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Coupled channel calculations for heavy ion inelastic scattering can be alleviated through the use of integrals

involving the product of two Coulomb functions, regular or irregular, with some inverse power of the radius, the

range of the integration going from the point where the nuclear potential is weak to infinity. These integrals can be

obtained by recurrence relations, starting with at most four of them which must be obtained by some method

already described in the literature.

NUCLEAR REACTlONS HI inelastic scattering. Treatment of Coulomb inter-
action above Coulomb barrier.

I. INTRODUCTION

Coupled channel calculations for heavy ion in-
elastic scattering usually involve many partial
waves as well as long-range numerical integra-
tion. ' The Coulomb potential generates coupling
potentia, ls which decrease only as r " ' for a
transfer of angular momentum ~; when the nu-
merical integration is stopped at R, the induced
error is of the order of R ". In the following,
we shall consider a decrease in r ' as sufficiently
quick; we shall thus consider the problem for &

ranging from 1-4 only. This limitation is rather
arbitrary; problems are crucial for ~= 1 and 2,
less important for &= 3, and already negligible
for ~=4.

The use of an iteration procedure such as the
"Equations Couplees en Iterations Sequentielles"
of the program ECIS shows that the distorted-wave
Born approximation (DWBA} is enough for the up-
per half or two-thirds of the values of the total
spin J. Furthermore, the nuclear potential has
some effects only for the few lower values of J in
this region; for larger values of J, the numerical
integration can be replaced by analytical methods
such as those published by Alder et al.' and Bie-
denharn et al.' more than twenty years ago. For
the lower values of J, where coupled channel cal-
culations should be used, the knowledge of inte-
grals for products of r " ' with regular or irregular
Coulomb functions from the matching point R to
infinity can eliminate the largest part of the error
in R ", and allows the use of a shorter range of
numerical integration for the coupling equations.

In Sec. II, the ECIS method will be presented in
order to show how such integrals can be used.
'The ECIS method has the advantage of telling us
from which value of the total spin J the DWBA
results can replace those of coupled equations.

Its Green's function formulation is the easiest way
to introduce the use of Coulomb corrections. 'This
will be done in Sec. III, where details will be given
on their use in the differential and the integral
procedures, as well as in the usual coupled equa-
tion techniques, in such a way as to achieve the
same accuracy as in the numerical integration.

In Sec. IV, we show how some recurrence equa-
tions of Ref. 3 can be generalized to integrals of
products of regular and irregular Coulomb func-
tions from a finite radius to infinity. A tedious
use of these recurrence relations allows us to ex-
press any integral, depending upon ~, l, , l&, in
terms of integrals with &= 1, l,- = l~, and the Cou-
lomb functions at the starting radius of the inte-
gration. The integrals with ~= 1,l, =

l& are not of
direct physical interest in this problem, but they
are related to relativistic corrections. They are
obtained by recurrence relations, starting with
four of them, for which direct methods' are avail-
able. They are computed beforehand and all the
other integrals are expressed in terms of them
by "local recurrence relations. "

In Sec. V, we present an analytic derivation of
these local recurrence relations; they can be
simplified in an interesting manner for "reorien-
tation" integrals, namely when the wave numbers
of the two Coulomb functions are the same. Re-
sults in heavy ion calculations are given in Sec.
VI; however, Coulomb corrections are also
shown to be necessary in proton and deuteron
scattering. 'The relation between the present
method and that of other authors is also discussed.

II. HEAVY ION INELASTIC SCATTERING AND THE
ECIS METHOD

The problems linked with Coulomb inelastic
scattering arise whenever a heavy target is bom-
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barded by charged projectiles, including protons
and alpha particles. However, they are more im-
portant for heavy ions; for instance, a matching
radius of 60 fm and 300 J values were needed for
the inelastic scattering of 50-60 MeV "0 on Ni

when the excitation of the first 2' state was taken
into account. ' In order to illustrate the physical
problems encountered, let us consider the scatter-
ing of "0 on "Si at 56 MeV, when the excitation
of the first 2' state of "Si is described in the
framework of the rotational model. '

A. The rotational model

The interaction between "O and 'Si is repre-
sented by an optical potential:

V(r, r')=Vf„(r, r')+iWf, (r, r') +Vc(r, r'), (1)

where

cose; in the vibrational model, derivatives of the
form factor with respect to R, are used.

