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Formulas for pion-nucleus inelastic scattering are presented in a form that may suggest experiments to isolate
various contributions to the reaction, including S-wave, P-wave spin and nonspin flip, and effects of nucleon Fermi
motion. Adopting a form of the distorted wave impulse appoximation, we obtain an expression for inelastic cross
sections that clearly separate the pion laboratory energy (E), three-momentum transfer Iq), and scattering angle (8)
dependences. The result is similar to the separation of longitudinal and transverse form factors in inelastic electron
scattering. By varying the energy of the incident pion, but working at fixed q, one can determine whether a given
nuclear excitation has natural or unnatural parity. By working at fixed 8, and varying E and thus q, one can isolate
different reaction contribution. =.pin, scalar, and "convection current. "We also discuss the potential usefulness of
studying the energy dependence of angle-integrated differential cross sections at fixed energy loss. The predictions of
our formulas are in good agreement with recent data on natural and unnatural parity excitations in "C(m,~')"C~.
Thus, this approach may be useful in analyzing future data in which the final nuclear spin is uncertain. Future
experiments with selective q, E, and 8 variations to separate nuclear structure from reaction-mechanism
uncertainties are suggested.

NUCLEAR REACTIONS, NUCLEAR STRUCTURE Pion inelastic scattering for
T„=100to 300 MeV; simple formulas for calculating der/dQ(q, E, 8) either at

fixed E or fixed q; effects of Fermi motion.

I. INTRODUCTION

Comparison of available pion inelastic scattering
data on light nuclei with theoretical predictions' '
has shown that present theoretical approaches
based on the distorted wave impulse approxima-
tion (DWIA) are most often capable of providing
satisfactory fits to the data. Shapes of angular
distributions are mell predicted and overall re-
normalization factors, presumably resulting from
inadequate nuclear wave functions, appear consis-
tent with those required in electron or proton-
nucleus inelastic scattering. The semiquantitative
agreement between theory and experiment may,
however, seem fortuitous because higher order
corrections and special effects, such as crossing
associated with pion absorption and reemission,
are obviously not small nor are they explicitly
contained in the DWIA.

The pion-induced nuclear excitations studied to
date have been associated with collective states
or final states whose quantum numbers are such
that, in a particular region of momentum transfer,
they are predicted to be relatively strongly ex-
cited because of the particular spin and isospin
properties of the pion-nucleon interaction. How-
ever, for those states where a one-step DWIA
mechanism does not predict strong excitation,
multistep processes may well be important. For

such states, comparison of results with data ob-
tained from other projectiles, particularly protons
and electrons, is necessary before conclusions
regarding nuclear structure can be reached. Of
course, it may turn out that some states seen in
inelastic pion scattering cannot be easily seen
using other projectiles.

Features that would be useful in future (w, w')

studies could be determined by explicitly separat-
ing the pion laboratory energy (E), three-momen-
tum transfer (q}, and scattering angle (8) depen-
dences of some DWIA expression. Such an ex-
pression could be used to give one confidence
regarding the dominance of selected reaction
contributions and also provide information about
the spins and parities of the nuclear excitations
under investigation. One purpose of this paper is
to provide such a test and apply it in a few exam-
ples to demonstrate its scope and predictive
power.

In obtaining our results, we have been motivated
by the analysis of electron-nucleus scattering.
To show how some of the basic ideas have already
been useful in this case, we briefly discuss the
assumptions associated with and utility of the
Rosenbluth plot in inelastic electron-nucleus
scattering. The differential cross section for
inelastic electron scattering, assuming a single
virtual photon exchange (one-step process}, can
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be written in the form'

Fz'(q')+
~

z+ tan' —~Fr'(q ) . (1.1)
2

In obtaining this particularly simple form, the
assumptions of an infinitely heavy nucleus and
q&& ~ (electron energy loss} have been made. The
longitudinal and transverse form factors, F~ and

E~ respectively, contain all the nuclear structure
information and are functions only of q. Thus, by
working at fixed q and ~, but varying the initial
electron energy so that the scattering angle (8}
varies, one can reduce E|l. (1.1) to the form

y=mx+ b, (1.2)

where m and b are constants and x= [-,'+ tan'(8/2)].
The slope of the straight line, Eq. (1.2), obtained
by varying E„the initial energy of the electron,
and 8 (for fixed q), gives the contribution of the
transverse form factor. The extrapolated y inter-
cept for x=0 gives the longitudinal form factor
contribution, Deviations from the straight line
would be evidence of non-negligible higher order
processes (such as two photon exchange). A non-
zero longitudinal form factor contribution is evi-
dence that a natural parity non-spin-flip transi-
tion is involved: &T=0 or 1 states being equally
probable from an investigation of the transition
operator alone. A zero contribution from the
longitudinal form factor and an appreciable trans-
verse form factor contribution most often indicate
an unnatural parity spin-flip transition. Starting
from a T = 0 target, such final states usually are
assumed to have T~=1 because of the strong
dominance of the isovector magnetic moment term
in the transverse form factor.

Initially it may seem unlikely that such an
approach can be used for pion-nucleus inelastic
scattering, which at medium energies is certainly
not dominated by a single real pion absorption and
subsequent reemission. However, using the DWIA

and fixed scatterer phase shifts, it is possible
to obtain a simple expression for the energy and
angle dependence of fixed momentum transfer
pion-nucleus inelastic scattering. We will demon-
strate that extra energy dependences associated
with projectile absorption and variations of the
elementary amplitude affect most states equi-
valently and thus effectively disappear in ratios
of data. We also find that including such compli-
cations in model calculations often results in their
effectively canceling each other.

In Sec. II we discuss the formulas and assump-
tions used to obtain our basic expression. The
result can be applied to test whether a state is
excited by the DWIA reaction mechanism and to
determine the amounts of spin-flip involved in the

excitation process. Other contributions to the
reaction mechanism can be separated also. Vari-
ous corrections to the basic formulas are discuss-
ed and estimated, and techniques for experimen-
tally studying them are suggested. In Sec. III,
the predictions of the fixed q, variable energy,
and angle expression are compared with the ex-
perimental excitation functions for strongly ex-
cited states whose angular momentum and parity
are well known. We find good agreement between
theory and experiment, suggesting that our basic
expression can be used with some confidence in
the future, both in reaction-mechanism studies
and for determining the spin-flip character of
final nuclear states reached in (v, v'}. We also
present results showing the energy and state de-
pendence of various terms entering in the basic
formula. Some differential cross sections obtained
using the formulas put forth in this paper are
compared to those obtained using a more complete
(but perhaps less instructive) momentum-space,
finite-range DWIA code. In addition, we suggest
future experiments of possible interest and make
some predictions based on the formulas obtained
in Sec. II. In Sec. IV, we briefly state and discuss
our conclusions.

II. BASIC FORMULAS AND PROCEDURES

A. Isolating the q, E, and 0 dependences in the inelastic
transition amplitude

The differential cross section for pion induced
excitation of an infinitely heavy nucleus from the
initial state

~
i) to the final state

~
f) can be written

as
dv (, (, )

E(k')k'
dD ez z

' E(k)k

x [(f [F,. , (k, k)[i)]', (2.1)

where P~ (Pa) denotes the pion' s initial (final}
charge and k (k') denotes the pion' s initial (final)
momentum. We adopt the convention of natural
units (lf = c = 1}and use free particle relativistic
kinematics for the pion, where E'(k) =k'+ m, '.
The exponential function of momentum transfer,
q=k'-k, is the approximate center-of-mass
correction for using harmonic oscillator shell-
rnodel wave functions, where b is the oscillator
parameter and A is the atomic number. In general,
the pion-nucleus transition operator Il is a many-
body operator on the space of target nucleons. Our
major assumption in this work is that the DWIA
is an adequate description of the pion-nucleus
interaction for intermediate-energy. inelastic
scattering. (Like the one photon exchange assump
tion in the electron scattering, one hopes to
critically test the DWIA assumption by varying
E and 8 appropriately. ) Within the DWIA, the
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(f(P,, , (k', k}~P
"

dr'dr(l't( ~, (k', r')

x &f (t. ..(r', r) (t&+I')„(k,r),
or in momentum space as

(f ~F,. ~ (k', k) ~iP

=
J d)i'd)(. @( '. (k' v')f tftz

x&f ~t, , (~', g)~i&+!, (k ~)

(2.2a)

(2.2b)

pion-nucleus amplitude may be written in configura-
tion space as

where )f('((') [4't ~] denotes the initial (final) pion
distorted wave function. Equations (2.2a) and
(2.2b} are, or course, equivalent representations,
but momentum space offers a flexibility for in-
cluding the nonlocality of the pion-nucleon inter-
action.

