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A macroscopic liquid drop model is considered in order to demonstrate the deep inelastic processes that take place
in heavy ion collisions. The colliding nuclei, treated as two liquid drops, are assumed to form a single rotating and
vibrating compound drop. This drop will either separate again into the parent nuclei, in addition to some smaller
particles (satellites), or will form an equilibrium compound nucleus which decays either by particle evaporation or
through fission. The maximum and minimum values of the critical angular momentum between which complete
fusion occurs are calculated according to this model for several heavy ion reactions and good agreement with the

experimental values is observed.

NUCLEAR REACTIONS Heavy ion scattering; modified model for interaction of
two liquid drops, its application to deep inelastic collisions between two heavy
nuclei; calculations of critical angular momentum.

I. INTRODUCTION

A new reaction mechanism was recently ob-
served in heavy ion reactions in which the masses
of the outgoing particles are in the vicinity of
that of the target and projectile and where the
bombarding energy is highly damped during col-
lision.'™® This mechanism is called the “deep
inelastic” or “quasifission” reaction. It was
found that complete fusion of projectile and tar-
get nuclei takes place for a certain range of angu-
lar momenta, the two limits of which are called
the critical angular momenta.®™!' Several works
were carried out to calculate the critical angular
momentum. Wilczynski'? and Bass'® assumed
that at the upper critical angular momentum the
centrifugal and Coulomb repulsive forces are
equal to the attractive nuclear force. For angu-
lar momenta less than the critical value the at-
tractive nuclear force overcomes the repulsive
forces and complete fusion occurs. The critical
angular momentum calculated in this way is in-
dependent of the bombarding energy,'? which con-
tradicts the experimental observations.'*''> An-
other classical approach to the determination of
the upper critical angular momentum is to solve
the equations of motion and find the maximum
angular momentum corresponding to an orbit
leading to complete fusion,'®'!” but the calcula-
tions are complicated. The nuclear potential
used in all these methods is based on the liquid
drop model. Recently, the proximity potential
of Swiatecki’® was considered to account for the
nuclear interaction between heavy deformed nu-
clei.'®"?® The concepts of nuclear viscosity and
friction losses were introduced to explain the en-
ergy dissipation.?""'**~*" Cohen et al.”® studied
the equilibrium configurations of a rotating

charged liquid drop and calculated the critical
angular momentum for complete fusion.

In the present work we shall assume a macro-
scopic liquid drop model for the nuclei and con-
sider collision between two heavy nuclei as simi-
lar to the collision between two liquid drops and
proceed to find the values of the two limiting
angular momenta.

In Sec. I we shall give a short account of the
collision between two liquid drops as developed
by Brazier-Smith et al.?® and Bradley and Stow*°
which will be followed in the present work. Some
modifications of these methods are introduced so
as to improve the agreement between the theo-
retical and experimental results for the collision
between two liquid drops. In Sec. HI the results
derived in Sec. II are applied to the collision be-
tween two heavy nuclei. The existence of two
critical angular momenta for complete fusion is
clear in this model and good agreement is ob-
served between the experimental and theoretical
values of the critical angular momentum. In
Secs. IV and V the results and conclusion are
presented.

II. COLLISION BETWEEN TWO LIQUID DROPS

Experiments on collisions between water drops
have shown a strong similarity to the collision
between heavy nuclei. In particular it was found
that there are upper and lower limits for the im-
pact parameter between which permanent coales-
cence of the two colliding drops occurs.*°*! For
large impact parameters separation occurs due
to high rotational energy and for small impact
parameters separation occurs due to vibrational
energy.’®*! Methods were proposed to determine
the stability criteria for the compound drop
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formed after collision. Brazier-Smith et al.?®

calculated the upper critical value of the impact
parameter of two colliding water drops. They
assumed that the two charged drops form, after
collision, an approximate spherically shaped ro-
tating compound drop. At the same time complete
mixing of the two drops does not occur.?® Separa-
tion will occur, producing the parent drops, if
the rotational energy plus the surface energy of
the compound drop is equal to (or greater than)
the surface energy of the outgoing drops. The re-
sults agreed with the experimental data,*® although
the vibrational energy of the compound drop and
the rotational energy of the outgoing drops were
neglected. Brazier-Smith et al.? found that—for
the range of charges considered—the electro-
static energy effect was negligible. Moreover,

it may be mentioned that the effects of the trapped
air layer are negligible for high impact veloci-
ties.®!

