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The Tamm-Dancoff method is used to give a relativistic description of nuclear bound states; in particular we
discuss exchange effects and deformation of the nucleon meson clouds stressing the importance of the self-energy

effects. Application to hadronic atoms is also discussed.

CLEAR STRUCTURE RelatiVistic treatment of nucleon interaction, Tamm-
Dancoff, self-energy corrections to nucleon binding energy.

I. INTRODUCTION

The fundamental problem of nuclear physics is
to explain nuclei in terms of nucleons. The usual
way to do this is to construct a static potential
starting from an elementary particle Hamiltonian
and to solve the Schrodinger equation for the
state. This approach suffers from two fundamental
limitations: the lack of relativistic covariance
and the difficulties in describing processes in
which the detailed nature of the exchanged ob-
jects is required (self-energies and exchange
effects).

In order to overcome these limits a more fun-
damental formulation starting from a second
quantized relativistic Hamiltonian would be re-
quired. The obvious drawback of such an approach
is the difficulty in finding a reliable perturbation
procedure valid for strong interactions. In fact
one should compute, in addition to the properties
of nuclei, the detailed properties of physical
hadrons in terms of a few fundamental parameters.
Such an objective, which was pursued in the for-
ties and fifties,! turned out to be too ambitious
to be attained.

The purpose of this paper is the resumption of
these techniques in order to achieve much less
general results, i.e., to calculate in a perturbative
way the properties of nuclei starting from the
physical properties of the free nucleons. Since
nuclei are weakly bound objects these corrections
should be small enough to be computed at least
up to a certain degree of accuracy.

The first problem we have to face is of course
the choice of the degrees of freedom relevant to
the nucleon structure and the corresponding inter-
actions; we choose to work with nucleon and light
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mesons (7, 0, p, @, ...). The heaviest mesons
and/or more fundamental constituents of the
nucleons (quarks, gluons, ...) are expected to
play a fundamental role in the explanation of the
properties of the nucleon itself, but, due to the
fact that they may travel a very short distance
from the nucleons, they are expected to give a
negligible contribution to the properties of the
weakly bound state. In other words the average
internucleon distance in nuclei fixes the mass
scale of the relevant degrees of freedom in the
range of the less than 1 GeV mesons, and the key
assumption is that only such a peripheral meson
cloud is modified by the nuclear binding.

In order to present the method, we discuss in
this paper the case in which only 7 mesons are
present besides the nucleons (in a forthcoming
paper, in which numerical results will also be
discussed, we will use a more complete Hamil-
tonian).

The structure of the paper is as follows: In
Sec. II we give the explicit form of the Hamiltonian
and discuss the structure of nuclear eigenstates
stemming from a Tamm-Dancoff type eigenvalue
equation. In Sec. III we show how to compute
within this approach matrix elements of ob-
servable quantities in terms of the properties
of physical nucleons. As a special example
of a local current the trace of energy momentum
tensor is discussed.? In Sec. IV this method
is applied to the study of Lamb-shift-like®
phenomena for strong interactions. In partic-
ular, the problem of a nucleon in an external
long range field is discussed and the com-
parison with more standard treatment is given.
This calculation helps us to check the range
of validity of our approach. A few technical
points are discussed in the appendices.
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II. THE EIGENVALUE EQUATION

In order to be more specific let us consider the relativistic pion nucleon system defined by the Hamil-

tonian

H=2, j Ex {N (0)(=i7 T+ MIN® () + 5[$(x) $°(x) + (F ¢ ())* +m,? 6% (x) ¢ ()]

o,.a

+igN® (x)ysTON® (x) 9% (%)},

where N°(x) is the isospin } fermion field describ-
ing the nucleon with isospin index a (@ =1, 2) and
¢*(x) is the isovector pseudoscalar pion field
(¢=1,2,3). We choose to work in the Schrodinger
picture in which the field operators do not evolve
in time while state vectors do. Since we will

also be mainly interested in the structure of
energy eigenstates this time dependence will not
be of concern to us.

An explicit expression of this Hamiltonian in
terms of creation and annihilation operators is
given in Appendix A. A graphical representation
of the various interaction terms is givenin Fig. 1.

The bare deuteron state |D) can be described
within this formalism as

5= [ [ #6896, + B - S o 5
x} pLph,-nkpB) D), @2)

where | 0) is the bare vacuum state, P is the
total center of mass momentum, pt and n' are
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FIG. 1. Diagrammatic representation of the different
terms of the interaction Hamiltonian H; The dotted line
represents a pion, the right arrows nucleons, and the
left arrows antinucleons.

(2.1)

r
the proton and neutron creation operators,
foP,, P,) is the two body muclear wave function,
and spin indices are understood. To satisfy
(p|p"=26%p -~p’) we normalize f, as

J' fdapxdapz lfo(ﬁp ﬁz) | 263(-P."' 61 - 52) = 1 . (2-3)

Obviously the state defined in Eq. (2.2) cannot

be an eigenstate of Hamiltonian (2.1) because a
true eigenstate must contain an indefinite number
of particles. So in this scheme the “true” deuteron
state must be represented as

lD)=\[Z—1;(foleN) +f1|N9 N, m) +f2‘NsN1N’Nsﬂ>
+f3|N,N,N,N) + f,IN,N,m ) +++), (2.4)

where f,’s are functions (to be determined) of the
momenta of the particles indicated and Z , is a
normalization constant which assures the correct
normalization of the states.