For the single-nucleon operator t we adopt the
nonlocal, separable fixed scatterer parametri-
zation of Piepho and Walker, ' which has been used
to study elastic and inelastic pion-nucleus scat-
tering. ' In the fixed scatterer formalism, the
transition operator is local in the nucleon conf igura-
tion space coordinate, thus allowing us to write

r. . (' «&= Z I ) )(xr P, (.r. r) ~ -«)&'I(I (&(r(' &)r-
+ [C 5~, (i(K -K)+ D(&(t)s ) (t& ~(t)g& o(K -'K)] &lm' ~I ~lm&I F(,(Q„,) 1 ) ( „),

(2.3}

3A, =I[la+ (t+ 1}P]+2[ly+(l+ 1)5]I,
3B(=I-[la+ (l+ 1)ti]+ [ty+ (t+ 1)5]I

3&)=[ (a tt) —2(r--5}]-,

», = [(a-tf) -(y-5)],

(2 4)

where f and I denote the pion isospin and angular
momentum operators. Note that p and o are
isovector and vector-isovector operators on the
nuclear space. The coefficients A, B, C, and D
contain the energy-momentum dependence and
are linear combinations of the off-shell fixed
scatterer pion-nucleon amplitudes, f)~ The
specific relations are-

(2.7}

p(x}= 8(x-r,),
=3

p(x) = g r t j)r(x-r,),

ir(x)= f r(()&)(x-r,),
jJ.

r(i«)= gr()) tj) (&( -r,),

in terms of the nucleon Pauli spin (a) and the
isospin (v) operators. The Fourier transforms
of Eqs. (2.7} have been used in Eq. (2.3); for ex-
ample,

where p(~'-~) = Jt dxe-'*'"'-"'p(x) (2.8)

a = f&~i, (K )-K)& P= fV,), ()t'r )t-),

J= l-1/2 P =1+j./2

y-fv~, ()(', ~)r 5 fv~ (&=-&)t))
Q = 1+1/2

g, I, () (st(K )v)st(K)

e r

6)&sins�

(St&k)
le '

(2.5)

(2 8)

In order to obtain an expression analogous to
Eq. (1.1), it is useful to treat the pion-nucleon
coupling as a zero-range interaction and to adopt
eikonal distorted waves, without Coulomb dis-
tortions. The adequacy of these approximations
will be discussed in Sec. IIB. The zero-range
approximation, including S-wave and P-wave
channels, enables us to rewrite Eq. (2.3) (now
also as an operator on the pion' s isospin} as

t(K'r K}=AD p(v' K)+ Bop ' p()-t' K)-
For the reaction studies reported in this paper,
we have used the separable fixed scatterer form
factors (g's) and phase shifts obtained in Ref. 8.
The isoscalar and isovector matter-density and
spin-density operators are defined as follows:

+ —
2 [A,p(g'-)t)+ B,$ ~ p(s:' s)]s ~z'-

+ 2[g~o(„r „)+D~~ a(Tcr s)] .(gx)t'). (2.9}

The barred quantities appearing in Eq. (2.9) are
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0
gA l'

)I) (+)( r) e&))o&.+) ( )
t (2 w}3/2

(2.11a)

obtained from the corresponding unbarred quanti-
ties defined in Eqs. (2.4)-(2.6) by letting f ,(». ', »)- (»'/»)) f~&. A more convenient representation of
I; for our purposes is the configuration-space
representation of Eq. (2.9) given by

t(r', r) = (2w)~ 6(r'-r) {Aop(r )+ Bo Q
~ p(r)

+ —,[A,p(r)+ B,p ~ f3(r)] v, .&7„

+ —,[C,()(r)+ D, T&) (f(r)]. V,

xv„J, (2.10)

where V, operates on the incoming pion distorted
wave and V, , operates on the outgoing wave.

Using configuration-space eikonal distorted
waves allows us to write

and

+- i'' ~ r'
+(-)(kr r) e (&I))&'(-)(r')

(2 w)~' (2.11b)

and

r
ny(,.'(r) = —— dz U (x)

00

(2.12a)

t @,
' '*(r) = -2~, J~ dz U (K).

r
(2.12b)

Inserting Eqs. (2.11a) and (2.11b) into Eq. (2.2a)
and keeping terms of lowest order in the nuclear
density one obtains

where the nuclear medium modifies the plane
waves through the complex "indices of refraction"
Llp,. and 4@& determined from optical potentials
integrated along classical trajectories, that is,

&flE. ~ (k' k) li&= &f Po~ ~ (q E) ~ + ie~ ~ (q E)

where

p,'. , ~ (q, E)= dre "[A,6, , p(r)+ B(&&t)e I&t) ~&j)z& p(r)]e'""'z'

and

o, (q, E)= dr e-"' [C,6, o(r)+ D, &&t)z ~)t) ](I)z& ~ e(r)]e " "z'.

(2.13)

(2.14)

(2.15)

The phase function X
=- 4p'"+ &(I'D)'

' represents the
effect of the medium upon the incoming and out-
going pion waves. By using the standard approxi-
mation that the nuclear matter density is essenti-
ally the same in the initial and final channel and
that k' = k in the phase factor, we may relate
g to the elastic scattering optical potential in the
usual manner.

We now proceed to express the matter-density
and spin-density operators of Eqs. (2.14) and (2.15)
in terms of irreducible tensor operators. For
the matter-density operator, we use the expansion

e "'=4w g( i) j (qy-) Y JQ,) Y~(Q ) (2.16)
J, N

to write Eq. (2.14) as

p' (q, E)=4w g ( i)'M '„(q,-E) Y*,z(Q,),
2 2 J

(2.17)

where

Mgq) E) = ) dr e&"'" s'j z(qw) YzjQ„)
4

x [A,.6~, ~ p(r)+ B &&I)z l 41&t)z& p(r)]

(2.16)

is an irreducible tensor operator on the nuclear
Hilbert space.

The discussion for the spin-density operator is
slightly more involved. First we define the basis
of unit vectors with respect to q,

e~=--, e, -=e„~ie„, (2.19)

and note that

k x k' ~ ()= g (k xk'}go„. (2.20)

Next we use the identity for A. =+1

(J 1 J
Y&„=-(-}'-'-"dg( [Y,.(Q„)e.. (2.22}

. Emm ~j

are the vector spherical harmonics and we are
using the notation Z=—(2J+ I)'~'. We may now

write, using Eqs. (2.20) and (2.21),

e„e-"'=- -~2w g ( i) J{)jz-(qr)Y z& (-q (V
J'al

x [6(qw»~i. ) ]),
(2.21)

where
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o„=&&2z g ( i-) J [S"„-]&S"„], (2.23)

(q, E)—= q fdr'e»'" ']vej (qr)Y, ]

where

E" (qE)—:, fdre'"'r' 'j (qr&Y

[~,6a. ,..&r(r)+&, &q,
' l%, I 4, & If(r)]

(2.24)

(2J'»+I) ' g I &flE ~, (" k)lt&l'
NyzN)

4w

I E„E+cos(8)2Re[E„E,',}2J,.+ 1

+ cos'(8 }F„'+ E,'sin'(8}

where

I'k "
(k

(2.26}

(2.27}
~ [~,6,;...c(r)+D, &~; lq lq, &

~ o(r}]

(2.25)
These operators are irreducible tensor operators
on the space of nuclear states. In addition, 0"
(natural) and 0" (unnatural) have opposite parity.
We now apply the Wigner-Eckart theorem and ob-
tain the basic result for unpolarized pion-nucleus
inelastic scattering:

, (ki' S"(q'8(k)

+1&~tTf «I ISi(q ~)ll~» 'Tz»&l'

(2.26)

Ee&E-E]=(q)EV 2 &drr"*el ]&d &q E&lldrir* &&'rrfr f ]la'&q E&l ld Y r &'IJ 0
(2.29)

These results follow immediately from noting
that by choosing q as the axis of quantization,
p, (q, E)[&(q,E)] carries angular momentum zero
[+I]along q and thus p and &r cannot interfere in
the sum over M, and M& because they lead to dif-
ferent final nuclear states. Using parity instead
of angular momentum, a similar argument can be
used for the noninterference of S" and S".'

