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Dirac phenomenology in nuclear structure anti reactions
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A recently developed relativistic theory of nuclear matter and of finite nuclei is extended to allow for consideration
of the nucleon-nucleus interaction at positive energy. A new method of reducing the Dirac equation to a
nonrelativistic Schrodinger equation is presented. This scheme is used, along with the results of calculations
performed earlier for nuclear matter, to determine the parameters of the nuclear optical model. The results are in

good agreement with the phenomenological local potentials conventionally used to analyze nucleon-nucleus
scattering.

NUCLEAR REACTIONS Relativistic effects and the nuclear optical potential, re-
duction of Dirac equation to Schrodinger form.

I. INTRODUCTION

Recently we have developed a theory of nuclear
structure which provides a unified framework for
incorporating both the effects of nucleon-nucleon
correlations and a relativistic description of nu-
cleon motion. ' The derivation of the equations of
the theory is presented in Ref. 2, where use is
made of some of the relativistic Green's function
relations given by Wilets. ' The calculations re-
ported in Ref. 1 are for nuclear matter. We find
that negative-energy states induced in the nucleon
wave function play an essential role in changing
the character of the saturation curve for nuclear
matter. The inclusion of such states leads to a
strongly density dependent interaction which takes
one off the Coester line' and leads to results in
reasonable agreement with the generally accepted
values for the binding energy and density of nu-
clear matter. (Our work may be contrasted to that
of Walecka' in which the coupling constants of the
meson fields are adjusted to yield the correct
saturation properties of nuclear matter. ) In our
analysis we find that momentum-space potentials,
such as the potential HM2 of Holinde and Mach-
leidt, ' which have a weak tensor force and would,
in a standard calculation, lead to significant over-
binding of nuclear matter at much too high a den-
sity, can be brought into agreement with the data
if a relativistic calculation is made. ' There is
some evidence in favor of such forces, which have
weak tensor interactions, from the analysis of
forward proton production in the photodisintegra-
tion of the deuteron. ' In addition, this type of
force is favored on the basis of other theoretical
studies.

We are presently applying our model to the study
of finite nuclei and will report on our results

Using the techniques of Refs. 1 and 11 we may
introduce a Dirac equation which describes the
scattering of a nucleon of momentum k and spin
projection s from a spin-zero target. If we neglect
recoil we have

&(&)r'Pp„(P) = (r ' P+ m)4k..(5)

+ g pl '
tt)g,

' dp'. 2.1

Here

~ ($) —(Q2 p 2)1/2 (2.2)

and g(k) is the nucleon self-energy operator eval-
uated at the energy g(%). In Fig. I we depict vari-
ous (relativistic) approximations which may be
used to construct the self-energy. For example,

elsewhere. In this paper we extend our analysis
to include a description of nucleon-nucleus scat-
tering. In particular, we present a novel reduction
of the Dirac equation to a Schrodinger form. Once
this reduction is made we can compare our results
for the parameters of the optical potential with the
values obtained in phenomenological studies. In
Sec. II we review the standard reduction scheme
used to obtain a Schrodinger equation from the
Dirac equation and then present our approach to
this problem. In Sec. III we develop various con-
nections between our wave function and the 7 ma-
trix associated with the optical potential for nu-
cleon-nucleus scattering. In Sec. IV we extra-
polate our results for nuclear matter to yield the
parameters of the optical potential. We provide
some discussion of our results and some conclud-
ing remarks in Secs. V and VI.

II. REDUCTION OF THE DIRAC EQUATION
TO SCHRODINGER FORMS
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(o)

in time to t = -~, reduces to a plane wave and
the target in its ground state.

In Ref s. 12-16, where use is made of a (static}
Hcztree approximation for the exchange of iso-
scalar scalar and vector mesons, g is repre-
sented as

z(&) = A(I &I) +y'&(I & I}. (2.6)

This results in a Dirac equation of the form

E(Tc)y'~ (%}=[y (-if )+m+Z(%}]y, ,(%).