Although the series (2.4) does not come to an
end, in order to be able to proceed we truncate it
to a finite mumber of terms; this is usually known
as the Tamm-Dancoff approximation.? We limit
the series to the terms in Eq. (2.4) which, as will
be seen later, is equivalent to expanding the wave
function up to terms of the second order in the
coupling constant g.

In order to calculate the f;’s and the binding
energy of our system we use the eigenvalue equa-
tion

(Ho+H,)|D)=E,|D) (2.5)

with E = (M2 + B?)'”2 and project it on the states
of our expansion. In this way we obtain a set of
coupled homogeneous equations which allow us to
express f, , 3,4 in terms of f, and E;, which are
finally determined by a homogeneous integral
equation. In Eq. (2.5) an additive constant in
H,+H, is understood such that the energy of the
physical vacuum is zero. This means that vacuum
self-energy diagrams must be included in E,. Such
a choice guarantees, of course, the correct rela-
tivistic transformation of the energy and momen-
tum.

Actually we get the system

(E1+E2)f0— Df0+fl<N,N|HI|N’ N’ 7r>
+fAN,N|H,|N,N,N,N,n) =0, (2.52)
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= A f1+folN,N,m|H|N,N)+ fo(N,N,n|H;|N,N,N, N) = Byf 4+ fL(N,N,m,7|H/|N,N,m)
+f4N,N,7|H;|N,N,n,m), (2.5Db) +fo(N,N,n,7|H,|N,N,N,N,n), (2.5€)
"Azfz+fo<N’N1N’N’”]H1‘N;N> with

+f3(N,N,N,N,7|H,|N,N,N,N)
+f4<N,N,I‘—],N,TrIHllN,N,ﬂ,ﬂ), (2.5¢)
= Bofs+f (N, N,N, N |H,|N, N, 7) where the symbolic matrix elements stand for,

+f,(N,N,N,N|H,|N,N,N,N,n), (2.5d) e.g.,
J

A =E,—F,~E,~w, Ay=Ey~E ~E,~E,~E,-w,
Ay=Ep-E, -E,~-E;~E,, Ay=E,=E =E,=w, —w,,

f N, N|H,|N,N, 1) = 3 Iffff d3pld31,2d3p3d3;<1d8,¢2ft;.b-7(§”52,'p's)(mbl-f.lb‘;»zH,a%sb%:b%t]6)
a,b,y
(2.6)

to be evaluated by means of the expansion for H, given in Appendix A. The solution of the system (2.5) is
given up to second order in g by

f1=foN,N,n|H;[N,N) /A, +0(g), (2.7a)
f2=foN,N,N,N,n|H,|N,N)/8,+0(g", (2.b)
fs=folN,N,N,N, = |H,;|N,N,7){N,N,n|H,|N,N) /(A,45)

+fo{N,N,N,N|H,|N,N,N,N, 7 ){m,N,N,N,N|H,|N,N) /(A,4,) +0(g?), (2.7¢)
fa=fo(N,N,m,7|H,|N,N,n){m,N,N|H,|N,N)/(A,A,)

+foN,N,n,|H,|N,N,N,N,n)(m, N,N,N,N|H,|N,N) /(8,4,) +O(g?), (2.7d)

where f,and E;, as a consequence of Eq. (2.5a), satisfy the equation
E +Ey=E)fo+fo <N,N;11|AHJ|N,N) ofy (N, N, N, IZ,ZHIH,|N,N) 0. (2.8)
1

Equation (2.7) gives f,’s in terms of f, algebraically. As an example we find

Y 1/2
L € EYo g P _T T T 1 M \! ( M ) 1
fi (k,, Ky Ky) (2,,)35 (P -k, -k, ks)\/?w;a (E1;> 4,
1

Es 1,
X [;l'tl'ysT“ Pt, fol P -K,, K,) + antisymmetrization]. (2.9)
Equation (2.8) symbolically denotes the integral equation (for deuteron at rest)
-> - > _ g2 f 3 1 i M
folB, =PIEE, =M+ oy ) T* 30 ; Fr E;

By T E gy up] £, —K)
A!

7> a, by o . -> o vy o
+[upys-r u{;uiyg up , L3YsT vEUIYST up]fo(ﬁ,-ﬁ) }=0. (2.10)
1 2

The first integral in Eq. (2.10) represents the con- is Lorentz invariant the same will be true for
tribution of the pion exchange between the two all the answers we will get.

mucleons, while the second and the third contain In order to give an intuitive picture of these
two self-energy terms (direct and Z diagram equations, we give a graphical representation in
contribution). The approach we are following is Fig. 2(a) for the state (2.4) in terms of the ex-

not manifestly covariant, but since the theory plicit solution (2.7a)~-(2.7d) and in Fig. 2(b) the
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FIG. 2. (a) Structure of the deuteron state. The cut
indicates where the energy pole denominators have to be
computed. (b) Structure of the Hamiltonian expectation
value. (c) Structure of the normalization constant.

representation of the integral equation (2.10).

