. The resulting fit is indistinguishable from
that shown in Fig. 1 for parameter set (i). The
radii of this spherical potential are then scaled as
(A~'~'+A, ' ') and used, together with the experi-
mental values of P, and P, (and the associated E2
and E4 matrix elements4'), to calculate v,„,= v„
—v~ —v~ . The result, plotted as a ratio v, „,(154}/
v, „,(148), turns out to agree within 10%% with the
static calculation [Eq. (7), curve (d) in Fig. 7].
(Since the 6' state is not strongly excited relative
to the 2' and 4' states, it seems that its inclusion
in the calculation would not change the above re-
sult. ) It is quite probable, however, that this re-

markablee

agreement betwee n the two calculations
is fortuitous and therefore does not imply that dy-

namicc

effects, such as those estimated clas s ical 1y
in the previous system, are correspondingly
small. A comparison at 60 MeV of o,„, calculated
for a deformed "Sm nucleus, but with and without
the coupling to the excited states, indicates that
the dynamic aspects of the fusion process decrease
the cross section from the static value by a factor
of about 1.7. This compares favorable with the
factor 1.5 estimated in Sec. IV.

Procedure (b). In the foregoing procedure, the
real and imaginary potentials were chosen such
that a„rep roduces the fusion cross section for
"O+'~'Sm (P = 0). Calculations of the elastic and

inelastic scattering using these potentials, expe ri-
mental values of P„P4, and the associated rota-
tional model matrix elements M(EX) would not re-
produce the measured elastic and inelastic cross
sections. Since precise experimental data for "O
+ '~' "Sm scattering are avail able, ' it is of inter-
est to determine the potentials which, in a coupled-
channels anal ys is, fit the scattering. A comp ari-
son of the resulting values of 0„-a; —0,.with a f„,
(experiment) will then give an indication of the ex-
tent to which fusion dominates the inel astic pro-
cesses.

The fitting procedure began with an optical po-
tential found to fit 70-MeV "C+ Nd inelastic scat-
tering" and B(E2t) and B(E4t) values from Cou-
lomb excitation. "' Nuclear deformation param-
eters were obtained from the B(EX) values by use
of the rolling model ' to relate the nuclear inter-
action surface, R„=r, (A, ' ~ ' + A, ' ~ ')[I + P,"Y-(8 )
+ p,"Y,o(8) + ~ ~ ~ ), to the Coulomb charge surface of
the target, Rc =rcA, '"[I+ P, Y~o(8) +P, Y„(8)+~ ].
As the optical model parameters became better
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defined by searching on the "0+'"'"'Sm data, "
slight changes were made in the B(EX) values to
obtain better fits to the inelastic data.

Final optical model parameters and M(Ea) values
are shown in Tables II and III, respectively. 'The

corresponding fits to the 72-MeV '0 data are
shown in Fig. 11 for the '"Sm target and Fig. 12
for the "Sm target. An attempt was made to find
a common spherical optical potential for both tar-
gets but, as can been seen in Table 0, we require
a different imaginary potential for each target. A
similar finding for "C inelastic scattering for Nd

isotopes has previously been reported. 46 Evident-
ly, the elastic and inelastic scattering of "0by
the Sm isotopes (as "C by the Nd isotopes) cannot
be described simply by different deformations of
a common spherical potential.

The M(E4} values found to fit the 72-MeV "0
data (Table III} are consistent with previous Cou-
lomb excitation measurements. "' We found that
M(E44) for '"Sm was quite sensitive to the 4'
cross section beyond 80' c.m. and this is illus-
trated in Fig. 12 for three values of P, . Within
this range of P4 values there is no noticeable
change in the calculated 0' and 2' cross sections.
Unfortunately, the 4' state of '"Sm could not be
separated from the 3 state, and a P, value of zero
was assumed. The predicted 4' cross section for
' 'Sm shown in Fig. 12 arises solely from double
E2 excitation.

Predictions of o'„, o';, and o4. can only be made
at energies other than 72 MeV by assuming that
the optical potentials given in Table II are energy
independent. It would seem that this assumption
should be rather good (for our purposes) over an

energy range extending 5 MeV on either side of the
fit point 72 MeV. Such predictions are shown in
Figs. 13 and 14 for "0+'"Sm and "0+'"Sm, re-
spectively. In both cases, the quantity 0„-cr; —04.
exceeds the measured fusion cross section at all
energies. Peripherial processes, such as deep
inelastic scattering, quasielastic transfer reac-
tions, and sub-Coulomb transfer, are expected to
be responsible for this difference. Peripheral
processes (excluding the excitation of the ground-
state band} thus amount to -4(P/p (150-180 mb) of
the fusion cross section at 75 MeV and decrease

TABLE IH. Coulomb deformation parameters (for rc
= 1.25 fm) and corresponding M(EX) values found from
the coupled-channels fit to 72-MeV ~60 scattering data
(Ref. 43) (Figs. 11 and 12).

pC pC
M(E2 t)

{eb)
M(E4 t)

(e b2)

'4'Sm
i52g

0.13
0.25

0.0
0.048

0.882
1.894

0.037
0.354
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less rapidly than fusion as the bombarding energy
is lowered. At the fusion barrier (-65 MeV lab)
these two mechanisms are nearly equal, and at 60
MeV the peripheral processes can exceed the
fusion cross section by an order of magnitude or
more. This renders it difficult, if not impossible,
to perform coupled-channels calculations which
explicitly treat all the important channels, leaving
fusion alone to be represented by the imaginary
potential.