To more fully understand the utility of Eq.
(2.26), it is useful to extract the nuclear isospin
T, dependence and to relate the many-body re-
duced matrix elements to single-particle reduced
matrix elements. One can use the Wigner-Eckart
theorem to obtain reduced matrix elements in iso-
spin space for Eqs. (2.27)-(2.29} yielding

&~tTP'zg
I I ':rrz I

l~»T»Tz»&

( T, T T,. '}

zt z z»/

(2.30)

Arbitrary many-body reduced matrix elements of
a one-body operator may be written as sums of
single-particle reduced matrix elements by using

«» T~"oir"~;T;&&[=Q&»z"Oir':ft.&6'r(c» tT»

(2.3l)
where

T T,) (
(« (~ p)= z ( )zt-z~.»-~

I
I(-}'i-rz~"" '-Iz'~~ k MI M Mf(»-ma M m»») ( z1 z Tzif i ta Tz tzj

and

x ~(ff)
ag (2.32)

(2.33)t'a»» &rlyMt r TtTzy lcac»»lrl» Mi 'T»Tzi&

(c }appearing in Eq. (2.33) are second quantized creation (destruction) operators for a nucleon in
the single-particle orbital o( (p). We are using the notation c» to omit the ' magnetic" quantum numbers,
i.e. , [~}=[»» I j }. For definiteness, if the initial state is a J= T=0 closed-shell nucleus, Ii&= I&&, and
the final nuclear state is a pure particle-hole state given by
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~(z(P) 'J M~T(Tz(&= J~T( Q ( )( " ' '
~

~

I c cz ~C&,
~a ~a (~ (s ((((~ -(((s -Msf (t~ -« — «)

(2.34)

then $~~'r(a, P)=6~ ~5r r. If the particle-hole state is a linear combination of configuration-mixed pure
particle-hole states,

(2.35)

then

(2.36)~ J'T( I ~} r~ (( 5zgz Tgr

Thus, if one adopts the DWIA, the task is reduced to evaluating single-particle matrix elements of the
operators given in E(ls. (2.18), (2.24), and (2.25). The precise expressions obtained for these single-par-
ticle reduced matrix elements depends upon the nature of the phase function y(r, E). Over the energy re-
gion of consideration (100& T, & 300 MeV), the real part of the phase function yz is much less important
than the imaginary term y . The net effect of g" in E(ls. (2.18), (2.24), and (2.25) is to slightly alter the
free-space momentum transfer appearing in these equations. To demonstrate this, we first note that g"
and O'X" /BE' vanish at a laboratory kinetic energy near 180 MeV. If we make a Taylor series expansion
through second order of X" about that point (E,), we get

y" (r, E)= (E -E )(1 —ro ~ V)—X., z + (E -Eo)r ~ V—y

The first term on the right hand side of E(I. (2.37} is independent of r and thus contributes an overall
phase (which we shall omit). The second term is then the lowest order contribution of X" to the integrands
of K(ls. (2.18), (2.24), and (2.25). By adding this term to -q r, we see that y effectively changes the
momentum transfer. The actual importance of (2.37} is very small, yielding less than a 10/ change (in-
crease at 120 MeV and decrease at 250 MeV) of the free-space value of q and will be ignored in the follow-
ing. For the purposes of this paper, we simplify the remaining attenuation factor exp[-y (r, E)] by treat-
ing it as a scalar function of the radius. This approximation may be improved upon, for example, by
adopting the technique of McCarthy and Pursey. " Such a correction, however, will not alter the struc-
ture of our basic result, Eq. (2.26}. By adopting the above treatment of X(r, E) and by using standard
techniques, ' we obtain

lq l~
(JfTfTzf

~
(Mq(q, E)(

~

J(T(Tz(&=(-) ~ Q(-)' '(~j jzl lz~
~

(o(~ joe "~ll)
s(( (0 0 Of jz lz

(2.38a)

1
ck z f((

S}
(J,T,T„)iS",(q, E)II, ,T«&=I — (J')~(-)"j.j,l.l, ~

0
O'I I, z jz ( ~f,e-"~p)

CI,Q J 1 J

x [(. I I' (~&'((z P)+D fr](r(( (((z P)]
Z/2

(J&T&T &I l~&(q E)l IJ(T(T (&=i — (-)' j jzl lz
7T

(2.38b)
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where the isospin quantities are defined as

I 1
~ o +z ~ +z r12 2 (I

l -=3~2(-}~+2+rf zf g (-)~ (

(2.39a)

8 contribute to natural parity transitions. In the
following discussion we suggest several ways of
using Eq. (2.41).

1. Fixed q plots mrying E and 0

!(-I'z~ & T'z~j '

(2.39b)

and the radial integrals are defined by

a
(o'~ jze~ ,p) =drr'R (r)jz, (qr)e ""z'ft 8(r) .

0

(2.40)

In addition to the above results, there are sev-
eral correction factors that we include and dis-
cuss in Sec. IIC which complicate Eq. (2.26),
etc. , slightly. However, because the features of
the basic formula survive in most cases, we out-
line in the next subsection some suggestions for
using Eq. (2.26} to separate various contributions
to the inelastic scattering and study different
"types" of nuclear states. 'The opportunities as-
sociated with studies involving correction terms
of potential importance are discussed in Sec. IIC.

Over the medium-energy range, the pion-nu-
cleon interaction is dominated by the P33 partial
wave. If we keep only this part of the pion-nucleon
amplitude, Eq. (2.41}becomes

do' E(k')k k' '
2dfl«»')= E(k)k

x [4II'(q, E) cos'8+ 6'(q, E}sin'8],

(2.42)

which results from 2, = 2C, = (-,')f» in the limit of
P» dominance [cf, Eq. (2.4)]. By equating the en-
ergy dependence of II and 6 at fixed q, (near q ),
Eq. (2.42) gives us

(q„E,8) = I'(E)[4II'(q, ) cos'8+ 6'(q, ) sin'8] .40'

(2.43)

At this point, we can easily obtain an expression
analogous to the one used in electron scattering
for making Rosenbluth plots. Namely, for values
of 8&90'we define

B. Utilization of the explicit q, E, and 0 dependences G(E, 8) =- (q„E,8) [I"(E}cos'8] ' (2.44)

Using the results of Sec. IIA, the differential
cross section for inelastic pion scattering to a
particular final nuclear state can be written sche-
matically as

dg E(k')k'
(q, E, 8)=— )+.(E)+ —I'4 (E}cos8I'5R'(q E)

~
C,(E)

~

' sin'86'(q, E)

(2.41)

where we have assumed an isoscalar transition.
An analogous expression, with B(E) and B(E)
substituted for X(E}and C(E), exists for isovector
transitions. In Eq. (2.41}the symbols A and B
contain the energy dependence associated with the
elementary fixed scatterer pion-nucleon ampli-
tudes. 'The form factors % and I contain the dis-
torted wave attenuation factor exp[-k~(r, E)] and
are thus energy dependent, unlike the situation
for no distortions. However, we find the energy
dependence of % and 8 to be very similar for
values of q (denoted by q») for which the form
factors are at a maximum. We also note that, in
general, only the I form factor contributes to
unnatural parity transitions whereas both 3R and

and obtain from Eq. (2.43)

G(E, 8) =45R'(q, )+ 6'(q, ) tan'8, (2.45)

which is of the form y =rnx+b, with x=tan'e.
Thus, the slope of a plot of Eq. (2.45} as a function
of tan'8 would yield the contribution resulting
from the P-wave spin-flip part of the pion-nu-
cleon amplitude, and the x intercept would yield
the spin-independent P-wave term. For an un-
natural parity transition, we note that the inter-
cept is zero. Equation (2.45) may be useful in
determining the unknown parity of a given tran-
sition or component in a complex of states. De-
viations from a straight line are evidence that
the simple theory is breaking down. Detailed
examples for known states where data is available
are given in Sec. III. Equation (2.43) has been
found to be reliable in predicting whether a given
excited state of a J=O nucleus reached by pion
inelastic scattering has natural or unnatural
parity. Because of the different 8 dependence
involved, plots using Eq. (2.43) at fixed q as a
function of E are quite different for natural and
unnatural parity transitions, and some examples
are shown in Sec. III. In these plots we use q, '
= ~k' —k~'=(k') +(k)' —2k'kcos8 to determine 8
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one can obtain from Eq. (2.41) the result

(2.46)

9(E, 8)= Ao(E)+i A, (E)cos8 '
k x

k'—
+ N —C, (E}'sin'8. (2.47)

By working at e =90', one may isolate the S-wave
and P-wave spin-flip contributions. Also by
looking at small angles only the S-wave and P-
wave non-spin-flip survive. Because this can
be done at the same energy, separation of these
components is possible in principle. Note that
the separation is not model independent, because
a model of the form factor %(q, E) is required.
Nonetheless, Eq. (2.47) allows one to carry out
self-consistent studies within a given model to
isolate various reaction contributions.