The analytic expression of a diagram turns out

to be very similar to the corresponding expres-
sion in the old perturbation theory, except for the
fact that the energy of the initial state can be put equal
toE, and then it must be averaged with the amplitude
foo The cuts indicated show the points of the dia-
grams in which intermediate energy denominators
must be computed.

Of course in Eq. (2.10) we have logarithmically
divergent self-energy diagrams so that a sub-
traction procedure is required. When necessary
we cut off the divergent integrals “& la Panli
Villars,” namely introducing ghost pion fields
coupled with an imaginary coupling constant to
nucleons, whose mass A plays the role of the cut-
off. These “pion fields” give rise to subtraction
terms which regularize the divergent integrals
in Eq. (2.10). In order to eliminate the cutoff
dependence in physical quantities we will replace
the bare mass M in Eq. (2.1) by M-6m, where
now M is the physical mass and 6m is a quantity
(cutoff dependent ) which will be adjusted in such
a way to eliminate the cutoff dependence. This
means that a mass counterterm is added to Eq.
(2.1):

Hgm==0m f d3% N (x)N(x). (2.11)
This counterterm will also appear in the integral
equation (2.10) in the form =2&m M/E with

J
Sm= g2 fdsk M [i'}’nfa“'ﬁa'ﬁ)’n'ru“ Uys T VRV YT %
=R 2wz Eg (M=-Ef -wg) (=M =Eg —w%)

= (the same withm, —=2).

With this subtraction (logarithmically divergent
as A —~=) all the terms in Eq. (2.10) are finite.

We remark that the presence of a mass counter-
term in the interaction Hamiltonian modifies f, to
order g? with a term

fs=(N,N,N,N|Hgn|N,N)/2,.

The analytical expression for 6m is given in
Appendix A.

In Eq. (2.10) finite corrections remain after
the subtraction of the self-mass. These contri-
butions represent the deformation of the pion
cloud of the nucleon owing to its being in a bound
state.

The solution of eigenvalue equation (2.10) could
give in principle the wave function of the system
and its energy. Of course in order to obtain a
realistic answer we should add to Hamiltonian

(2.13)

(2.12)

r
(2.1) all the meson states which are known to be
relevant to the nuclear binding. This is not our
aim at present and this subject will be discussed
in a forthcoming paper, where a variational formu-
lation of the problem will be discussed.

III. MEAN VALUES OF OBSERVABLES

Once the f,’s are known, the deuteron state is
completely determined (up to the relevant order)
and we can proceed to compute the matrix elements
of observables. We will explicitly discuss the
mean value of the Hamiltonian operator which
will give back expression (2.10) and, as an example
of the evaluation of a local quantity, we will
show how to compute the mean value of the trace
of the energy momentum tensor 6 = 6}.

In order to normalize the state defined in Eq.
(2.4) we have to multiply it by a constant Z, with
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- _LJ'J' By L MM
Zp=1- oy d%,d%, Torot, I, E

1 2

Al A2 AI
(3.1)

where S, S,, S;—the nucleon matrix elements
summed over spin and isospin—are given by

S,=-3/2M?)(M?~EE, -k K, f 2(-K,K,),

(3.2a)
Sz == 3/(2M2)(M2 + ElEz - l-{.11-{»2”'02(_ En El) )
(3.2b)
s.= Ex+ MIE, +M)
3" M
E.2 K.2 2K K,
X(CEI ry I N 7, B RS ) )
X fo("k.u 1:Ex)fo(" Ez: Ez) . (3.2¢)

The graphical representation of (3.1) is given in
Fig. 2(c). Z, does not suffer from ultraviolet
divergences and physically Z, gives (up to g?) the
number of pions inside the nucleus, as can
be seen computing the mean value of the operator
N,= f a{-‘f‘ a% d. See Appendix B for a discus-
sion of the relation between Z, and the wave-
function renormalization constant usually defined
in quantum field theory.5

We are now ready to compute the mean value
of H,

(D|HID)=Z,(D| fo+(N,N,m|f,+(N,N,N,N, 7|f,)
x[Ho+Hy +Hgpn) (foID)+ f,|N,N, 7)
+f,|N,N,N,N, m)).
(3.3)
Neglected terms in the wave function give rise
to 0(g®) terms. Using (3.1) for Z, we get
M,z '=(D|Hy|D)f 3 +(N,N,n|Ho|N,N,7) f,?
+(N,N,N,N, 7 |Ho|N,N,N,N, 1) f,2 + 28mf}
+2f,fo{N, N,m|H,|D)
+2 f,f oN,N,N,N,n|H|D). (3.4)

The first three terms on the right-hand side re-
present the average kinetic energy of the nucleons
and pions inside the deuteron and, together with
the correction from the renormalization constant,
exactly cancel the factor 2 in front of the off-
diagonal matrix elements of the interaction Hamil-
tonian.