Bradley and Stow®° adopted a graphical method
for studying stability conditions of the compound
drop. The expressions of energy of the colliding
system are divided into two factors: one depends
on the drop shape only while the other is shape
independent. The relation between the shape de-
pendent factors in the rotational and surface en-
ergies of the compound system defines a two di-
mensional curve which is called the parametric
shape constraint (PSC) curve. Bradley and Stow®°
proposed that the colliding drops, during collision,
form a rotating and vibrating compound system
having the shape of an equipotential surface re-
sulting from two equivalent point charges whose
magnitudes are equal to the masses of the colliding
drops and are located at their centers. The volume
enclosed by this surface must be equal to the
volume of the colliding drops if the liquid is in-
compressible. When the two centers coincide the
equipotential surface becomes a sphere. It was
then assumed that the compound system continues
to vibrate, having an oblate configuration. Vibra-
tions continue, following the assumed configura-
tions, until complete mixing of the two drops
occurs, unless disruption occurs during the first
vibration. For this assumption the PSC curve
will be in the form shown in Fig. 1, where—fol-
lowing same notation of Ref. 31—A, and A, are
given by

E

As:EZ) ’ (1a)
E,

A,='E—'§ . (1b)

E, and E, are the surface and the rotational ener-
gies of the composite system and E? and E? are
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FIG. 1. Sketch of the parametric shape constraint
curve for a composite system resulting from the colli-
sion of two equal drops (Ref. 30). The lower branch
represents the configuration of equipotential surfaces.
The upper branch represents the oblate configuration.
The point S represents the spherical shape. The knee
N represents the separation configuration. The lines
1, 2,3 represent stable, unstable, and critically stable
states of the composite drop, respectively.

the surface and the rotational energies of the cor-
responding spherical drop having the same angu-

lar momentum. The knee N of the PSC curve de-
fines the separation configuration.

The total energy could be expressed in a dimen-
sionless form by dividing all energies by the sur-
face energy of an equivalent spherical drop.
Neglecting Coulomb energy, the dimensionless
total energy e; is given by

e;=As+e, A te,, (2a)

where e, is the shape independent factor of the
rotational energy, and is given by

€r =76 » (2b)

and e, is the dimensionless kinetic energy due to
vibration; it will be referred to as the dimension-
less vibrational energy.

At the extreme limits of oscillation the vibra-
tional energy is zero.’® Hence Eq. (2a) reduces to

e;=Ag+e,A,. 3)

The configurations at the limits of oscillation
are determined by the points of intersection of the
straight line in Eq. (3) (which is called the energy
line) and the PSC curve. If there is one point of
intersection only the compound drop is unstable
because the configuration at the knee N would be
reached during the oscillation. The lower critical
impact parameter at certain energy e; could be
determined by drawing an energy line passing
through the point (e;, 0) and tangent to the PSC
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curve at the knee N, as shown in Fig. 1. In these
calculations the angular momentum is assumed to
be conserved. The experimental results for the
lower critical impact parameter seem to disagree
with the results calculated by this method even
when energy loss due to viscosity is introduced.

To achieve agreement between the experimental
and the theoretical results, we introduce the as-
sumption that separation due to vibration will occur
if the initial vibrational energy at collision (which
arises from the radial velocity just at collision) is
greater than or equal to a certain minimum value
e,';min. To determine this minimum value of ener-
gy, the case of head-on collision is considered.
Applying conservation of energy at the instants of
collision and separation one may have for the
minimum initial vibrational energy

e:minzAg_A: ’ (4)

where A! and A% are the dimensionless surface
energies of the initial drops and those at breakup,
respectively.

It is assumed that at this minimum value of en-
ergy the vibrational energy of the outgoing drops
is zero. For noncentral collisions the minimum
initial vibrational energy is given by

Crn =AY -Ai-e,(A;-A)), (5)

where A! and A® are the shape dependent factors
in the rotational energy at collision and breakup,
respectively. e, is given by Eq. (2b).