(2.6)
FIG. 1. Diagrammatic representations of approxima-

tions that may be used in the calculation of the nucleon
self-energy. The dashed line represents a meson prop-
agator and the single lines represent nucleon propaga-
tors. The double line represents a nucleus of A or A —1
particles and the small circles are vertex functions. (a)
The Hartree-Fock approximation is obtained if both the
direct and exchange terms are calculated. The Hartree
approximation corresponds to the calculation of only the
direct term. (b) A calculation of the self-energy which
includes correlation effects. Here M represent a nucle-
on-nucleon scattering amplitude in the medium. This
amplitude is modified from the free-space amplitude by
the inclusion of Pauli principle effects, etc.

one may use the Hartree, Hartree-Fock, or
Brueckner-Hartree-Fock approximations. (The
use of the first two of these approximations re-
quires the introduction of effective coupling con-
stants. )

The self-energy is, in general, a nonlocal, en-
ergy-dependent operator. '" However, if use is
made of the Hartree approximation, "' g is both
local and energy independent. The use of the
Hartree approximation therefore allows for a
relatively simple reduction of the Dirac equation
to a Schrodinger form. Ne will first review the
techniques used in this case and then go on to
introduce some new techniques appropriate to
the theories where g is a nonlocal operator.

In the next section we will show that the wave
function introduced in Eq. (2.1) is related to a
coordinate-space wave function as [see Eqs. (3.6}
and (3.'I}]

This is a simplified coordinate-space version of
Eq. (2.1) which is obtained in the Hartree approxi-
mation. One may then write the wave function as

P- (x)= ~ 2 (2.7)

(G k(x)y )
Now if, as is usual, one eliminates the lower
components and sets

F (-„) 1 Z(&)+m+A(x)-B(x) '~'F-
x E(Tc) + m T&

where

+ V[z(&),x] P-„(x), (2.9)

U(E, x) = V (E,x) + V2~(z, x) o' ' l,p.

Here the central and spin-orbit potentials are
given by

(2.10)

V, (E,x) = A(x) + B(x)+[A'(x) -E'(x—)]/2m
E
m

&'(E,x) d x' du'~2 (E
2m x' dx a(z, x)

(2.11)

(2.8)

one finds that Pp(x) obeys a Schrodinger equation
of the form

QP' x E(Q) 1/2

p-„(p) = 2q2 ~, (%) d%,

where

(2.3)

n'(E, x)V„(z,x) ——
2 ( ),

where

u(z, x) =Z+m+A(x) -&(x).

(2.12)

(2.13)
,(&) =&gl+, (&, 0)l&, s; g&&2 ~ (2.4)

Here +(%, t} is the nucleon field operator, I g) is
the ground state of the target nucleus, and

I~, s;g),„is the exact scattering state of the nu-
cleon-nucleus system which, when evolved back

The bar in Eq. (2.11) indicates that the differential
operators do not act on the wave function. Equa-
tion (2.9) is in a form that may be compared to
the forms used in conventional optical-model ana-
lyses. In Refs. 12-16, the numerical values of A
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and B are related to potentials describing the
exchange of scalar and vector mesons, respective-
ly. Va)ues of these parameters obtained from
nuclear matter studies are then able to reproduce,
in an approximate fashion, the phenomenological
optical potentials employed in nucleon-nucleus
analyses below 100 MeV. %'e point out that for
any realistic evaluation of Z which does not use
the Hartree approximation, the technique used in
arriving at Eq. (2.9) is inapplicable. We also
note that P(g) and xF(x) have the same asymptotic
form. However F(z} is an auxiliary quantity and

Eq (2..8) must be used to construct the wave func-
tion of interest, f„(x}.

In what follows we suggest an alternative reduc-
tion af Eq. (2.1}to a nonrelativistic form. This
new reduction scheme is more generally app)i-
cable than the one considered above.

Let us expand jj(- (p) in the complete set of free-
k, S

particle spinors, i.e.,

=ZC '(» "(p)+mr'="
S

where (using the Bjorken and Drell convention)

where, for example,

E.". (%)kl t&'}= "'(5)E(PIkl p') "'(p'),

E..'(plkl 0'}= w"'(0»( t&lk I |y }u"'(1&'),

(2.20)

=-"'-"R-
(p, k).