2. Energy dependence ofanglemtegraied cross secdons

There are circumstances, such as in activation
experiments, where one may be interested in the
angle-integrated differential cross section for a
particular transition,

do
o&,(E}=2v (q, E, 8}sin8d9.

0
(2.48)

At each value of E, q is a function of 9 (or equiv-
alently, 9 is a function of q), so that &r~, depends
only on E. Because we have written the nuclear
form factors Sg and s in Eq. (2.41) as functions
of q, we will change the integration variable in
Eq. (2.48) from 8 to q. For the purpose of this

as a function of the incident pion energy E(k},
given the fixed momentum transfer q, and energy
loss E(k) —E(k'}

For natural parity states there is an angle-
independent term associated with the S-wave
contribution to the transition operator [see Eq.
(2.47)]. After using Eqs. (2.43) and (2.45) to
establish that a given state does result from a
natural parity transition, one may then wish to
separate the S-wave and P-wave spin- and non-
spin-slip contributions to the reaction. If a normal
parity transition results from the promotion of a
single nucleon from a particular initial orbital to
a particular final orbital (for example lp- ld),
one may show from Eq. (2.38) that 8„'(q,E)
=1V%'(q, E), where N is a constant. Now by
defining the quantity

9 (E, 9) -=(q, E, 8) %'(q, E}do E(k'}k'

discussion it will suffice to take k'= k. Then
from the relation q'=2ki(1 —cos8), we get
sin8 d8 = k 'q dq, and by inserting Eq. (2.41} into
Eq. (2.48), we obtain

4h 2

oy, (E) =—2 Ao(E) + 1—,A, (E) q5)f'(q, E)
Q

I C,(E) I' q'

(2.49}

From this expression, we observe the following
qualitative predictions.

Because the nuclear form factors % and 5 usually
peak at small to moderate values of q, Eq. (2.49}
implies that as the energy increases, the P-wave
non-spin-flip contribution to a natural parity tran-
sition would generally dominate the spin-flip con-
tribution. Similarly, as the energy increases,
angle-integrated differential cross sections for
natural parity transitions would dominate those
for unnatural parity transitions. In summary, the
different behavior is expected because as the en-
ergy increases, the nuclear form factor is con-
centrated at smaller angles and natural (un-
natural) parity transitions contain an additional
cos 8 (sin'8) term in the integrand that tends to
increase (decrease) the integrated inelastic cross
sections.

C. Fermi-motion corrections

There are, of course, several corrections to
the approximations we have used in obtaining our
basic results for pion-nucleus inelastic scattering
[Eqs. (2.26)-(2.29)J. For example, using fixed
scatterer phase shifts to incorporate the two-
body input into the many-body problem is not a
unique procedure. " Certainly, one must use some
technique for transforming the two-body angular
dependence into the many-body system. Our
experience has been that most techniques give
similar results, except at angles a 120' (where
many other "higher order" effects may be impor-
tant), and the fixed scatter approach is a reason-
able method of carrying out this transformation. "
The question of at what energy and momentum to
evaluate the two-body input has also received
considerable attention. A definite answer would
require a more complete theory of the pion-
nucleon interaction. However, one may phrase
the question in terms of the total energy available
in the off-shell pion-nucleon system, or the rel-
ative pion-nucleon momentum. And in principle,
one might argue that energy-dependent studies
at fixed momentum transfer would be useful in
distinguishing between different models. The
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A, (s}=A, (s,)+(s —s,) A, ,

(s —s,)' s
+

2
—

~ &i. +"
8s 0

(2.50)

An analogous expression exists for the isovector
term. Numerical estimates indicate that in the
medium-energy region, the dominant correction
is given by the first-derivative term of Eq. (2.50).
By using the approximate relationships

.=.. (k,k). 'P"'
2

(2.sl)

practical difficulty at present is that there are
several possible changes (arising from local field
corrections, or alternatively stated, from isobar
interactions in the medium} that have not been
theoretically studied for inelastic scattering, and
therefore their predicted effects are not known.
This is important work for the future. One impor-
tant correction that can be easily studied in the
present context is the effect of the Fermi motion
of the target nucleons. In the following, we in-
clude the effects of Fermi motion by generalizing
a discussion originally given by Wilkin. "

The pion-nucleon transition operator may be
considered, in general, as a function of the square
of the invariant energy (s) and momentum trans-
fer. Because the pion-nucleon interaction is a
rapidly varying function of energy, we will con-
sider only corrections that result from the en-
ergy variation. The fixed scatterer pion-nucleon
transition operator given by Eq. (2.10) has been
evaluated for the case of p (initial nucleon's mo-
mentum) =p' (final nucleon's momentum) =0. If
we denote the fixed scatterer value of the in-
variant energy by s„wecan obtain an expression
for the pion-nucleon transition operator that
allows for nucleon motion by making a Taylor
series expansion about s,.

Let us consider the energy-dependent coef-
ficients of the non-spin-flip part of the inter-
action. For the isoscalar term we obtain

and

and

(2.s4)

where [AB], =- (AB +BA)/ 2.

One of the most important implications of these
correction terms is that they allow the relatively
large non-spin-flip part of the pion-nucleon inter-
action to contribute to unnatural parity (spin-
flip) transitions (as Wilkin has previously dis-
cussed for pion charge-exchange reactions at
low q). This can be seen by noting that the cor-
rection terms are in the form of a pionic current
coupling to the nuclear convection current. Just
as the coupling of the electron current to the
nuclear convection current contributes to both
the transverse electric {natural parity transi-
tion) and transverse magnetic (unnatural parity
transition) components of the transverse form
factor in electron scattering, the Fermi-motion
terms in Eq. (2.53) contribute to both natural
parity and unnatural parity transitions. In the
following, we will assume that the major effects
of nucleon Fermi-motion can be incorporated by
the substitutions given by Eq. (2.53).

Because of the vector nature of the Fermi-
motion corrections, we include these terms by
replacing in Eq. (2.13)

k xk'
a'

k xk'
~ g

(k+k')

(2.55)

(2.S3b)

The nuclear current-density operators appearing
in Eq. (2.53) are defined as

(2.s2)

In analogy to the spin-density operator defined
by Eq. (2.15}, we have the current-density

we obtain Fermi-motion corrections to the non-
spin-flip part of the fixed scatterer pion-nucleon
transition operator by replacing in Eq. (2.10)
A, p by (A, p)' and B,f3 by (B,fi)', where

where

dr8 ' [Qsg ~ I~(r)+$($ ~Q ~4 )']~(r)]

(2.56)

(2.5 Va)

(2.53a) and
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(2.57b} (k+k )„*= (2.60)

(k+k') ~ j = Q (k+k&) ~j
&, .

)1=+1

(2.56)

We note that on this basis

(2.59)

and

For all practical purposes we can ignore the S-
wave derivatives in Eq. (2.57). See Fig. 2 for a
comparison of S-wave to P-wave derivatives.
Our developments now parallel those of the spin-
density operator. We resolve j~, ~ onto the basis
given by Eq. (2.19), and in analogy with Eq. (2.20}
we write

because k xk' is along the x axis, whereas k
+k' is along the y axis. By using the expansion
given by Eq. (2.21}, we obtain an expression
analogous to Eq. (2.23},

(2.61)

where 8" and 8" are defined by Eqs. (2.25) and
(2.24), respectively, if we replace o byj „,C by
8, and D by in those equations. Finally, by
applying the Wigner-Eckart theorem and using
the relation Ik+k'I = ((kk' icos(8/2}, we arrive
at the following expression for the nuclear current
effects that must be added to our basic result
[Eq. (2.26}]for unpolarized pion-nucleus inelastic
scattering:

(2&, +1) ' g IF'I'=
& 1

[cos'(8/2) c o8sE,'- sin(28) cos(8/2} Re(E, F,*}],
Ny, Ng

where

(2.62)

(2.63)

(2.64)

The reduced matrix elements of the spin-density operators were given in Eq. (2.36}. If we apply the same
techniques used to obtain those results, we get for the reduced matrix elements of the current-density
operators

(2.65a)

and

( ] 1 1/2 ~Z( )"' j.j,f (I,)'
E fg, B

(2.65b)
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where

f/ L /~+1)

o ooj
(/ L /~-1&

Eo 0 0 J( )(. „.I' /~+1
z -1 fz~ 1'-z

s ~ s

o os
(2.65c)