Taking the energy dissipated during collision
into account and following the same method of
Bradley and Stow,?° Eqs. (4) and (5) reduce to

ey .. =Ab—Al+n(e,—1), for central collision (6)
e:min=Ag _A; - e'(A: _Ae) +n(et - 1) ’
for noncentral collisions (7)

where n accounts for energy losses due to vis-
cosity and friction. n(e, —1) represents the ener-
gy losses during collision. It must be noticed that
n here differs from the definition of » in Ref. 30,
where the friction losses at collision and during
neck formation were not considered.

The third term in the right-hand side of Eq. (7)
represents the difference between the initial ro-
tational energy of the system and the final rota-
tional energy at the instant of separation when the
dumbbell-shaped drop rotates as a rigid body.
This term tends to reduce the minimum initial
vibrational energy necessary to produce separa-
tion. At the same time it is expected that the cen-
trifugal force causes the thickness of the neck of
the compound drop to increase and hence the
deformation at separation increases. Thus the
knee of the PSC curve, which defines the shape at

separation, is not fixed but its position changes
according to the impact parameter and the bom-
barding energy. This differs from the previous
work of Bradley and Stow,?° where the knee was
fixed. If the deformation increases, the energy
loss during the neck formation increases also,
i.e., A% and n in Eq. (7) are larger than the same
quantities in Eq. (6) at the same value of e,.
Hence, for small impact parameters (i.e., small
e,), the minimum vibrational energy may be ap-
proximated by Eq. (6), i.e., the difference between
the rotational energy just at collision and the rota-
tional energy at breakup balances the change oc-
curring in the surface and dissipated energies.

To determine the lower critical impact param-
eter X% at certain incident velocity u, conserva-
tion of energy is applied before and just at colli-
sion. Then one has

A:+ek=A§+e.‘,min + (e')Lr)r‘y:' A:‘ ’ (8a)
where ¢, is the dimensionless bombarding energy
in the center of mass system, (e,) %A} is the di-
mensionless initial rotational energy correspond-

ing to the lower critical impact parameter, and
Al is given by
i _sm+M)@® +R3)2/3

A,
mM 2
Y (r +R)

, (8b)

where m,M and 7,R are the masses and the radii
of the colliding drops, respectively.
We define the Weber number Ny, as®°

NWe'_"%rvz ’ (9)

where p is the density of the drop, ¢ is the sur-
face tension, 7 is the radius of the incident drop,
and U is the impact velocity.
Using Egs. (6), (8a), (8b), and (9), and accord-
ing to the definition of e,, e, and e, in Ref. 30,
low

the lower critical impact parameter X for colli-
sion between two equal drops is given by

tow yz . (1 =n)e;+n —A? 10
Xt V== 12509 0)
where
Nye
e =g bsg +1.2599 1)

and » in Eq. (10) is used as a fitting parameter
whose value is determined from the experimental
results of collision between water drops. To find
an approximate value of n, the experimental re-
sults of Ref. 31 for collision between 300 pm
drops are considered. It was found that the mini-
mum velocity necessary to produce separation in
central collision corresponds to Ny,'/?~17.° The
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outgoing drops are three drops [Fig. 7(a) of Ref.
31]. Assuming the three drops to be equal, then
A% is equal to 1.44; for unequal drops A% will be
smaller but the change is not large (e.g., for the
case of two equal drops each of 80% of the mass of
the original drop and a third drop whose mass is
40% of the original drop, A® is 1.427). Hence,
taking A% =1.44 and substituting in Eqs. (10) and
(11) for Ny, /2.7 and X'9¥=0, we found that n
equals 0.844. Substituting for n=0.84 and A}
=1,29 and 1.4 in Egs. (10) and (11) the lower criti-
cal impact parameter could be determined as a
function of Ny,'/2. The value of A%=1.29 corre-
sponds to the knee of the PSC curve in Ref. 30.
One may notice that A® represents the dimension-
less surface energy at separation in case of a
head-on collision with minimum bombarding ener-
gy. The calculated values of XS are plotted
versus Ny, 4 2. and the results are shown in Fig.
2. The experimental data in this figure are taken
from Ref. 30. In the same figure the calculated
values of the lower critical impact parameter as
calculated by Bradley and Stow®® are presented.