TABLE G. Volume absorption %oods-Saxon optical
model parameters obtained from a 0'-2'-4' coupled-
channels Gt to 72-MeV 80 scattering from 4" 52Sm

t I
V ro ao W r a

(MeV) (fm) (fm) (MeV) (fm) (fm) (fm)

Sm 20.0 1.34 0.57 20.0 1.34 0.36 1.25
Sm 20.0 1.34 0.57 34.0 1.34 0.36 1.25

0.1
0 20 40 8060 120

ec m (deg)

FIG. 11. Angular distributions for 72-MeV F60 elastic
(0') and inelastic scattering from 4 Sm {Ref.43). The
curves are the results of a 0' 2' 4' rotational model
calculation with the parameters of Tables II and III. The
3 and 4' states were unresolved in the experiment.
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FIG. 12. Angular distributions for 72-Me V 0 elastic
(0') and inelastic scattering from 2Sm (Ref. 43). The
curves are the results of a 0' 2' 4' rotational model
calculation with the parameters of Table II and Table
III.
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VI. SUMMARY AND CONCLUSIONS

The availability of precise cross sections for
sub-barrier fusion of "0with the isotopes of Sm
has enabled a detailed examination of the current
methods of calculating the effect of nuclear defor-
mation on heavy-ion fusion. The approach was to
adjust the undetermined parameters of the model
(i.e. , the potential) to fit the fusion cross sections
for one isotope and use this information to make
predictions for the other isotopes. Thus, it is
mainly the differences in the observed cross sec-
tions that are of significance. The equivalent-
spheres approximation, which considers the effect
of static deformations, accounted for the trends in
the data but overestimated the observed differences
in the fusion cross sections for the different iso-
topes when known deformations were used. Equiv-
alently, the deformations deduced from fitting the
fusion data did not vary as widely with isotope
number as those derived from B(E2) values. A
number of possible origins for this discrepancy
were examined and most of them could be ex-

Ejob (MeV)

FIG. 13. Coupled-channels calculations cr&, cr2+, cr4+,
and a~cr2+-cr4+ for 0+ Sm using the parameters in16 148

Tables II and III. The potentials are assumed to be in-
dependent of bombarding energy.

eluded. Remaining areas for further investigation
include:

(i) the relaxation of the head-on approximation;
(ii) the inclusion of zero-point motion along with

static deformation; and
(iii) further study of dynamic (i.e. , coupled-

channels) effects.

The calculations presented here (both classical
and quantum mechanical estimates) suggest that
these effects should not be neglected in comparing
the fusion cross sections for vibrational and rota-
tional nuclei. While most of the observed differ-
ences can be understood in terms of static defor-
mation, the level of comparison with the data is
now sufficiently precise that the dynamic effects
could account for as much as half of the remain-
ing discrepancy.

One technical problem with the coupled-channel
analysis is, of course, the amount of computer
time required. Further improvements in this area
would allow coupled-channels fits to the fusion
data.

Recent analyses of fusion data with heavier pro-
jectiles indicate that more than one dimension (the
separation of the nuclei) may be required to ade-
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FIG. 14. Same as Fig. 13, but for 0+ ~5 Sm.

quately describe barrier penetration. "'""
Throughout this analysis it has been assumed that
the empirical adjustment of a potential to fit the
data for one isotope effectively normalizes out for
the other isotopes any effects which cannot be
described by a one-dimensional potential. While
there is no way at the moment to quantitatively
check this assumption, it can only be noted that
the assumption should be better the lighter the
projectile.

In spite of the lack of success in obtaining pre-
cise agreement with the experimental data, it
should be kept in mind that, once the challenging
problems of understanding the reaction mechanism
are better understood, sub-barrier fusion mea-
surements offer interesting possibilities for the
investigation of nuclear structure.
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APPENDIX: FUSION MEASUREMENTS
WITH A POLARIZED TARGET

Much of the sensitivity of the fusion cross section
to deformation is lost because an average is made
over all orientations of the deformed nucleus. In
Fig. 4, o,„,(8}varies by a factor of -4000 for a 90
change in orientation. After averaging over all
angles, this change is reduced to a factor of 10
(see Fig. 5}. Since it has been demonstrated that
the deformed rare-earth nucleus '"Ho can be po-
larized and that the polarization can be maintained
in a scattering experiment, "it seems worthwhile
to estimate the effects which might be expected in
a fusion experiment. Since the deformations of
'"Ho and '"Sm are similar, a calculation was
performed in which o,„,(8) was averaged from 0' to
90' [curve (a), Fig. 15I and then from 62' to 90'
[curve (b), Fig. 15). The latter range of angles is
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expected for a polarized '"Ho target. Except for
the averaging over a narrower range of angles,
these calculations are the same as described for
"0+'"Sm aud used to produce curve (d) in Fig. 7.

As such, the predicted effect is probably overesti-
mated; nevertheless, the calculations show that a
strong variation in cross section is expected, and
they may prove useful in planning an experiment.
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