There are several points that we would like to
note concerning the role of the Fermi-motion
contributions given above as compared to our
former result [Eq. (2.26)] without Fermi-motion
effects. First, the current-density terms (j) do
not interfere with the matter-density terms (p, )
for the same reason that the spin-density terms
(&) could not interfere. [See the paragraph fol-
lowing Eq. (2.29).] However, the current-density
terms do interfere with the spin-density terms
and that effect is given by the Re (F+~}contri-
bution to Eq. (2.62). This part of the differential
cross section can change sign as a function of E,
and therefore it should cause constructive and de-
structive interference with the zeroth-order terms
depending on the energy of the pion. In addition,
because of the 8-dependent factors, one may ex-
pect an angle dependence in the correction term,
working at fixed q. An interesting and potentially
useful point is that the nuclear-current correction
term and the spin-dependent term have a different
relative q dependence for pion inelastic scattering
than the magnetization and convection current
densities have in electron scattering. Also, we
note that if one is considering a transition from a
closed-shell nucleus to a particle-hole 1 S~
"stretched" state [such as the lf,&,(lg&, } '6
state in "Si or the ld,&,(1P,&,} '4 state in "0],
the Fermi-motion correction term cannot contri-
bute. This occurs because the &J needed for a
stretched-state transition is &J „=I + 1,
whereas the correction term can only provide a
&J = L (for L =/, ~~ +/„„,) because the
correction term contains no spin dependence.
(The situation in electron scattering is completely
analogous. That is, the charge convection current
also does not contribute to electroexcitation of
stretched states. ) Finally, we note that using
"Fermi-averaged" values for A., and B, would only
change the values of A& and B& inserted in E& and
would'not lead to changes in + . Thus it would
not be inconsistent to use Fermi-averaged values
and also include the correction terms for A& and

B, discussed above. The Fermi-averaged con-
tributions can be thought of as resulting from
terms in the Taylor series expansion other than
the first-derivative term.

In summary, the contribution to unnatural parity
states resulting from the non-syin-flip correction
term should have a different effect (constructive
versus destructive interference) above and below
the (3, 3) resonance —except for stretched un-
natural parity transitions, where it should have
no effect. In the next section we shall study in
detail the effect of the correction term for some
specific example. In a future publication, we plan
to expand and generalize the discussion presented
here concerning nucleon motion correction terms.

III. NUMERICAL EXAMPLES

We devote this section to specific applications
of some of the formulas derived in the previous
section, so that we may underscore the main
ideas discussed there. To perform numerical
calculations, we need to specify the fixed scatterer
pion-nucleon Rmplitudess, the distorted wave atten-
uation factor, and the structure of the specific
nuclear state being considered. Because the
pion-nucleon input is basic to all calculations
and is not subject to further treatment, we will
discuss it first.

A. 'Ihe pion-nucleon fixed scatterer input

The pion-nucleon scattering amplitudes enter
into our formulas through the coefficients A, 8,
C, and D. These coefficients are linear combina-
tions of the fixed scatterer pion-nucleon scat-
tering amplitudes. The particular linear combina-
tions are given by Eq. (2.4). Using the fixed
scatterer phase shifts of Ref. 8, we have construct-
ed the S-wave and I'-wave coefficients for medium
energies and they are displayed in Fig. 1. As a
consequence of the (3, 3}dominance over most of
the medium energy region, the I'-wave coeffi-
cients hRvethe RpproximRte relRtlonshlp A. 1 2 B1



2672 E. R. SICILIANO AND G. E. %ALKER

2.0
(o)

I.O—

j
I 7 I

(
1 I I I 1 ~ s

[
/

l I i
]

s I

ReA
I

ImA
I

)

I I I ~

~

a ~ ~

[
I

l5.0—

I 0.0—

~ I ~
(

& I ~ I
f

~ I I ~

Re(dA&/dE) .
Im(dA&/dE) .
Re(dB&/dE )

Im(dBg/d E)

O. I—
/ r

-/ r r

(-)
ReAG

ImAp

~' ur q

I.O—
- (b)

— Re BI
——ImB

I

( ~)

5.0

0.0

~ -50E

O

- IO.O—

E
V

O.l—

-I5.0

/
/

/
/

/
I

~' v

I.O—
- (c)

//
//

/I
CI

II
I
I
I
I
I

--- ReBp
Im Bp

ReC
I

rmCI

~0 I

I.O—

0.0 =

~ I ~ I ~ ~ I ~ ~ I ~ ~ I ~

IOO I 50 200 250 300
T (Me V)

O. l ReDI

mDI

FIG. 2. The derivatives with respect to energy of
the S-wave and P-wave non-spin-flip coefficients de-
picted in Fig. 1. These derivatives are used to calcu-
late the Fermi-motion corrections presented in this
paper.
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these derivatives. Note, in Fig. 2, that the
S-wave derivatives are negligible as compared
to the P-wave derivatives.

B. Treatment of the distorted wave attenuation factor

FIG. 1. The zero-range fixed scatterer pion-nucleon
coefficients used as input for the EZRA calculations
reported in this paper. All values are positive, except
when otherwise indicated. (a) The S-wave and P-wave
non-spin-flip isoscalar coefficients. Note that the real
part of the S-wave coefficient is negative whereas the
real part of the P-wave changes sign. (b) The S-wave
and P-wave non-spin-flip isovector coefficients. Note
the same behavior as in (a). (c) The P-wave spin-flip-
isoscalar @~) and isovector {D~) coefficients. Again
note that the real parts change sign.

= 2C, =4D,. In Fig. 2 we display the derivatives
with respect to energy of the S-wave and P-wave
non-spin-flip coefficients. The Fermi-motion
corrections discussed in Sec. II C depend upon

The initial and final pion distorted waves enter
our formulation through the eikonal phase factor
g(r, E)=&/'+&P ~, defined in Eq. (2.12). If, in
our treatment of g, we let the final nuclear density
be the same as the initial density and )k'[=)k),
we may relate X to the optical potential U by the
usual integration along the average of the initial
and final momenta

x(F, R)=( )
d*U (xi.

a g)

In principle, one should treat the phase function as
carefully as possible, so as to reproduce the
same results obtained by solving the correspond-
ing Klein-Gordon equation. " For demonstrative
purposes, however, we treat g in the standard
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lowest order approximation

x(, o&=(x f,(o&/x] f x*o,( &, (3.2)

calculate &r(E). This treatment of g is admittedly
naive; nevertheless, we will see that it provides
us with the qualitatively correct energy-dependent
attenuation.

X (&,E) = &(&)e(&)

where o(E) is the averaged pion-nucleon total
cross section and e(r) is the standard eikonal
thickness function,

(3.3)

e(b) = -', dz p,(b'+z'),
(oo

(3.4)

treated as a function of radius.
The expression given by Eq. (3.3) will be used

for X in the following examples, with the labora-
tory pion-nucleon total cross sections" used to

where jz(0) is the forward pion-nucleon scattering
amplitude averaged over the number of neutrons
and protons in the target, and p,(x) is the ground
state density normalized to unity. In addition, if
we adopt the approximations discussed after Eq.
(2.3V), we need only consider the imaginary part
of Eq. (3.2) as a function of radius. We write the
imaginary part as

C. Specific nuclear transitions

Given the fixed scatterer coefficients and a
prescription for determining the attenuation
factor, we are now ready to calculate pion-nucleus
differential cross sections for specific nuclear
transitions. Because there is a large amount of
data for the "C(v, v') "C* reaction, we will dis-
play calculations for this reaction and compare
our calculations to the data when appropriate. "

For the first example, we consider a stretched
unnatural parity excitation of a J, = T; =0 nucleus,
which we will describe by a pure particle-hole
configuration. Although such a description is
certainly an oversimplification (for example,
three-particle three-hole admixtures are ig-
nored), it has been used successfully to reproduce
the shapes of these states as seen by inelastic
scattering of electrons and protons. " From Eqs.
(2.1) and (2.26) we obtain for a stretched isoscalar
transition

de' '
(q, &, 8)= E k I k

e""'"(2z)stn'(e)l(zoo lls", (e, z) llooo) I'.Zk (k (3.5)

If we let a and P denote the particular particle and hole that couple to form this state of spin and parity
J, we obtain from Eq. (2.38c)

1(zoo((s'(o, z&(looo&I'=(-) Ic,(o&I'(o ~ »(xo —x&(j &,&x&x&'

1

fl 7-1 f )'
1, —,

' j, (~ I z "i~-, IP)'.
&0 O oj J-1 1 J

(3.6)

inserting Eq. (3.6) into (3.5), we may write the differential cross section for a stretched isoscalar state as

do~ o E(k') k'
(q, Z, e)= „—IV,(E) I'sin'(e) 6:,'",(q, z), (3.7)

where for our particle-hol. e shell-model description

~z~(~ E) ""'"(~-=i. "j.Iil)'N" (3.8a)