2ng
(2.21)

We then define a wave function P and a potential
V(k):

e,. (» =ff(p, k}P~„(p) (2.22)

( t& sl V(k) I t&', s') =&(p k»,".:"(t&lk I 5'}&(p',k}

(2.23)

etc. In a manner analogous to the elimination of
the lower components in the conventional treat-
ment, we eliminate the coefficients of m&'& in Eq.
(2.18) using Eq. (2.19). Further we note that

Z(t&)
[ (k) (»]

(k'-p') .E(5)
[E(%)+Z(&)] m

w"'(» = v' &(-]&).

The zc's andy''s are such that

(2.15) Here

E.".:"($IkIF }=E" (Tlkl Ã )

and

uoo1' (»w0t'&(» —O.
(2.16)

u(&&t ( p) u(+ &('[&) = w(et (»we &(» = 6
I E(»="'m

where

x E,'., (4 I kl p ) (2.24)

+ dydee'Z, '„k q Q„„. k q'

.E(5) Q u"'(»u "& (»+ w"&($)w"'t(p)
G.. '(41kiq')=5(q-W)6, . ' [E(T) E(4)l

(2.17} -E., (|Ilk I
q'). (2.25)

If Eq. (2.14} is substituted into Eq. (2.1}, one finds
that the expansion coefficients obey the equations

[E(&) -E('P}]&&,. (»

' Z, +., k ', p'

If we make use of Eqs. (2.18)-(2.25} we find

((;„(Pi=J&F(I* I('(&)I 5 '*, i"h„, (5 )'', '-, ''

(2.26)

and

+ d 'g,',, 0 ' k, ' 2.18

[E(&)+E(»]yj, (»

dp Zsise

Se
+ d 'g i+i. 0 '

y~k, p', 2.19

which is a conventional Schrodinger equation (in
momentum space} with a nonlocal, energy-depen-
dent potential. Equation (2.26) is a central result
of this section. In Sec. III we wi)) discuss the use
of tIt} in the description of nucleon-nucleus scatter-
ing. We may note at this point that like Fi $ is

(g i)
an auxiliary quantity and is related to P, (p) by
the functional(p, k)—see Eq. (2.22). Since R '(p, k)
=2Z($}j[Z(1&}+E(%)], if lgl and

laic(

are small
compared to M, we have ~k (z')(p) —Q (z')(».
This correspondence is not achieved in a compari-
son of F(x) and xF(&(;) since A(x) B(&() is a-large
quantity (of the order of —VOO MeV) and cannot
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be neglected in Eq. (2.8).
Our basic equation, Eq. (2.26), is nonlocal. It

is useful to construct a local equation that can be
compared to the local phenomenological forms
conventionally used. To this end we construct a
simple nonlocal form which approximates
(t&, slv(k)l'fi', s'& of Eq. (2.26). We chose to consid-
er

(|l, slv(k)lp', s')

(Pl v„, l
p'&= 2", s-' &'-&'""VN„(x), (2.29)

and

(vlv. ,lv'&=f, *.e '" e"'v„(x). (23())

We extrapolate our nuclear results to the finite
system by introducing form factors

V (x) V NMf (x)

V&a(x) =VN& f(x),

(2.31)

(2.32)

p~I ) 2
=5.. (j5I v, IF&+

f
+ i(pxp') ~ o~ ( Pl v~ I p'&/kq', (2 27)

where V~, V„~, and V» are loca/potentials:

(vlvle'& f2".e-"=i-i' "v,(), (erne)

ues for V~" and V„~ may be taken from a para-
metrization of the nuclear matter results for
Z '

(1&). As we will discuss in more detail later
[see Eq. (4.4)], Z"'s(p) =[ —90+29(p/ks)'] MeV.
Thus we can put Vc~ = —90 MeV and V~~ = 29
Mev. Thus if f(x) =1, as is appropriate for nu-
clear matter, Eq. (2.27) becomes

( p, sl V(k)l p', s'& = 5„5(p-j5')Z"' (p) . (2.33}

(x, sl V(k)l x', s') =5(x-x')V„.(x), (2.34)

From this discussion we can understand the choice
made for the first two terms on the right hand side
of Eq. (2.27). The specification of the spin-orbit
term is more complicated and we defer discussion
of that term to the end of Sec. IV. However, we
note that the spin-orbit term has a rather com-
plicated dependence on the nuclear form factors
and writing V~(x)-1/xf '(x) would be a somewhat
crude approximation —see Eqs. (4.25) and (4.26).
Similar objections can be made to the use of Eq.
(2.31) and (2.32) since these approximations are
linear in the form factors while there are some
terms in Z '"(p} that are of a more complex
structure. These terms are grouped together as
Z„c(p) in Eqs. (4.2) and (4.3); however, they are
a relatively small part of Z ~(p), and thus the
approximation of Eqs. (2.31) and (2.32) is adequate
for the qualitative discussion of this section.