It is clear from Fig. 2 that the results obtained in
the present wark give better fitting to the experi-
mental data. A refinement may be introduced by
increasing n in Eq. (10) with bombarding energy.
This is an acceptable assumption because the
lower critical impact parameter increases with
the bombarding energy, so the deformation and
hence the friction loss both increase. The in-
crease in energy dissipation may be so large that
the initial rotational energy is insufficient to ba-
lance it.
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FIG. 2. The relation between the lower critical im-
pact parameter X% and Ny,!/%. The dashed-dotted
curve represents the results of Bradley and Stow (Ref.
30). The solid curves represent the results obtained
according to the new method taking n=0.84 and A2=1.4,
1.29. The dashed curve represents the experimental
data as obtained from Ref. 30.

II. DEEP INELASTIC COLLISION

Applying the model used for the collision of two
liquid drops to the case of the collision of two nu-
clei, we shall assume that after collision a rota-
ting and vibrating complex system is formed in
which each nucleus preserves its identity for a
small number of oscillations. Separation will
occur during the first cycle, either due to vibra-
tion for low partial waves or due to rotation for
high partial waves. To determine the upper and
lower critical angular momenta between which
complete fusion occurs, the same precedure
adopted in Sec. IT will be applied but the Coulomb
energies are introduced. Thus, similar to Eqs.
(6) and (8a) the minimum initial vibrational energy
and the lower critical angular momentum will be
given by

E, . =Ep+Xes - Xip +AE (12)
and

K3 (X %¥)?=(mE -Ep - X2 [2u(r +R)7, (13)
where E; is the deformation energy, given by

Ep=Es+E;- Es-Eg, (14)

AE is the energy dissipated in one cycle after
collision, given by

AE=(1-7)E, (15)

i is the reduced mass, 7,R are the radii of the
interacting nuclei, E;, E.;, and X g are the surface
and Coulomb energies and the Coulomb barrier,
respectively, ¢ and b refer to the state just at
collision and at separation, respectively, E is the
bombarding energy in the center of mass system,
and 7 is a fractional fitting parameter to account
for the energy remaining after dissipation.

The upper critical angular momentum is calcu-
lated according to the method of Brazier-Smith et
al.?® applied to the case of a collision between
water drops, but the outgoing nuclei are assumed
to be deformed. In this case the vibrational ener-
gy of the compound nucleus at the instant it takes
the spherical shape is assumed to be equal to the
rotational energy of the outgoing nuclei plus the
energy dissipated during collision. This assump
tion is supported by the good results obtained in
the case of collision between water drops.?®:3°
Thus, the rotational energy (E,); of the spheri-
cal composite system corresponding to the upper
critical angular momentum % will be given by

(‘Er)crit =E:+Eé +XgB ‘EE_E% ’ (16)

where EJ and E¢ are the surface and Coulomb
energies of the spherical system.

The upper critical angular momentum will be
given by
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P18 )= 2 (Ey) e (M +m)(r® +R%)?/3 an

where M, m are the masses of the two colliding
nuclei and 7, R are their radii.

To find the values of E} and E% in Eqs. (14) and
(17) a specific configuration for the compound
system at breakup must be assumed. The dumb-
bell-shaped nucleus which exists just before se-
paration may be approximated by two prolates of
the same ratio of axes.

The minimum bombarding energy E nmin, below
which separation due to rotation does not occur,
is the energy at which the upper critical angular
momentum equals the grazing angular momentum,
assuming the outgoing nuclei to be undeformed.
Hence E,;, will be given by

Enmin= X +2(1%) 8 /[2u(r +R)?]. (18)

IV. CALCULATIONS AND DISCUSSION

Equations (13) and (17) are used to calculate the
upper and lower critical angular momenta. The
surface energy, the Coulomb energy, and the rota-
tional energy of a spherical nucleus with atomic
number Z, mass number A, and angular momen-
tum 7%l are given by?®

2
E,= 17.9439[1 - 1.7826<—A—A—2£>]A2/3 MeV,

(19)
72
E.= 0.7053;73 MeV, (20)
2
E,=34.54F-3- MeV. (21)

The radius parameter 7, in these equations is
taken as 1.2249 fm.