We finally get

My=(D|H,|D)+ Y D |H, W[/ (E,-E,) + 26m,
(3.5)

where |n) represent all the possible states con-
nected to the bare deuteron by the interaction
Hamiltonian up to order g2 and E, its kinetic
energy. Equation (3.4) reads explicitly

MD= j dakIZElfoz(—k’u El)

2
v faman,_1_ mom
20i,k, E, E,
% <_54___3L)+<_Sa._iz_)+ﬁa.]
Ay A, A, A/ A,

with A, =E,~E,-wi,i,and A, =-F, - E,
- wf(.lﬂ‘(’z'

In Eq. (3.6) the first term is the kinetic energy
contribution, the terms in S, and S, are self-energy
subtracted pieces, and the last term in S, repre-
sents the exchanged pion contribution. This re-
sult coincides with the mean value of the integral
equation (2.10) and is equivalent to the usual
second order energy correction given in standard
perturbation theory.

As another example let us illustrate the compu-
tation of the mean value of a local operator,
namely 6.2 It is well known that

(27)%(D | 0|Dy= (E,? - P*)/E,= M2/E,. (3.7)

On the other hand for the theory under considera-
tion [Eq. (2.1)] one can define § such that®

6=(M-5m)N(x)N(x) +m,2p*(x) p*(x). (3.8)

Sandwiching this equation between the deuteron
state (2.4) we obtain the terms represented in
Fig. 3.

Here too, we remark that finite corrections
come from self-energy terms represented in
Fig. 3. However, we would not trust such a
finite value as a good representation of the mean
value of the energy momentum tensor trace, be-
cause this number would represent the mean
value of an observable computed in terms of the
properties of the bare nucleons and pions. The
big value of the pion-nucleon coupling constant
indicates that such a computation would be mean-
ingless.

However, we propose to compute only the dif-
ferences between the value of physical quantities
for a nucleon in the bound state and a free one.
Owing to the weak binding hypothesis such a dif-
ference is small and could be a good approxima-
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FIG. 3. Expectation value of the trace of the energy
momentum tensor in the deuteron state. The crosses
represent the points where the operator 6 has to be in-
serted.

tion for the same difference of the actual physical
quantities.

The philosophy is that the meson clouds, and
in particular the pion one, are slightly modified
by the presence of other nucleons and the contri-
bution of heavier mesons are less and less modi-
fied by the bound state situation; so that in the
difference with the free nucleon contribution they
should cancel out almost exactly. By the same
argument one can convince oneself that higher
order in g, while contributing to the structure of
nucleon itself, gives a small contribution to the
difference between a physical free and a bound
nucleon since they tend to modify its inner struc-
ture.

The actual procedure is as follows. On the one
hand we must compute the matrix element in the
given bound state. On the other hand we must
perform the same calculation on free nucleons
up to the same order in g, superpose with f,(K , K,),
and subtract from the above result. The computa-
tion of the nucleon matrix elements and the sub-
traction are carried out in Appendix C. In all
computations we have neglected diagrams propor-
tional to the volume of the space (vacuum type
diagrams) according to general prescriptions of
quantum field theory. As for the vacuum self-

energy effects, these pose no problem and can be
subtracted with the procedure indicated after

Eq. (2.5). As for renormalization constants, the
fact that a vacuum-type diagram can be neglected
is more subtle and we show in Appendix B, in

the particular case of a one nucleon state, how
they can be handled. The subtraction of vacuum-
type diagrams in renormalization constants gives
rise to suprising effects on Z,. The fact that

Z, <1 is trivially guaranteed by the infinite
vacuum-type diagrams. Once these are subtracted
the remaining Z, used in actual computation does
not necessarily satisfy this condition.

Finally it is interesting to look at the numerical
contribution of the various terms in Eq. (3.6) and
Appendix C, to the mean value of the Hamiltonian
and of the energy momentum tensor, taking the
deuteron wave function from usual nonrelativistic
approaches. In Table I we give these values for
two typical wave functions (Hulthén modified and
Hamada-Johnston; see Appendix D for their
parametrization) neglecting d wave contribution
and comparing it with the static limit.

Even if we are far from justifying the binding
energy of the deuteron, which is given by the
p, W, g, ... contribution, it is worth while to re-
mark on the sizable contribution of the self-energy
effects, and the repulsive character of the ex-
change diagrams, which is originated by the spread
out of the delta singularity in the Yukawa potential
due to relativistic effects.”

Relativistic calculations have been performed

TABLE I. Contribution to the expectation value of the
trace of the energy momentum tensor and of the Hamil-
tonian coming from diagrams of Figs. 2(b) and 3. The
two different wave functions used are given in Appendix
D. Contributions coming from self-energy diagrams are
given for each set of diagrams and total exchange contri-
butions are evaluated both in the relativistic and static
limit. Kinetic energy contributions are given for com-
parison in the last two lines. The energy units are ex-
pressed in MeV.