With these complications in mind, the potential
of Eq. (2.27) becomes

with f(x}=[1+exp(x -8)/a] '. Approximate val- where

(2.35)

(2.36)

2m g e 1 8 82mv. ..(1)=e... I2mv, (e) ~ „, v„„(e)i!, , i' (e) —,„.
*--~—. ,—„e' —,„v„(e) If

+ . , ——v„(x)(r„.
f + 8X

Equations (2.34) and (2.35) may be used to construct a coordinate-space version of Eq. (2.26). Further,
if we define functions (t)" & (X) and ((&g, (x):

(t)(' & (X) =x j(' &(%}=x dg(xl p) (j)("&(p},
E, a %g g

(t) i, (X) —=g &(', , (1&'&' (x), (2.37}

we find that p-„, (x) obeys the Schrodinger equation

k2 1 s && T~' 2m - - 2m 1
D(x) "~ ' D(x) ex ax x'(x)= — —D(&(,)—+, + 2m V (»)+ „, Vs&, (x)B ~ 1, —k, 4D(f f X

(2.36)
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where m*(x) may be obtained from Eq. (2.39):

D(x) = 1+, V„~ (x),
f

V, (x) -=V, (x)/D(x),

(2.39)

(2.40)

m*(x) 1

1+ „,V„L(x)
f

III. THE S AND T MATRICES

(2.45)

V„(X)=- „- —V (X) D(x)
1 8 (2.41)

dk..( )-4~..() [ &)]"' (2.42)

The auxiliary function Qg (x) obeys the equa-
tion

«'j);, (x)=I-, ~ ", + «m'p, (x)

2m
+ 2 Vsp (x)(p lop

f

In Sec. IV we will provide some numerical esti-
mates for D(x), Vc(x), and Vsp(x) based upon our
recent nuclear matter calculations.

We have not as yet achieved our goal of writing
an equation of the Schrodinger form. To this end,
we extract an "effective-mass" factor D(x) from
(t)-„,(R) and introduce the function (t) -„,(x}:

In this section we shall develop the connection
between P-„„ introduced in the last section, and
the S and T matrices describing nucleon-nucleus
scattering. (We continue to neglect target re-
coil. ) The S matrix for nucleon nucleus scattering
is given by

(k,'s'I Slk, s) =&gla-', a„-, g), (3.1)

where Ig} is the ground state of the target and
a„-' " is a creation operator for the incoming nu-
cleon in the Heisenberg representation and is re-
lated to the nucleon field operator +(x, t) by

eiA'& - ~ . 1/2
a„-"' = dx u"'(k)y'«I((x, t) 3/p

One may develop a„-, as follows'.

[D(x) 1]
D(x) T(, $ (2.43)

where

2m Vc(x)=2mVc(x)/D(x)+4, —x' —[lnD(x)].1 8

(+ ) (-)

Since

(3.3}

«.«i;~"(«)r ' —'. —-'-«')«(;, i)-z et

ta x - p1/2

(2w)"' E(k)

(2.44)

We note that Eq. (2.43), if used to analyze data,
will yield a wave function fI} which is phase-shift
equivalent to the wave function (t). [See Eq.
(2.42).] It is the latter wave function, however,
which is more closely related to the fundamental
quantity Q (p) appearing in Eq. (2.14). [See Eqs.
(2.22), (2. 3), (2.37), and (2.42).]