2

g

N~ = 6(J+ 1)(Lj~jzl~ls)
0 0 0j

L 1 J
(3.8b)

Now for a simple example of a low-spin state, we use the same particle and hole as above but couple
them to form a natural parity isovector state We then .obtain from Eqs. (2.1), (2.6)-(2.28), and (2.38)
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2

(qE, e)=
& ( &) ~

.12I, I' ~
( &) sRe{Ba;)cos(e)~

(& [
IBI',cos'(ii)

ls J k &

ln z Ja 2

1 2

+i(z)' 4 -', js ( &
IDI'si ,n'( i)if''(q, s) (3.9)

The natural parity form factor 8'~, appearing in
Eq. (3.9) is defined by Eq. (3.8a) with the normali-
zation N,„replaced by

give some examples of these fixed q plots next.
From the discussion in Sec. II B, we found that

the differential cross section for any unnatural

(3.10)

Using the specific configuration e= 1d,&, and
P= lp,~, in Eqs. (3.7) and (3.9), we have calculated
the J'=4, T= 0 stretched state and a hypothetical
J'=1, T= 1 state in "C. The oscillator param-
eter 5 = 1.64 fm was used in our calculations to
determine the single-particle radial wave func-
tions. In Fig. 3, we show the calculated differ-
ential cross sections for pion laboratory kinetic
energies of 116, 180, and 260 MeV. The short-
dashed curves are the numerical results of Eqs.
(3.7) and (3.9), where we have used o(180)= 136
mb and o(116)= o(260) = 61 mb to calculate the
form factors F(q, E) We refe.r to these results
as the "eikonal zero-range approximation"
(EZRA). The long-dashed curves result from
setting the distorted wave attenuation factor
X=0 in Eqs. (3.7) and (3.9). We label these re-
sults as the "plane wave zero-range approxima-
tion" (PWZRA). The solid curves in Fig. 3 have
been obtained from a momentum space finite-
range DWIA computer code. ' This code uses
the complete fixed scatterer pion-nucleon t matrix
given in Eq. (2.3) and distorted waves obtained by
solving the Klein-Gordon equation with the cor-
responding fixed scatterer optical potential.

By comparing the three different calculations
shown in Fig. 3 we see that, although we have
treated p very simply, the EZRA does well in
reproducing the magnitudes, shapes, and (except
at 116 MeV) positions of the first maxima given
by the DWIA. We also display some data in Fig.
3. This data is of a state at 19.25 MeV that has
recently been observed in the "C(r', v") "C*
reaction. There is some reason to believe" that
this state has a J"=4 . The shapes of our cal-
culated angular distributions certainly support
the J =4 assignment. However, the predictions
of the fixed q, variable energy, and angle expres-
sions obtained in Sec. II B offer us another check
on the spin and parity of this state. We shall

I 0=

I I I I i f I

'C(~ ~. )I2C"

J =4,T=0
I dkiz ( I p&rz)

Tw(LAB) = ll6 MeV

IO (=

I,O

E

l3
& IO'
b

B)=IS

IO

I.O =

lo'=
B)= 260

0.0 0.5 I.O I.5 2.0 2.5 0.0 0.5 I .0 1.5 2.0 2.5 3.0
q(fm ')

FIG. 3. Differential cross sections as a function of
momentum transfer (q ) for pion laboratory kinetic
energies of 116, 180, and 260 MeV. The solid curves
are the finite-range DWIA calculations, the long-dashed
curves are the PWZRA calculations, and the short-
dashed curves are the EZRA calculations discussed in
the text. The data is from Ref. 16.
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A. (z)= (
—

) I(',(&) I'. (3.13)

The total explicit energy dependence of Eq. (3.11)
is then the product of A, (E) and F(q„E),which
we denote [in accordance with E((I. (2.43}]as

parity isoscalar transition could be written in a
form similar to Eq. (3.7),

&& (q, E, e)= E k IV,(E) I'sin'(e)8 "(q,E).do E(k') k' '

(3.11}

If we further assume that the P-wave non-spin-
flip contribution to a natural transition dominates
over all the other terms, we may write an expres-
sion similar to Eq. (3.9) for any natural parity
isoscalar transition

do E(k') k' 3

&„(q,E, 8) =
E k

— I&,(E) I'cos'(&) &"(q, E)

(3.12)

[For isovector transitions, we would replace C,
and 2, in E(ls. (3.1) and (3.12) by D, and 3,.]
Note that in these equations the energy dependence
resulting from the basic two-body inelastic transi-
tion operator and the energy dependence resulting
from the distorted waves are explicitly separated.

We now consider E(ls. (3.11) and (3.12) as func-
tions of E at fixed q= q,. To understand the
energy dependence of these equations, we first
consider the explicit energy dependences. For
example, we define the plane wave energy-depen-
dent factor for isoscalar unnatural parity transi-
tions as
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I I I ~ I
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FIG. 4. The energy dependent factors: (a) A, (E)
defined in Eq. (3.13) and representing the spin-flip
isoscalar pion-nucleon coupling; (b) F (qo ~ E) defined
in Eq. (3.8) and representing the nuclear form factor
at a fixed momentum transfer of 1.4 fm with n
=1d~~, p =1p3~, L, =3, J'=4; and (c) the product of
(a) and (b).

1'(E)8'(q. ) = A.(E) 8:(q., E) (3.14) 0.5 ~ ( I I ~ ~
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ln Fig. 4 we plotted the factors A, (E), $(q„E},
and their product for the stretched J'=4 state
of "C considered above. For the factor 8'(q„E),
the value q, =1.4 fm ' was chosen because at
T„=180 MeV, F(q, E) reaches a maximum ai this
value of q. [We use T„=180 Me V to determine
q, because X"=0 in this region, cf. E(l. (2.37).]
One vividly apparent feature in Fig. 4 is that the
strong energy dependence of A, (E} is essentially
negated by the behavior of 8:(q„E}This be-.
havior of the form factor at fixed q reflects the
fact that the distorted wave attenuation factor
modulates the amount of nuclear "volume" over
which the nuclear transition density is integrated.
In Fig. 5 we have illustrated this point by plotting
the distorted nuclear transition density

d e(r, E)=r'R (r)RB(r)e (3.15)

for the stretched J'=4 state under consideration.
For comparison, we show in Fig. 5 the undistorted
transition density (o = 0.0) and the distorted tran-

0.4

=0.0
=46 mb-
=l36 mb-

0.3
E

~ 0.2

O. I

0 I ~

I.O
III I I I IIII ~ II II I I I II ~ I ~ il II ~ ~

2.0 3.0 4.0 5.0 6.0

FIG. 5. The distorted nuclear transition density de-
fined in Eg. (3.15) for n=1d&~, 8 =1p3~2. The solid
curve is for the case of no distortion, the long-dashed
curve is the case of distortion corresponding to pion
kinetic energies of 100 or 300 MeV, and the short-dashed
curve results from 180 MeV distortion.
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sition densities correponding to pion kinetic en-
ergies of 100 and 300 MeV [o(160)= 136 mb]. The
effects of distortions upon the transition density
are to lower the magnitude and shift the peak posi-
tion to larger values of radius as the kinetic energy
approaches the resonance (either from above or
below).

Now if we assume that the cancellation of the
explicit energy dependences discussed above ob-
tains for most inelastic transitions, then we ar-
rive at some very simple predictions. That is, the
essential energy dependence of differential cross
sections at fixed q is the implicit energy depen-
dences of Eqs. (3.11) and (3.12) yielding the re-
lations

I.O

0.5-

0.2-

0.5—

os (e)

in (8)
-1

Ofm

.25 fm

Ofm-]—

(q„E,8) ~ sin'(8)
do"

(3.16) (b)
+v

do'
(q„E,8) ~ cos'(8), (3.17)

where

(kl)2+ k2 q
2

2k'k (3.16)

To show the behavior of the cos'(8) and sin'(8)
terms at fixed q as a function of 8, we have plotted
them in Fig. 6(a) for different values of q. In
Fig. 6(b) we have displayed fixed q "C(w, v') "C*
data for two well-known natural parity transitions
[the 2'(4.44-MeV) state and the 3 (9.64-MeV)
state] and for the 19.25-MeV state that we have

previously treated as a 4 unnatural parity transi-
tion. The values of q, for which we chose the
data points were determined by the position of the
first peak in the T, = 180 MeV experimental
angular distributions. We took q, = 0.75, 1.0, and
1.41 fm ' for the 2, 3, and 4 states, respective-
ly. If an energy of T„other than 180 MeV had

no datum point within 10% of the particular q,
desired, we chose the closest datum point and

labeled it with an arrow. The arrow indicates
the direction in which that particular point should
move if it were at the desired value of q. (This
was determined by considering the behavior of
the experimental angular distribution. ) Although
Eq. (3.17) is inherently less reliable than Eq.
(3.16) (because we have dropped the spin-flip
contribution to a natural parity transition), the
qualitatively different behavior of the natural
parity transitions from that of the proposed 4
unnatural parity transition is consistent with our
simple predictions.