Hamada-Johnston Hulthén modified
0q seif 93.03 83.30
Bp selr —94.69} ~1.66 —83.44} —0-14
0c seif -5.74 -2.70
04 seif —2.76 -1.28
Og seif 0.55 —-0.45
00t seif -9.59 -3.66
Bexch -2.14 -3.01
Bexch static 2.20 1.99
Hos 8.74 1.21
Hexen 0.26 0.63
Hexch static -2.20 =197
Okinetic — 2 M -12.24 -9.90
Hyinetic — 2 M 13.87 10.43
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by Levy,” and Partovi and Lomon.® Their main
interest is in vertex and meson propagator ra-
diative corrections (which are rather small) and
in relativistic exchange where they point out the
existence of a repulsive core. As far as the ex-
change is concerned, apart from the qualitative
agreement, the result is rather sensitive to the
structure of the energy denominators (we use A,
against prescription of other authors; see for
example, the relativistic exchange calculation
by Ueda and Green®). Self-energy effects of the
Lamb-shift type are not taken into account in the
literature and give a substantial contribution to
nuclear forces.

We further stress that in both the relativistic
case and in the static limit (D |6|D) and (D |H|D)
have different structure and are identical only
on true eigenstates.? In our case we have chosen
a good approximation for the physical state but
a bad one for the Hamiltonian (only pions have
been taken into account) so we cannot compare
the results. The nonrelativistic connection be-
tween (9) and (H) has been discussed in Ref. 2.

IV. EXTERNAL POTENTIALS

In this section we want to study the strong cor-
rections to the binding energy in the presence
of an external potential V(x). This is useful in
order to compare the method given in Sec. II with
the usual treatment of the Lamb-shift effect'® and
allows an investigation of some interesting phy-
sical systems such as antiproton in the Coulomb
field of a nucleus.

In order to be more specific let us have an
electrostatic potential A, =[0,eV(x)]. To de-
scribe the situation we have to add to the Ha-
miltonian Eq. (2.1) the following terms:

1+73
2

Hop = j dxeV(x)p'(x) ( )tb(x)

+€505¢ V(%)9® (x)¢# (x)
+e?[ V(%)) ¢*(x)p%(x) = p*(x)p*(x)] . (4.1)

In this case we expand the field operators in
terms of eigenfunctions of the Dirac and Klein-
Gordon equation in the presence of the external
field A, so that now the creation and annihilation
operators create and annihilate particles in the
presence of A .

One can easily convince oneself that the Tamm-
Dancoff procedure developed in the previous sec-
tions gives precisely the same answer as per-
turbation theory around the eigenstates and eigen-
value of H, +H,.

Following the techniques of Ref. 10 it is possible
to cast this expression in the final form

(n[H oy |7 = [H +H 1) +(n ,Hh\t [n)=E,+aE,
(4.2)

")
)-om,

(4.3)

where I, =(p, —eA,) and x, =(k, —eA ) and
where we have introduced the four -dimensional
integration d*k in order to deal with the more
compact covariant propagators. The two terms
in Eq. (4.3) correspond to the two self-energy
diagrams of Fig. 4; in Fig. 4(a) the intermediate
state is a cHarged nucleon in the external field
plus a 7°, in Fig. 4(b) we have a neutron and a
charged pion. The integral in (4.3) can be han-
dled using the techniques of Ref. 10; we regularize
the ultraviolet divergence and shift the & integra-
tion carefully treating the terms coming from the
noncommutativity of the potential with the mo-
mentum. The procedure is cumbersome, but
straightforward (more details are given in Ap-

ext

with

1
7s (H‘H‘M)Ys

g= £ I gy 1
AE= Gy “(kz—mf)(”

1
Ys(p-F-m)"

+ (—5%)4Id 4k(x2_1m"2)<n

\ N
\ n° \'m
' + ] e coesnennne
/ /
a’, ’/’
[ P
(a)
\\\ﬂ - \\\ﬂ
\ \/\Ax
r\f\..)( + | o
II !
-7 7
P P

(b)

FIG. 4. (a) Self-energy contributions for an antiproton
in a Coulomb field. A sum over an infinite number of in-
teractions with the external field is understood. (b)
Charged pion contribution to the antiproton self-energy.
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pendix E) and gives the final result

),

(4.4)

AEn=leu J;ldzP(z,u)<n|p, —i—[p‘, V(x)]

where P(z,u) is rational in z and u and is given
in Appendix E, and

A=[22M?+(1 -2)m 2 +2(1 —2)uH, ] (4.5)
with
H =H, +V(x) =(n|H,+V(x)|n). (4.8)

The expression is very similar to the one found
in the electrodynamic case the main difference
being, apart from the form of P(z,u), the absence
of infrared divergences and as a consequence of
a term similar to the Bethe logarithm.

Expanding Eq. (4.4) in terms of H,,, the zeroth
order gives the contribution to the binding due
to the physical proton radius and magnetic mo-
ment. These quantities are evaluated here in the
second order perturbation theory and agree with
the result given with a different method in Ref.
11. However, as already said, these quantities
cannot be taken seriously and actually we know
from Ref. 11 that the result is rather different
from the experimental value and that higher order
contributions give rise to big corrections and
worsen the situation. The quantity to be evaluated
is the difference in the binding of the antiproton
due to the fact that its magnetic moment and ra-
dius are in turn modified by the potential itself.