For the prolate configuration of ratio of axes y
(y>1), the surface and Coulomb energies are

E, =éE,y'2’3[1 AT/ aresin(l - 1/"2’1/2] ’

(22)
EL=E v
Y S S £ ESY.s i N
—
-1/ T a1 1177
(23)
where E; and E. are given by Egs. (19) and (20).
The Coulomb barrier at separation is given by
b XC‘B
Xca = 72'7? ] (24)

where

. _1.44Zz2

B=IR @5)

Z and z are the atomic number of the colliding
nuclei.

The critical angular momentum for complete
fusion, at certain energy, is given by

Lo =3 ) = (L )*. (26)

If 1.5 is greater than the grazing angular momen-
tum I, then Eq. (26) reduces to

lcrixz = lgr2 - (li‘;‘: )2 (27)

The experimental values of the critical angular
momentum for different nuclear reactions are
taken from Table I in Ref. 10.

It was found that when 7,=1.2249 fm the experi-
mental values of the critical angular momentum,
for many reactions near the Coulomb barrier, ex-
ceeds the grazing angular momentum. This may
be attributed to deformation in the nuclei before
collision due to strong Coulomb interaction. This
suggests taking 7, as 1.44 fm. When the calcula-
tions of the critical angular momentum were re-
peated using 7,=1.3 fm, the results slightly
changed but the main features of the model were
unchanged. It may be more convenient to assume
that the two interacting nuclei are deformed before
collision and have the oblate configuration instead
of the spherical shape which implies the use of a
large radius parameter.

The ratio of axes y, which is used to determine
E% and E% in Eq. (16)—i.e., corresponding to the
upper critical angular momentum—is denoted by
Yuwp- Similarly, the ratio of axes v, which is used
to determine E? and E% in Eq. (14)—i.e., corre-
sponding to the lower critical angular momentum—
is denoted by v,. Taking 7 in Eq. (13) as 0.9,
one may proceed to obtain an empirical formula
for the ratio of axes y,,, corresponding to the
lower critical angular momentum by considering
all the reactions where the ratio of masses (mass
numbers) of the interacting nuclei are approxi-
mately the same. For each reaction the critical
angular momentum is calculated by changing v,
and v, in steps of 0.01. For each value of yp,
Yiow 1S changed until good fitting to the experimen-
tal values of the critical angular momentum is ob-
tained. The critical angular momentum is calcu-
lated using Eqs. (13)-(17) and (19)-(26). In the
reactions where E<E,;,, where E;, is given by
Eq. (18), there is no separation due to rotation
and I &% has no meaning. In this case Eq. (27) is
used to determine the critical angular momentum
instead of Eq. (26) and there is only one value of
Y 1ow at which the calculated critical angular mo-
mentum and the experimental one agree. Plotting
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the values of y,,, which give good fitting to the ex-
perimental data versus (E - X%3)/X{p for the reac-
tions of nearly the same ratio of mass numbers of
the colliding nuclei, A,/A,, the relation could be
approximated by a straight line as shown in Fig.
3. Hence v,,, may be given by

i

E-Xcp
Yiow =@ X +b ’ (28)
CB

where a and b are functions of A,/A, (>1). For
each value of A,/A, the parameters a and b in Eq.
(28) are determined from Fig. 3. It is clear, from
this figure, that y,, decreases as A,/A, increases
for the same value of (E — X&)/X&s.

The relations between a and b and A,/A, are ap-
proximated by straight lines [Fig. (4)]. By using
the least square fitting method a and b were found
to be given by

a=-0.01182(A,/A,) +0.166 46, (29)

1.0 | | I ] | | 1
0 1 2 3 4 5 6 7 8
(E-Xdg)/ X g

FIG. 3. The relation between v,,, and (E-X4p)/Xks.
The solid circles represent the reactions N+Rh (72 and
106 MeV), N+Ag (69 MeV), and Ne +Nd (127 MeV)
where the ratio of mass numbers, A,/A,, is abdut 7.5.
The hollow circles represent the reactions C+Ni (53
and 149 MeV) and C+ Cu (54 and 81 MeV) where 4,/A,
=~ 5, The crossed points represent the reactions C+ Ti
(65 and 144 MeV), Ar+Ho (241 MeV), and N+ Cr (206
MeV) where A;/A,=~3.946, For the reactions where
E>E,;,, the range of values of y,,,~each corresponding
to a certain vy ,—which gives good fitting to the experi-
mental data, is indicated by dotted lines. The straight
lines represent the approximated relation between v,y
and (E-Xkg)/X%y for the reactions having the same
value of A;/A,. The experimental data are taken from
Ref. 10.