Finally, we demonstrate the effects of the Fer-
mi-motion correction terms, discussed in Sec.
II C, by considering two examples of unnatural
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FIG. 6. Differential cross sections at fixed momentum
transfer (q) as a function of pion laboratory kinetic
energy. (a) Plots of cos (8) and sin (8) normalized to
unity and calculated from Eq. (3.18) for the indicated
values of q. (b) 7t' inelastic data for the 2'(4.44 MeV),
3 (9.64 MeV), and 4 (19.25 MeV) states of C. The
data is from Ref. 16. The dashed curves are to guide
the eye.

parity states for which &J' ~ L From Eqs.
(2.1), (2.26), and (2.62) we may write the un-
polarized inelastic differential cross section for
an unnatural parity transition as
d&fl E(kI) P Ps 2 e2 2 /2A

x[X(q, E)sin'(8)+F(q, E}cos'(8)cos'(8/2)
—Z(q, E)sin(28)cos(8/2)], (3.19}

where
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X(q, e) =- (2s) —,
~

F,',
k

Y(q, E)=—(2s) —, F,',
(3.20)

(3.21)

1/2

Z(q, E) = (2v) — (k) Re f(J 'IO j (Bg J f 000).&Zy0ig; ii000&*}
(3.25)

and

k
Z(q, E) =(2w) —, [Re FQ~) . (3.22)

In general, the factors F, and F, [defined by Eqs.
(2.28} and (2.63)] are given in terms of a multipole
expansion over reduced matrix elements. For a
J, = T, =O nucleus, however, a single term in each
multipole series contributes. In this case

for a final nuclear state of spin J and isospin T.
Now in the detailed expressions for the reduced

matrix elements [Eqs. (2.38c) and (2.65a)], we in-
tend to use simple harmonic oscillator radial
wave functions. Because oscillator radial wave
functions depend only upon the principal and
orbital quantum numbers, we may eliminate the
sums over the total angular momenta j and j8
by using the L-S coupled structure constants

X(q, E)= (2v) I &»0
1
IS",II000& I',

zo& (oo&I «)(o&'l&z(olio;Iiooo&I*,

(3.23)

(3.24)

l~ ls I
'ques(a, P) = LS —jo&j 8 I ~ S g'r(a, P) .

fg 8
ia ie (3.26)

For example, the reduced matrix elements needed
in Eqs. (3.23)-(3.25) for isoscalar transitions may
be written as [cf. Eqs. (2.38c) and (2.65a)]

& J00II S",(q, E}ll 000& = '
"a~f2~ ~8l8

(-)' l I(& g q ', (» l, »al8)
0 0 0

[ (of+I) 5g g &
Wtl 5g g y](» I(ols jg)»(& ls)

(3.27)

s & Z}2
&&00II&&(q E)ll 000&=(-}' —

A&
~

l„(ls)'@~0(» l, I»,()&R„(q,t) .
I l&. nsl s

(3.28)

(3.29)

(For isovector transitions, we replace A and C in these equations by 3 and V.)
Two examples of unnatural parity transitions that satisfy the criterion of ~ J & I. are the J"= 1' andJ"= 2 isoscalar transitions in "C. We assume the structure of the 1' state results from transitions

within the 1p shell, whereas the 2 state may be described as a transition from the 1p shell to the 2s-1d
shell. Adopting such descriptions, we obtain from Eqs. (3.2V) and (3.28} the reduced matrix elements

-x&100II Srll 000&=» ~ &, n.",(»le "jJ»)+ "(»I e "i,j»)

o&(ooilo;iloo&O= P. (o" ' ')o,", ((((,— &,i&o&
N

(3.30}

for the J "=1', g = 0 transition, and

&200[ S2)) 000& =i C~ p~~(2, 1)(12(e "j~)11)+ qs~o~ (2, 1)(12)e "j)11)— " ' (20[ e xj )11)

and

o~ )o (o»(&OI o ('", *. ~& k ag,

(3.31}

(3.32)
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( )
k sg,

bnz„'dE (3.33)
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effects of including Fermi-motion terms is to in-
crease the first maximum of the differential cross
section below g, = 210 MeV and decrease it above
210 MeV. The changes involved can be as much
as a factor of 1.7 increase around g„=120MeV
and a factor of 2.1 decrease around T, = 260 MeV.
By comparing our calculations to the data in Fig.
8, we see that (with or without the Fermi-motion
terms) the shapes and positions of the first peaks
are in excellent agreement. Given the uncertain-
ties in the data used for the fixed q plots in Fig.
9(a}, all we can deduce is that the general trend
of the data is consistent with our calculations.
We wish to point out, however, that the absolute
magnitudes of our calculations should not be taken
too seriously. Besides an uncertainty due to our
simple treatment of the distorted wave atten5a-

0 pi I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

50 I 00 I 50 200 250 300 350
T. (Mevl

FIG. 9. Differential cross sections at fixed momentum
transfer (q) as a function of pion laboratory kinetic
energy. The solid curves are the EZRA calculations
without the Fermi-motion terms, the long-dashed curves
are the EZRA calculations including the Fermi-motion
terms, and the short dashed curves are the sin (e )
approximation normalized to the solid curves at 100
MeV. The data is from Cottingame (4) and Peterson
(o) of Ref. 16. The transitions are the (a) J =1', T =0,
12.71 MeV state and (b) J =2, T=O, 18.36 MeV state
in "C.

tion factor, there is a nuclear structure renor-
malization that must be included. Just as in the
case of inelastic electron scattering' over the
region of the first peak the pure particle-hole
results should be reduced without appreciably
altering the q dependence.

To demonstrate that a more realistic treatment
of the nuclear structure tends only to change the
magnitude of our results, we have also calculated
this transition by using the wave functions of Cohen
and Kurath. " The structure coefficients for this
case can be obtained directly from the tables of
Ref. 4, and they are (omitting an overall phase)
q', , =0.215, q~ =0.06, and q', 0=0.132. The re-
sults obtained with these "more sophisticated"
structure coefficients are qualitatively the same
as those depicted in Figs. 8 and 9, except for an
overall normalization. This is due to the relative
insignificance of the 1.= 2 as compared to the L, = 0
contribution to the spin-flip term for q ~ 1 fm '.
[See Eq. (3.29).] Ignoring the L = 2 structure co-
efficient, we note that both the L, =O and L, =l
Cohen-Kurath coefficients are a factor of 2.53
smaller than the corresponding particle-hole co-
efficients. Thus, the relative weighting of the
Fermi-motion term [Eq. (3.30)] as compared to
the spin-flip term [ Eq. (3.29}] is the same for
either nuclear structure model. The only differ-
ence between nuclear models is an overall normal-
ization.

For the J'=2 state, we have calculated differ-
ential cross sections assuming that the q's appear-
ing in Eqs. (3.31) and (3.32) result from a pure
j -j coupled 1d», (1p», )

' particle-hole configura-
tion. These results are shown in Figs. 8 and 9(b).
In Fig. 8 we have plotted the cross sections as a
function q at fixed values of kinetic energy, where-
as in Fig. 9(b) we display our results as a function
of kinetic energy at a fixed value of q = 0.8 fm '.
We also display some data along with our calcula-
tions. This data is of a state at 18.36 MeV that
has recently been observed and speculated to have
a J"=2, T=0." The shapes of our angular dis-
tributions calculated with a pure 1d»,(l p», )

'
particle-hole are consistent with the data. We have
also calculated differential cross sections for this
transition by assuming a pure 2s, ~,(lp, ~,)

' par-
ticle-hole configuration. The resulting shapes of
the first peaks are essentially the same as those
obtained with the 1d,&,(lp», ) ' configuration.
Therefore, from a single angular distribution,
one cannot determine which configuration domi-
nates this state. However, by looking at the fixed
q plots in Fig. 9(b) we can distinguish between
them. That is, if this transition has a dominant
1d»,(1p»,)

' component, the differential cross
section at fixed q would be drastically different
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from the simple sin'(8) dependence. If this transi-
tion has a dominant 2s, »(lp», )

' component, then
there would be no Fermi-motion terms and the
differential cross section at fixed q would essen-
tially follow the sin'(8) rule. Because the data do
not differ extremely from the sin'(8) dependence,
our results suggest that this transition has a dom-
inant 2s, ~,(1p, ~,)

' particle-hole component.