We note that the Potential Ve(x) of Eq. (2.43) is
related to V~(x) through the effective-mass factor
D(x)—see Eq. (2.44). Further, an energy-depend-
ent potential, the last term on the right-hand
side of Eq. (2.43), appears. This letter term has
its origin in the requirement that Eq. (2.26) be
transformed to appear as a local nonrelativistic
Schrodinger equation. " We finally note that we
may write D(x) =m/m*(x), where m*(x) is a den-
sity-dependent ef'fective mass. An expression for

«I((x, t) = e' '@(x,0)e '"'

and therefore

(3.4)

&g I 4 (x, t)
I g) =. "(""&g

I
~(x, 0) Ik, g)„,

we find

&k's'I s lk, s}

(3.6)

= 5(k —k') 5«« —2wi5 [E(k) —E(k') ]

m
&& lim [E'(k) —E(k')]

Jr~ ft '

~ "'(« )~'f «« "'(«l«'(«, o)l«, «)„. (««)
It is now convenient to introduce Eqs. (2.3) and

(2. 4) so that

2 1 1/2

(k', s'I Slk, s) = 5(k —k')5„.—2wi5[E(k) —E(k')] lim [E (k) —E(k')] - -, u "'(k')y (t)„-,(k') . (3.7)
A~A'
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Therefore, the T matrix is given by

lim [E'(k) —E(k')] g., ' (k') = lim [E'(k) —E(k')] (t)- (k') = lim )t)(' '(k')
]f, S

k', g' 2m V k k", s" g„-"
' R" dk" . (s.6)

dR" ', 8' 2mV k k", s' g-" k" . 3 yp

We should now like to invert Eq. (2. 1) or alterna-
tively Eqs. (2. 18) and (2. 19) or (2. 26) . Clearly,
a properly normalized solution to Eq. '(2. 1) with
Z equal to zero is

)Pf,(k') =g"'(k)5(k' —k) . (3.11)

Correspondingly, we have

Q, ' (k')=5, ,5(k' —k), (s. i2)

(k') =0, (s. is)

and

)Pf~, (k') = 5, ,5(k' —k) . (3.14)

Therefore,

-&s) -„,-, -) (k', s'I T(k) Ik) s&

(s. is)

where T for k' Wk is given by the same formula as
in Eq. (3.10). Finally with V(k) =2mV(k) we find,
after introducing Eq. (3.15) into Eq. (3.10), that

(3.16)

IV. NUMERICAL RESULTS AND INTERPRETATION

We have solved Eq. (2. 1) for values of energy
parameters appropriate to occupied states in nu-

If we rewrite S as

5 k'
[5(k- k') - vfk(k', s'l T(k)lk, s&]

(s. 9)

we find that

«' 'IT(k) I» s&

clear matter. ' These calculations may be ex-
tended to obtain both bound and continuum solu-
tions of this equation for finite nuclei. At this
state, however, it seems appropriate to attempt
to extrapolate our nuclear matter results to the
optical-model regime of 0-100 MeV projectile
energy in a manner similar to that used by other
authors. %e devote this section to this application
of our nuclear matter results to the determination
of some optical-model parameters.

Our best fit to nuclear matter properties was
accomplished by using the potential of Holinde and
Machleidt designated HM2. This potential has a
large tensor coupling for the p meson and hence
a small net tensor force. This small tensor force
is currently favored on the basis of other consid-
erations. ' ' (Results for other potentials we have
considered are similar to those for HM2 but do
not fit nuclear matter quite as well. ') In Figs. 2,
3, and 4 we exhibit Z"(p), Z '(p), and Z (p).
The quantities were calculated in nuclear matter
for the potential HM2 (Ref. 1) and are analogous
to the Z", Z ', and Z considered here. The
calculations of Ref. 1 include full two-body cor-
relation effects and the effects of the exchange of
all the various mesons of the one-boson-exchange
model of nuclear forces (o, &0, v, p, . . . ).

For the analysis of this section it is useful to
parametrize the nucleon self-energy using the
nuclear matter results. To this end we depict
various contributions to the nucleon self-energy
in Fig. 5. In this figure single lines refer to
states described by positive-energy spinors and
double lines refer to negative-energy states.
The wavy lines are reaction matrices. (We have
only shown the direct terms for simplicity. )
Numerical results for the quantity Z "(P) shown
in Fig. 2 represent the results of a calculation of
the process depicted in Fig. 5(a) (plus the as-
sociated exchange term). Figure 5(b) is a dia-
grammatic representation of the second term on
the right-hand side of Eq. (2. 24) and can be esti-
mated from the knowledge of Z '(p) and Z (p).
(See Figs. 3 and 4. ) The values for Z"(p) shown
in Fig. 2 do not contain the relativistic correction
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2ooo- HM2

l500—
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0.2
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p/kF

I I

0.8 I.O
'
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+
I

4J

0 0.2 0.4 0.6
P/kp

0.8 l.o

FIG. 3. The results of calculations made for symmet-
ric nuclear matter for the transition potential Zf p f/2(jfl)
are shown in this figure. (See caption to Fig. 2).