0.06!

A1/ A2

FIG, 4. The values of a (@) and » (x) in Eq. (28)—as
determined from Fig. 3—are plotted versus the cor-
responding value of A;/A,. The solid line represents
the approximated relation between a and A,/A, which is
given by Eq. (29). The dashed line represents the ap-
proximated relation between b and A,/A, which is given
by Eq. (30). The vertical lines represent the errors in
determining the values of ¢ and b from Fig. 3.

b=-0.000294(A,/A,) +1.0366. (30)

Then for all nuclear reactions given in Table I in
Ref. 10—except Kr induced reactions—where
E<E.p, i.e., where separation occurs due to
vibration only, the critical angular momentum is
determined by using Eqs. (13)-(15), (19)-(25),
and (27), where 7, is determined from the em-
pirical equations (28), (29), and (30). The calcu-
lated values of the critical angular momentum are
plotted versus the experimental values; the re-
sults are represented by the solid circles in Fig.
5. An agreement between them is observed.

120} )
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FIG. 5. The relation between Iy oq¢ and Iy it for the
reactions in Table I of Ref. 10 (except the Kr induced
reactions). The solid circles represent the reactions
where E<E.;,. The hollow circles represent the
reactions where E>E.;,. The straight line represents
the case when i it =l experit-
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The calculations of y,,, are repeated, taking 7 in
Eq. (13) as 0.6, 0.7, and 0.8. The results for the
reactions where A,/A, equal 5 and 7.5 are shown
in Figs. 6 and 7. Comparing these figures to Fig.
3, it is clear that the only change due to changing
n is that y,,, decreases with 7, i.e., according to
Eq. (15), when the energy losses increase. Rela-
tions similar to Eq. (28) may be obtained for each
value of 7.

The increase of y,w With incident energy means,
according to Eqs. (12), (22), and (23), that the
minimum initial vibrational energy is not fixed but
increases with energy. It may be more convenient
to assume that this increase in the energy neces-
sary to produce separation due to vibration is also
due to the large increase in the energy dissipated
during collision. Assuming 7 decreases with in~
creasing energy [i.e., according to Eq. (15) the
energy loss increases], the change in y,,, with
energy will be smaller than the case where 7 is
kept constant. This is clear in Figs. 6 and 7
where 7 is taken as 0.9 for the smallest energy
and decreases to 0.6 (or 0.7) for the largest ener-
gy. This is more acceptable because Ej, in Eq.
(13) represents the minimum deformation corre-
sponding to central collision which must be fixed.
The increase in the minimum initial vibrational
energy may be mainly due to the large increase in
energy losses which cannot be balanced by the ro-
tational energy as discussed before in Sec. II.

5

(E-X¢g)/ Xcg

FIG. 6. The same as Fig. 3 for reactions where A;/A,
=17.5 but for different values of 7 in Eq. (13). When 7 is
taken as 0.6 no fitting was obtained except for N+ Rh at
106 MeV. The dashed line represents the relation
between v,,, and (E-X%g)/X4y when 7 is assumed to be
decreased as the incident energy increases; i.e., for the
smallest (E-X{p)/XLy, 7 is taken to be 0.9, for the
largest (E-X%g)/Xhg, 7 is taken to be 0.7. The point
(O) represents the case where n=0.9 at the smallest
energy only.

O X e O

FIG. 7. The same as Fig. 6 but for A;/A,=5.

The values of y,,, when 7 is variable may give a
better idea about the deformation in the outgoing
nuclei than in the case when 7 is kept constant.

The minimum incident energy E,,;, necessary to
produce separation due to rotation is determined
for most of the reactions in Ref. 10 by using Eq.
(18). The calculated values are plotted versus the
ratio of mass numbers of the colliding nuclei; the
results are presented in Fig. 8.