In order to do this, we have to expand the ex-
pression analyzed in Appendix E to higher order
in the external field. The techniques are again
those used by Ericson and Yennie and the leading
corrections are of the order Z¢. This could give
sizable contributions in the antiprotonic atoms
and detailed calculations are in progress.

This particular application helps us to under-
stand the validity of our general approach. In
Sec. II corrections due to the propagation of in-
termediate states in the field generated by the
other nucleon were not taken into account. Ac-
tually in the language of Secs. II and III this would
correspond to a sum of an infinite number of
diagrams. However, these two methods give
comparable results when the virtual particle is
massive in contrast with the electrodynamic case,
as the following argument shows.

Following Yennie'? we write the ratio of the
first order to the zero order correction coming
from expansion in power of the potential as

_J‘l » x(1 =x)(V)M
0% ) P M (V) Mx(l - ) +(1 -x)m,?]

(4.7)

when m, =0 (the electromagnetic case) the in-
tegral is dominated by the region x= 0 and gives
5= 1. When m,#0 the full result is 5 ({V)/M)I
with =1.19 for the actual value of the pion mass
and strongly decreasing with the increase of the
meson mass, so that 6 <1 and it makes sense

to stop the power expansion.

V. CONCLUSION

We have proposed in this paper a completely
relativistic approach to the problem of weakly
bound states which takes into account the modifi-
cation of the structure of the component particles
due to the binding. In particular, this method
does not rely on the smallness of the underlying
coupling constant which defines the theory, but
only on the weakness of the binding energy. The
method has been illustrated on the pseudoscalar
pion theory which is known to provide a non-
realistic description of nuclear interaction. The
inclusion of heavier mesons is straightforward
and the problem of computing deuteron properties
from a fundamental realistic Lagrangian is under
study.

Within the approach we have shown how to com-
pute physical quantities, in particular matrix
elements of physical observables with a particular
emphasis on the Hamiltonian and the trace of
the energy momentum tensor. The study of matrix
elements of vector and axial vector currents can
be developed along the same lines and is currently
pursued.

An interesting point which emerges from this
approach is that self-energy effects, which are
the result of the deformation of the meson cloud
of a bound nucleon, turn out to be as important
as the exchange effects usually taken into account.
The approach proposed here is shown to be equi-
valent to the normal perturbative one when ap-
plied to external field problems. In particular,
the standard treatment of the Lamb-shift is re-
produced.

APPENDIX A

We introduce here the explicit expression of the Hamiltonian (2.1) in terms of creation and annihilation
operators in momentum space, and give as an example the calculation of the self-mass term 6m for a

nucleon at rest. Equation (2.1) can be written
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H=H,+H, (A1)
with
— 3 t T at _a
Ho-; J dk[EL(bS by+ad ag + w,al'af] (A2)
and
. 172 1/2
__& IIIsazsl(M)(ﬂ
Hy = G Z;y eravar=(5) (5
x [agb3'0y T ysTu} 6% (k- F+ ) (A3a)
+afbi dyugvs T} 6%k - B - D) (A3b)
+agdips i s T u 0k + - D') (A3c)
+agdydfi vy vy 65 (k + 5+ D) (A3d)
+a2"p3 b3 vs 7 ub 6°(~k - P+ P') (A3e)
+ag by dY v 70} 63—k - B - §) (A3D)
+af' gl vy vs T uy 05k + 5+ ') (A3g)
+aftdgdy 7 v 6%~k + 5 - B)] (A3h)
r
where a, a' are the pion annihilation and creation ple let us study the self-energy contribution
operators (d, d') and (b, b') are the antinucleon
(nucleon) ones, x and v are the usual four com- 9
= H M-E A4
ponent Dirac spinors, and summation on polariza- om Z,,: KNI 'ln)i /( " (A4)
tion indices is understood. ¢=1,2 and @=1,2,3
are the isospin indices of the nucleon and pion, where # runs over all the allowed states, i.e.,
respectively. The matrix elements can then be |N, 7y and |N,N,N,N, ). Itis lengthy but
computed using the commutation relations of the straightforward to obtain Eq. (2.12), and sum-
creation and annihilation operators. As an exam- ming over the intermediate spin we get
1
2
=g J’ 2 M S1 + S2 e — A5
bm=lim 505 47 ] K'dk Zer[(M_E_w) -E-w) ~(@r=w) (A5)

with w, =(m, 2 +E)?, w,=(+)"V?: E=(M*
+£9)Y?% and s,=3/2(E/M~-1), s,=3/2(—E/M~-1).
This expression is easily reduced to

2
om =1xifr: (—Z%)M[l(m,) -I(0\)] (A6)
with
Knax k’de
= um [ gy @0

i.e.,

1 1 2 K
I(m,) = 2 [(g- 5) - % In(n) +-;l In(n) +1n ﬁ‘

172
- Tan-n»2 cos™ L] (A8)
2 2
with n=m,2/M?,
1. K .. A1 1
== —_—= - —_— - -
() 4[1n TR i O(Q] (A9)

then
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3¢ M[ A 1 n.1 n*
— = L2444 .
ém—_EZn 4[lnM R 2lnn 41n17

1/2
~nn=nt/9)2cos™ -] (A10)

in agreement with the more standard explicitly
covariant evaluation of the self-energy contribu-
tions .3

APPENDIX B

In this appendix we want to discuss a few points
in connection with vacuum effects in normalization
factors and the relation of these factors with the
renormalization constants in field theory. For
simplicity we will discuss the case of a single
nucleon. In the more complex case of a bound
state the same arguments can be carried through.