FIG. 2. The self-energy Z+'(p) calculated for the po-
tential HM2. The calculation is made for symmetric
nuclear matter for various values of kz. (a) k~
=1.2 fm, (b) k&-—1.36 fm, (c) kg=1.6 fm ', and (d)

kg=1.8 fm '. The solid lines are the result of calcula-
tions made in the Hartree-Fock approximation [Fig. 1(a)l

while the dashed lines are the results for calculations
which include correlation effects [Fig. 1(b)l.

FIG. 4. The results of calculations of the quantity

~~ (p) =to' (p)~(p)u ~ (p) made for symmetric nuclear
matter are shown in this figure. (See caption to Fig. 2).

terms exhibited in Fig. 5(c). These can be esti-
mated from other considerations. The results
for the leading term of Z" [Fig. 5(a)], which are
given in Fig. 2, may be approximated as follows

Z "(p) = [-97.5 + 22. 5(p/kz)'] MeV . (4. 1)

The remaining terms in the self-energy, depicted
in Figs. 5(b) and 5(c}, can be grouped together as
"relativistic corrections" and designated as
ZRc(p). The correction shown as Fig. 5(b) is es-
sentially

~

Z '(p)
~

'/(2m) and is approximately
equal to (5/3)(3. 86)(p/kz) MeV. The other two

terms in Fig. 5(c) are less strongly momentum
dependent and may be approximated as constants
=3.86 MeV. Therefore we have for the relativis-
tic correction terms of Figs. 5(b) and 5(c)

Znc(P) = [2(3.86) + 3.86(5/3)(P/kz) ] MeV (4. 2)

=[7.72+6.43(p/kz) ]MeV, (4.3)

and therefore, combining Eq. (4. 1}and Eq. (4.3),
we have

E""(p)=~-(p)+ ~..(p)

= [-89.8+ 28. 9(p/kz)'] MeV . (4. 4)

We now wish to use these results to determine
the parameters of our simplified nonlocal potential
of Eq. (2.27). The first term in Eq. (4.4) will
be associated with V~ and the second with V„„.
We write VN~

——28. 9f(x} MeV, where f(x) is a
form factor normalized such that f(G) =1. Thus.
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(b)

Q

&o(S)=- se. sf(x)
D(~)

se. sf(x)

1+28 9(k t ~f(~}
(k~ ]

Vo(0) =-89.8(0.57) MeV=-51. 1 MeV. (4.8)

This number represents the strength of the cen-
tral potential to be used in the Schr5dinger equa-
tion [Eq. (2.43)) if we neglect the second term in
Eq. (2.44).

We next consider the parametrization of the
energy-dependent term in the potential appearing
in Eq. (2.43}. We have

k' D(s)-I
Vs(x)=

2 D( )

k'
1

m'(s)
(4 9)

2m m

with

Vs(0) =0.43(k /2m) . (4. 10)

(c)

FIG. 5. Various contributions to the self-energy
Z~&(p) in nuclear matter. (Only direct diagrams are
shown for simplicity. ) The processes shown in (b) and

(c), are grouped together as relativistic corrections
which involve negative-energy states; the sum of these
terms is called ZRc(P) in the text. In these figures the
wavy line is a reaction matrix which includes the effects
of nucleon-nucleon correlations and the single lines de-
note states represented by positive-energy spinors. (a)
The evaluation of this diagram (plus the exchange count-
erpart) yieMs the values of Z (p) shown in Fig. 2. (An

integral over q, where [q~ k/, is performed in the evai-
uation of this diagram. ) (b) This part of ZR'&(p), plus the
corresponding exchange terms, is equal to
I ~f/t f/t(P)l'/gm and may be estimated using the results
for Zf/2 f/2(P) given in Fig. 3. (c) These contributions to
Z~(p) arise when one takes into account the negative-
energy states in the density matrix of the target. [In a
calculation of Fig. 1 (a), using the self-consistent density
matrix for the target which contains negative-energy
state components, one would include both the processes
shown in Fig. 5(a) and Fig. 5(c) in a single calculation. ]