IV. SUMMARY AND DISCUSSION

In this section we review the motivation for the
investigation leading to the results contained in
this paper, summarize the results, and suggest
further experimental and theoretical research
that would test or extend the ideas presented
herein. The qualitative agreement between the
initial (~, v') experiments and the DWIA theoret-
ical predictions suggests that such a theory may
contain much of the important physics. This is
somewhat surprising and indicates that more
stringent tests of the approach be investigated.
We note, however, that refinement of the simple
theory by including more realistic distortions and
the effects of local field corrections or isobar-
medium interactions, may still be cast within a
DWIA framework. Thus, it seems useful to sep-
arate the various contributions of the DWIA —dis-
tortion, transition operator, and nuclear struc-
ture —and study their dependences on pion energy
(E), laboratory scattering angle (8), and three-
momentum transfer (q). These variables are es-
pecially useful because the nuclear form factors
are functions only of q (as in electron and proton
inelastic scattering studies), whereas the reac-
tion mechanism has strong g and 0 dependences
even at fixed q. The explicit angle dependence of
the transition operator arises from the multipli-
cation of q and energy dependent scalars by var-
ious scalar products of spin, relative coordinate,
and momentum vectors. One goal of our studies
on the q, g, and 8 dependences discussed in this
paper is to suggest ways to present experimental
data so that different aspects of the theory are
accentuated.

To obtain a simple separation of the various
components of the theory, we assumed eikonal
distored waves and zero-range S-wave and P-
wave fixed scatterer pion-nucleon input for the
transition operator. We then expressed the mat-
ter-density and spin-density operators of Eqs.
(2.14) and (2.15) in terms of irreducible tensor
operators. This enabled us to separate the trans-
ition operators for the nuclear space into those
responsible for natural parity [Mz~(q, E),
Szz(q, E)] and unnatural parity [Szz(q, E))transitions.
Our basic result for unpolarized pion-nucleus inelas-

tic scattering given in Egs. (2.26)-(2.29) thus follow-
ed. These expressions explicitly separate the
partial-wave multipole spin- and matter-density
contributions to ines, astic scattering and reveal the
characteristic q, E, and 8 dependences associa-
ted with various pieces comprising the differen-
tial cross section.

In Sec. IIB we discussed how the variation of
Z at fixed q (a set of experiments feasible at
modern pion factories) could be used to isolate
different contributions to the cross section. For
example, in Eq. (2.45) an expression was given
which allows one to obtain the P-wave spin- flip con-
tribution as the slope of a straight line and the P-wave
non- spin- flip piece as the extrapolated x intercept.
Deviations from the straight line would give evidence
that the underlying formalism is inadequate. An-

alogous expressions containing the 5-wave piece
were also discussed for natural parity states.
Once a natural parity transition has been identi-
fied, one could use Eq. (2.47) to separate (with a
slight model dependence) the S-wave and P-wave
spin- and non-spin-flip contributions by working
first at 8 = 90 and then at small angles. These
equations were used in Sec. III to compare with
recent data on "C(v, v')"C*. The results indicate
that the techniques suggested should be useful in
isolating various channel reaction contributions to
inelastic scattering or, if unknown, aid in the de-
termination of the parity of final nuclear states.

We also have noted in Sec. II B that the charac-
teristic angle dependence associated with natural
parity and unnatural parity transitions causes a
difference (as a function of energy) in angle-inte-
grated differential cross sections at fixed pro-
jectile energy loss. The dominance of angle-inte-
grated natural parity transitions over unnatural
parity transitions as the projectile energy in-
creases results from two features: the cos'(8)
[ sin'(8)] dependence associated with P-wave
dominated natural (unnatural) parity transitions,
and the increasingly forward peaking of the @-
dependent nuclear form factor.

The dependence of the pion-nucleon interaction
on the total energy and relative momentum in the
two-body center of mass frame results in an ef-
fective pion-nucleon current-current interaction
(like the electron-nucleon convection current).
Calculations to date of pion-nucleus inelastic
scattering ignore the motion of the struck nucleon
in the nucleus for the P-wave spin-flip pion-nu-
cleon interaction. To treat this term correctly
would require n01 making the "tp factorization"
approximation and actually performing the assoc-
iated six-dimensional integral (as was done, for
example, in our earlier model calculations of
elastic scattering"). Such a procedure seems
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prohibitively lengthy with present computers;
therefore, in Sec. IIt. we generalized an argument
previously used by Wilkin" for approximately
treating the Fermi motion of the target nucleons.
This treatment involves a Taylor series expansion
of the pion-nucleon transition operator about the
point where the struck nucleon is at rest. The
first term obtained is the usual approximation,
whereas the second term involves the projectile
energy derivative of the pion-nucleon g matrix
and represents a Fermi-motion correction term.
We have studied this correction term for unnatur-
al parity transitions arising from the non-spin-
flip part of the transition operator and it results
in a convection current-type coupling mentioned
above.

As a function of pion energy, the Fermi-motion
term can interfere constructively or destructively
with the usual spin-flip term depending on the sign
of sf,„/s@.This gives rise to a nonvanishing con-
tribution to unnatural parity transitions at forward
angles. Furthermore, the Fermi-motion term
cannot affect stretched states and has a relative
q dependence between it and the usual spin-flip
term that differs from the relative q dependence
between the magnetization and convection current
densities in electron scattering. The numerical
results of Sec. III suggest that the effect of Fermi
motion could be measured by the appropriate en-
ergy variation studies and may be useful to further
elucidate nuclear structure.

To utilize the fixed q suggestions we have pre-
sented here, initial experimental efforts should
probably concentrate on light nuclei with ps 40.
We make this recommendation for the following
reasons: The density of final states is relatively
less dense than in heavier targets, there is ample
collaboritive electromagnetic interaction data,
and distortions are relatively less important.
Targets with J', g 0 should be included in such stud-
ies. The values of q selected should be near the
maximum of the differential cross section and, in
any event, should not be too low (qa0. 75 fm ')
because of the uncertainty in our present treat-
ment of distortions at low momentum transfer.

The first investigation should establish whether
or not the techniques suggested here can be used
with a high degree of confidence to determine the
parity of the final nuclear state for a variety of
spins and targets. This means that initially, the
parity of the state studied should be known from
other reactions. Of course, it would be an added
bonus if new states, whose spin and parity are
uncertain, were identified in the same studies.
This is not necessarily impossible because of the
ability of pions to strongly excite spin-flip, Zp
= 0 states at all momentum transfers. The next

set of experiments could be used to test the
straight line Rosenbluth plot ideas we presented.
In fact, if one has knowledge of the appropriate
nuclear form factors, e.g. , from electron scatter-
ing, then information regarding the effective 5-
wave and p-wave transition operators can be ob-
tained. Finally, at some future time, experiments
could be undertaken to study the Fermi motion
induced convection current contributions discus-
sed. For now, these corrections represent addi-
tional theoretical considerations that should be
included in the theory before detailed comparison
is made with experimental data.

Because the Fermi-motion corrections discus-
sed in this paper depend crucially upon the energy
dependence of the two-body input (i.e. , the width
of the resonance and whether it is an s-channel or
t-channel resonance), it would be interesting to
apply the idea to other reactions. In particular,
kaon induced inelastic scattering and strangeness
exchange reactions seem attractive areas for study
because of the associated resonances involved.
In fact, we have already begun such a study includ-
ing consideration of excitation of unnatural parity
states at forward angles because of such correc-
tions.

Future theoretical work could include studying
the effect of more realistic effective transition
operators on the predictions. In particular, more
detailed and realistic studies of the approximate
distorted waves at low momentum transfer and

effective transition operators including local field
corrections and/or isobar-medium corrections
will result in better theoretically motivated input
into the expressions presented here. The im-
portant point is that, except for possible additional
angle-transformation coefficients required if fixed
scatterer input is not adopted, more realistic in-
put can easily be accommodated in the framework
we have discussed above. Once included, assum-
ing the nuclear structure is known as discussed
above, experiments using the energy variability
of the current accelerators can more critically
test the distorted wave effective t -matrix approx-
imation. Once this is accomplished, the pion,
using its unique interaction with the nucleus, could
be an especially important additional probe of
nuclear structure.
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