The physical one nucleon state [eigenstate of
Eq. (2.1)] can be written as

|N>pn=ZNl/2|N)+¢X|H1N>+¢2lﬂ:N,N’N>+ )
(B1)

where |N),, is the physical nucleon state and the
kets in the rhs of Eq. (B1) are bare states;

¢4, d3, . . . can be computed by the eigenvalue
equation

(Hy+Hp)|N)yy=Ey|N)p, (B2)

for example, in a power series in the coupling
constant g. The value of Z, is graphically repre-
sented in Fig. 5(a). The diagram (@) in Fig. 5(a)
is obviously proportional to the volume of the
space. However, in the computation of the ex-
pectation value of any observable O (for simplicity
bilinear in the nucleon fields) we have to compute

wSN|O|N)u=Zy(N|O|N)+ ¢ XN, n|O|m,N)

+¢,XN,N,N,n|O|N,N,N,my+- - - .
(B3)

The last term indicated in Eq. (B3) contains a
contribution proportional to the volume of the
space which is depicted in Fig. 5(b). It is evident
that its contribution is exactly canceled by the
vacuum term in Z,.

As for the connection of our normalization factor
Zy with the wave function renormalization constant
in quantum field theory, let us recall the definition
of the latter

ph(owlN)pn:Z-NUZuN; (B4)

where [0)‘,h is the physical vacuum. In analogy

(c)
FIG. 5. (a) Structure of the normalization constant.

(b) Vacuum-type contribution to the mean value of an
operator. (c) Structure of the vacuum.

with the one nucleon physical state the vacuum has
the following structure:

]0>,h=Z,,1/2|0>+<P1iN,I_V,ﬂ>+¢2|N,N>+~ v,
(B5)

where ¢, and ¢, can be computed as the f,’s in
Sec. Il and Z,, is the factor which guarantees the
normalization of the physical vacuum. We repre-
sent Eq. (B4) diagrammatically in Fig. 5(c).

Using this equation the contribution to Z
comes from the same kind of diagrams which con-
tribute to our Z ,. The only difference is the rela-
tive sign of the two which turns out to be positive,
giving rise to the usual ultraviolet logarithmically
divergent expression, to be handled with the stan-
dard regularization techniques. In Eq. (B4) we
have two vacuum-type contributions. The first
one comes from Z,, the other one is contained in
the term

@¥¢y(m,N,N|¢y|n,N,N,N) . (B6)

It is easy to check that they compensate each
other.

In our expression, Eq. (3.1) the sign of the Z
diagram terms [Fig. 5(a), ¥]is negative and Z ,
turns out to be finite:
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Z 1= g2 mp J"’" M 2k? M dk due to the fact that it is proportional to the effec-
¥TETT e M? ) [(E+wP-M? E w tive coupling constant g2/47 m 2/4M?=f2=0.08.
APPENDIX C
3g m,20.374 In evaluating the mean value of the energy mo-
== arZ2 Mm%z (B7) mentum tensor we give separately the contribu-
tions from the different terms in Fig. 3. The
first one coming from the term ¢ with the cor-
Its value is numerically small, (Z,-1)=0.124, rection due to the normalization constant is
J

M? S S S M?  M? m2) S M M? m2) S
= 3 3 - —1 _2_ —3 4 =1 Ty 2
% de kad ke ElEzw{[ MD(Alz MR )+<E w )52 +< E, ' E, @ w/ap

2 1
2 2 2
X(M_ LM ﬂ,_) _§,~.2._]
E, E, w A

M2 (S, ) (M"’ m2> S, (2M*  M* mz) S
—_ L — .
[E \Au + E, 0 ), +( 7, + E, + —J-Azfz] . (c1)

The contribution coming from Fig. 3(b) is

2 2
BD=ZII d%,d’k M A_l_.( Sq + Ss _ Sy ) (C2)

*E\E,w E; \A4, 8,8, Al
where
1 - - - - -
S,= Pa (k2 +k K)f 2 (ky, =k)), (C3a)
1 - - > - - - -
Ss = Wf(kxz + k],kz)fo(kp - kl)fo(kz) "kz) ) (C3b)
and from Fig. 3(c) is
M? M?2 S S S
- 3, 73 4 4 _ 4
6.=2 ,f J kAR o E, [(M T4E)a, T Mp-4B)a, T (2E)B, ] (C4)

We stress that in the absence of the second term in the last equation which corresponds to the self-mass
subtraction, the full expression would diverge logarithmically with coefficients proportional to (M, - 2E,).
The fourth diagram contribution with Fig. 3(d) is

_ o M2 (M? S, M2 [ S, S, S, S,
9"—2‘”' d®k,d szE w}E < v + AzAs) + T, [AlAa - (—252)%, + A:Aa - (-ZEz)Az,]}’ (C5)

where

A, =M, - 2E, - 2E, and S, =3/2M (K2 + K, K, ) 2(k,, -K,) . (C6)
The last contribution [Fig. 3(e)] is
m2 S S S S S
= 3 3 ] 1 2 _ 1 - 2 3
6,=2 ffd kid"k 7 E o w [A1A4 Y &a, T Cewla, C FZea, T AIA‘,] (€N

with A,=M - 2w - 2E,.