Before discussing the spin-orbit term of Eq.
(2.43), we remark on the self-energy in nuclear
matter. We note that we may write using general
invariance principles

EV } =A(p)+ r'B(ih)+ C(p). (4.11}

and

A(P}=[-393+21$/k&) ] MeV,

B(O) =[294 —12//kr)'] MeV,

(4.12)

(4.13)

E$)B(p}=[294 —0.02(ih/k&')] MeV. (4.14}

Here A appears as a kind of effective scalar field
and B as an effecth/e vector field. We have cal-
culated these quantities for nuclear matter includ-
ing effects of correlations. One finds that C(p)
is small and may be neglected in these considera-
tions. We can parametrize our results as fol-
lows:

m*(s}
m 1+28.9 2 x

(4.5)

me(0) 1 1 ——0.57 . (4. 8)
1+28. 9

f

In a similar fashion we put Vo = -89.Sf(x) MeV.
Therefore from Eq. (2.40) we have

It is the latter quantity which appears directly in
Z"'s(O). Comparing Eqs. (4.12) and (4.14) we see
that the energy-dependent term in the nonrelativ-
istic Lippmann-Schwinger equation has its origin
in the effective scalar field's nonlocality. The
energy dependence associated with the vector
field, i.e. , the E@)/m factor in Eq. (4.11), serves
to reduce the role of the nonlocality of the effec-
tive vector field when calculating the parameters
of the optical potential.

The spin-orbit potential is more difficult to ex-
tract in our scheme. The terms in V(k) or Z' '"
corresponding to Fig. 5(c} require detailed calcu-
lations. In addition, the correlations in finite
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nuclei may introduce additional spin-orbit terms
in Z". However, without these nontrivial com-
plications we may still make a crude estimate of
the spin-orbit potential. We recall that [See Eqs.
(2.38) and (2.41)]

1 — - 1 1 1

f

&plBlp') =Bo&plflp'&,

with

f(x) =[I+exp[-(R -x)/a]j ' .

We identify A, and B, as follows:

Ao =A(p: 0)[po/PNM] ——413 MeV

(4.19)

(4.20)

(4.21)

where one can identify

(4.15)
Bo=B(P= 0}[Po/PNu]= 310 MeV . (4.22)

~(pip') =(pIA I p'&+r'&PIBIp'&

where

&p IA I
p') =Ao&p Ifl p'&

(4.17)

(4.18)

(4.16)

Using Eqs. (2.23), (2.24), and (2.25) we may
obtain an explicit formula for ( p I

V(k)
I

p' ) . To
estimate the magnitude of the spin-orbit potential
in a finite system we take the self-energy operator
to be

Here Po
——(4vroo/3) ' =0.179 fm o at ro ——1.1 fm,

and p„„=2k&o/(3vo) =0.17 fm o for k& ——1.36 fm '.
[We remind the reader that the values quoted in

Eqs. (4.21) and (4.22) are based upon our relativ-
istic Brueckner-Hartree —Fock calculations and
include the full effects of two-body correlations,
etc.]

For simplicity we shall neglect a term in Z of
the form y (p+p')x&plC Ip'&/m. From our pre-
vious calculations we can expect the contributions
coming from this term will. increase the result to
be calculated here by at most 109&. If in the eval-
uation of Eqs. (2.23), (2.24}, and (2.25) we ignore
corrections of order (p/m) or (k/m} we find upon
using Eq. (4.16)

~
~

1
p —— *

O 'i j') = -'
)

'
O [[O [x(x) 8( )1}xxp —[O Ixtx) —x(*)]+Ix(x)+ x(x)]p &x(x)f

"[[x(*)—&)(x)]v..+O..[x(x)+x(x)]}[

p
—[A'(x) —B'(x)] 1 — 1 — (r 'l, o p

1 1, , 4A(x) A(x) (4.23)

where

d(x) =2m+A(x) -B(x) .