To determine I in the case of reactions—in
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FIG. 8. The relation between E -Xig of A,/A, for
all reactions in Table I of Ref. 10. Eg;, is determined
by using Eq. (18). This relation could be approximated
to the straight line shown in the figure.
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Ref. 10—where E > E;, and to study the variation
of y,,—corresponding to the upper critical angular
momentum—we consider the reactions where the
incident energy is larger than E.;,. For each reac-
tion the empirical value of y,,, is determined using
Eqs. (28)-(30) and the lower critical angular mo-
mentum is calculated. The value of y,, is obtained
by the fitting process in which y,, is varied in
steps of 0.01 until the critical angular momentum
agrees with the experimental value. The calcu-
lated values of the critical angular momentum are
plotted versus the experimental values and the re-
sults are represented by the hollow circles in Fig.
5. More experimental data are necessary to ob-
tain a relation for yy, similar to the empirical
relation obtained for y,,,.

In the case of Kr induced reactions, the values
of the incident energies for the reactions in Ref.
10 are smaller than the corresponding E;,. The
values of 7 and y,,, which are used to obtain agree-
ment between the experimental and calculated
values of the critical angular momentum for differ-
ent reactions are given in Table I.

From this table it is clear that the outgoing
drops are nearly undeformed and the energy dis-
sipated during collision is small. This means
that the strong Coulomb repulsion causes separa-
tion to occur in the early stages after the forma-
tion of the composite system. The energy loss
during the reaction is given by the difference in
the rotational energies at collision and separa-
tion.

In the above consideration the effect of the nu-
clear shell on the deformation of the nuclei is
neglected.

From the results some remarks may be made:

(1) The deformation energy plays an important
role in the energy dissipation during collision.

For example, in the reaction Ar+Ho at E=241
MeV it was found if 1 in Eq. (13) equals 0.5, 0.6,
or 0.7, no fitting is obtained between the experi-
mental and calculated value of the critical angular
momentum. When 7=0.8, the deformation energy
was found to be equal to 23 MeV, while the energy
dissipated due to friction and viscosity—i.e.,
(1-mnE—is 48.2 MeV. When 1=0.9, the deforma-
tion energy—at the same incident energy—is
47,1593 MeV, while the energy dissipated during
collision is 24.1 MeV. The importance of defor-
mation energy was clarified in Ref. 10.

(2) Separation due to vibration is more important
for collision with small energies, while separation
due to rotation is more important for incident en-
ergies well above the Coulomb barrier; e.g., for
20Ne +27Al, if the cross sections for events where
separation occurs due to rotation only and due to

TABLE 1. Values of the parameters n and v,y which
give agreement between the experimental and calculated
values of the critical angular momentum for krypton in-
duced nuclear reactions.

E (c.m.) loxprerit  Ltnerit
Reaction (MeV) Yiow 7 (%) (i)
HUKr +165H, 1 0.96 82.73
326 1.0066 0.97 80 80
1.01524 0.98 80
1.0236 0.99 80
YKy + 209 358 1 0.99 36  45.44
8Kr + B8y 371 1 0.99 20 48.752
vibration only are given by
o, =R (lg” = (1% )%, @1
o, =R (1%, )?, (32)

respectively.

Calculating % and I/ as stated before, it was
found that at 79 MeV 0,/0, equals 0.011 966 and at
120 MeV 0,/0, equals 0.4858. This implies that
separation due to vibration is equivalent to quasi-
fission which occurs for small partial waves'' and
separation due to rotation is equivalent to the deep
inelastic collisions which occur at higher energies
than quasifission.*> The minimum energy neces-
sary to produce separation due to rotation, E;,,
may be taken as the limiting bombarding energy
below which deep inelastic collisions do not occur.

(3) The deformation corresponding to separation
due to vibration is always found to be larger than
that when separation is due to rotation. The ener-
gy loss is larger in the former case.

(4) This model may provide an explanation for
the presence of negative scattering angles in
heavy ion induced reactions.**'** For incident en-
ergies near the Coulomb barrier, separation oc-
curs due to vibration (quasifission); hence the
angular momentum of the unstable composite sys-
tem is small and hence the outgoing particle is
scattered in the backward direction.

V. CONCLUSION

A simple model is proposed to explain deep in-
elastic and quasifission reactions. According to
this model a formula for the critical angular mo-
mentum for complete fusion between target and
projectile is obtained, which gives acceptable re-
sults compared to the experimental data. This
model gives an idea about the deformation that
occurs in the interacting nuclei especially when
separation occurs due to vibration. The minimum
bombarding energy below which separation due to
rotation does not occur is also calculated.
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