APPENDIX D

In this appendix we give two of the more standard and simple analytical parametrizations for the s wave
part of the deuteron wave function, which we use in Secs. II and III, to compute the mean value of the
Hamiltonian and of the trace of the energy-momentum tensor.

1. Hulthén modified'*
Yr)=N (e —e )1 —e*")1=e™)/r, (D1)

where N, is a normalization constant N, =0.2583 fm™/2.
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a=0.232 fm™, d=1.9 fm™, g=2.5 fm™, ¢=1.54 fm™. (D2)

The Fourier transform is given by

n (2 1 S SR— :
"’(k)'N1<n) {(k=+a2)'(k=+d=) [c+ aF+ 2] [c+ar+#1" [@+gy+#*]

1 1 1
“l@rgr+#] [(cta+rgi+#] [(ctg+dr+ k’]} ' .

2. Hamada Johnston truncated!®

-y
zl’(”)-‘-Nze—y-[l -] 28, em™ forr>r,,
=0

=0 for r<7,, (D4)
where N, is a normalization constant N,=0.2903 fm™/2 and
7,=0.3 fm, 6=3.8 fm™, «=0.232 fm™, B,=0.884, 8,=-0.011, B,=-1.245, B,=0.350. (D5)

The Fourier transform is given by
P(k)= N( ) z;[f(k a+im,)B; =I(k,0 +im,+05)B,; e®c] (D6)
with

Ik [y sin(kr,)+ k cos(kr,)] . (D7)

yY)= W
APPENDIX E

In this appendix we evaluate the contribution AEY and AE! coming from diagrams in Fig. 4(a) and 4(b),
respectively. Following Ref. 10 we write

—ﬁi atam) 4 (nlys@ —K+m)y.In)
AEy= 81r2f @ | 8 L oy gty vy e el (E1)

where for simplicity we have neglected in the denominator terms which give rise to the hadronic magnetic
moment interaction with the external field. Bypassing the complex techniques which allow us to handle the
shift (¢ —zII) in the denominator, the final result is expressed in terms of the commutator I1 (11, , #]

=~p,[p;, eV(x)] and can be cast in the form given in Eq. (4.4). The algebraic function P(z,x) is given by
the expression

P(z,u)= =2(1 =2)2%(1 —u)u [1 =L =2Ime’ +22(1 =2)(1 =u)+2%(1 =) (E2)
’ 22M%+ (1 =2)m,? ’
The zero order result is obtained by setting H,,=0 in the denominator of Eq. (4.4) and is given by
AEY= (n|{ps,[5:, V) m)3 €} Za] $,(0)|2(r}* (E3)
with
11 o2 . 3 1/2 1.16
(V= — = & —~Bn? 5.2 - _En2 n -fn .
ry)= 387 [471 7 (6+ 31 =59+ (27 = 37°) In(n)+ (=54+ 34n =57 )(4,1_,72)375‘303 ( 3 )]ae e (E4)

and n=m,2/M?. Analogously the diagram 5(b) gives
2
g2 fl IA (1=¢) f (‘an—d—Zﬂ%ZMlnXl—Z)
AET=2— d dK | d*k -0om . ES5
A o A [K=(k=A=2l1)? =21 =2)H,,+2?M?+ (1 =2)m2]® m (E5)
Shifting as before and performing the multiple integration we get

AE;=2—;’za [4,(0)|2(r$® (E6)

with
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(7 >—1\716 [(40 49n+10n"’)( 17)

— (140 - 2107+ 847n% = 107°) (

These results for (7} ) and (r}) ) are in agreement
with those given in Ref. 12 for the nucleon form
factors; however, as already said they are not
reliable since they are the first order expansion
of a meaningless perturbative series. Actually
we are interested only in corrections to these ex-
pressions due to the external field distortion. If
we expand the denominator in Eq. (4.4) the first
correction is proportional to the mean value of
H,_a(Za)?; however, since the main contribution
comes from the relativistic ultraviolet region it

+(3 =129+ 59?)In(n)

n S/ . =5.51
——4n_n2)3/2cos (—2 - (ET)

r

is possible to prove only that the real behavior is
of order (Za). This correction is rather impor-
tant, especially in heavy antiprotonic atoms,
where the strength of the field induces strong dis-
tortions of the mesonic cloud. The full result is,
however, rather complicated since it depends
both on the denominator expansion in Eq. (4.4) and
on the other higher order contributions coming
from the noncommutativity of the field with the
momentum operator. An accurate analysis is in
progress.
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