Therefore

—V (x}o ~ l. =
I

——' 1 — 1 — —[A'(x)-B'(x}] lo'lao.1 - 1 1 ( m, 4A(x) A(x) 1

kr " m, o D(x) t m d(x) d(x)

(4.24)

(4.25)

For D(x) we take D(x) = 1 +0.76f(x). [See Eqs.
(4.5) and (4.6).) If we evaluate D(x) and A/d at
x = R, i.e., D ' = 0.73 and (A/d) =-0.136, we find

—
o Vop (x}o l,o=,v„f'(x)f T,]&—1 — 1 1

f OP ~ 2 SOg (4.26)

with &so= 4.V MeV. This value is reasonably close
to the experimental value, " '?.5 to 6 MeV. It is

l

to be noted that we have left out the contributions
to the spin-orbit potential corresponding to Fig.
5(c} and have neglected the nonlocalities asso-
ciated with A and B. The terms shown in Fig.
5(c}may be estimated to contribute a few tenths
of an MeV to &„. Indeed our calculated values for
A 0 and B, given in Eqs. (4.2 1) and (4.22) are very
close to the phenomenolo~cal parameters chosen
by Noble": Ao = -420 MeV and 8, = 328 MeV, in
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our notation. These parameters are determined
in Noble's work by fitting to the empirical optical-
potential parameters. His value for the param-
eter v„ is 5.1 MeV. If we use Noble's param-
eters in our Eq. (4.25) we obtain v„=4.9 MeV.
The small remaining descrepancy between Noble's
analysis and ours can be ascribed to the different
formalisms used in reducing the Dirac equation
to a Schrodinger form.

of Zz~(lj) to the nonlocality and the effective mass
is specifically a relativistic effect due to the in-
clusion of negative-energy states in the theory.
The nonlocality implied by the momentum depen-
dence of Z (P) is a feature that already appears
in the nonrelutivistic Brueckner theory of nuclear
matter.

VI. CONCLUSIONS

V. DISCUSSION

We have discussed two methods for reducing the
Dirac equation to a Schrodinger form. The first
method is summarized in Eqs. (2.5)-(2.13) and is
suited to the case in which the self-energy is a
local function such as that given in Eq. (2.5).
The second method is more general in that it may
be used when the self-energy is nonlocal as it
would be in a relativistic Hartree-Fock or a rela-
tivistic Brueckner-Hartree- Fock theory.

A few comments are in order concerning the
second method. Even if one were to start with a
local form for Z such as that given in Eq. (2.5},
Z ff of Eq. (2.24) would be nonlocal. If we work
in the approximation R(P, k}= 1 this nonlocality
would arise from the second term in Eq. (2.24).
Therefore to obtain a local Schrodinger form one
would still use the procedures discussed in Eqs.
(2.27)-(2.44). We recall that one obtains a local,
energy-dependent interaction in Eq. (2;43) after
introducing the transformation given in Eq. (2.42).

We note that in the numerical studies presented
in Sec. IV we found that the momentum dependence
of Z"(P) played a major role in determining the
value of the effective mass. The role of ZRz(P)
was relatively less important as may be seen by
comparing Eqs. (4.1}and (4.3). The contribution

We have presented a procedure for reducing the
Dirac equation to a Schrodinger form which is
suited to the nonlocal potentials which arise nat-
urally in relativistic Hartree-Fock or relativistic
Brueckner-Hartree-Fock calculations. As we
have seen, the nonlocality of the potential plays
an important role in explaining the energy depen-
dence of the effective loca/ potential. It is also
interesting to note that about 25/ of the nonlocality
can be ascribed to relativistic effects involving
negative-energy states. [These effects were
grouped together in ZRz(P). In addition, approxi-
mately 40% of the spin-orbit strength is due to
these effects. ] [See the terms proportional to
A/d in Eq. (4.25).]

The fact (a) that the central potential's strength
and energy dependence and the spin-orbit poten-
tial's strength have reasonable values when our
results in nuclear matter are extrapolated to
finite nuclei and (b) that our relativistic Brueck-
ner-Hartree-Fock model is able to deal success-
fully with correlations and nonlocality warrants
the detailed finite-nucleus calculations we are
presently undertaking.
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