'The multipoles of the Coulomb potential are

ZZ' {ij))

V~c(r) = singP„(cosg) d8,', r"dr',
0 0

where ZZ' is the product of charges, 0 the volume
of the charge distribution, and r& and r& are the
larger and the smaller of the two values r and r',
respectively. The first few terms in this multi-
pole expansion are

0 r & 2 5 4+ r3 y g 28+

for values of r much larger than R, .
r-R 8 ~-'

f(r, r')= 1+ exp (2) B. The coupled equations

V(r, P )=4 +vV, (r)V„"(P)r„"'(r"). (4)

In the rotational model, this expansion is usually
obtained by a Gauss-Legendre integration over

is a Woods-Saxon form factor. 'The radius

R(8)=R,[l+p, Y2O(8)] (2)

depends upon the angle 8 between the position r of
"0 and the intrinsic axis of symmetry r"' of the
target. The Coulomb potential V (cr, r"' )is the, one

generated by a uniformly charged volume, the sur-
face of which is described by Rc(g), similar to (3).

The optical potential (1) can be expanded into
multipoles

The total wave function, describing projectile
and target, is expanded into multipoles:

1
y i,r, ~(r—N'[V F(r)

~
4r~&4 (7)

f ~
J'

where
~
gz„) is the target wave function. When pro-

jected on all possible [I'P(r)~g, )]~, the Schrt)-
dinger equation reduces to separate sets of four
coupled equations for each value of J:

xP+

(, I,(l +1) 2m
~ Q a"P', (r),

where

(I, I, Xl (r, I, ~)
g,"q=i'& '&(-) '~(2k+ 1)[(2l,. + 1)(2fq+ 1)(2I,+ 1)(2f)+ 1)]'~2

0 00 0 0 Oi qf, (10)

is a geometrical factor which reduces to 5... 5.. .
for ~=0. For a given total angular momentum J,
the parity is (-)~ and the coupled functions are

y, for the 0' state with l=J,
$g y$2y$3 for the 2' state with l =J—2, J, and J+ 2

'This system of four second-order linear equa-
tions has four solutions which vanish at r= 0 as
requested by (7). The usual method is to compute
four independent solutions and obtain their linear
combination such that

I

E, andG, being the known solutions for a point
charge Coulomb field. This method requires a
numerical integration up to the point where the
equations are no longer coupled and where the po-
tentials reduce to the Coulomb one. For heavy
ions, this point is located quite far away, since
the multipoles decrease as r " '. It can be shown
through Wronskian relations' that neglecting the
A. multipoles from point R to infinity generates an
error of the order R ".

C. The ECIS method

y, -F, +Co(G, +iF, ),

Cr(gio+iF(, ),
(12)

'The ECIS method is an iteration procedure
which allows us to find only the solution (12) for
the system of equations (8). It is not convergent
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in all cases, but it is in many situations of physi-
cal interest. It becomes less advantageous for
small systems of equations and situations where
more than one solution (12) is needed, because
the sum of the spins of the particle and the target
is larger than 2.

Let us write the system of equations (8) as

y''+Vttyt= )" QV rye
fbi

(13)

with p. =1, and consider an expansion of the solu-
tion in pomers of p, . 'The zeroth-order solution is
obtained for p= 0 and reduces to

y (0)-yet P + C(0)(g ~ fy )0 0 rp 0 rp rp

y(0) 0
(14)

where y',"is the usual optical solution of the un-
coupled equation for y, .

In the first iteration, Eq. (13) for yP) is con-
sidered with y,"' only in the second number. To
obtain y,"', one needs the optical solution y',"of
the homogeneous equation and any solution y, of
the inhomogeneous equation. The solution y,"' is
the line'ar combination y, + ay', "mith n such that
the asymptotic behavior (12) is fulfilled; it then
reduces to a purely outgoing wave with a coeffi-
cient C,"'. It is then possible to compute y,"' with

y p and y g
in the second member; the use of y g"

mill lead to a result which is not the pure first or-
der result in p, and depends upon the sequence
along which the equations are iterated. For ex-
ample, in a 0-1-2 phonon calculation mithin the
framework of the vibrational model, the first
iteration can give quite a good result for the two-
phonon state, which has not direct coupling with
the ground state, as long as the one-phonon state
has been computed first. The first iteration ends
by solving the equation for y, with all the y,

"' in
the second member. In general, in the nth itera-
tion y, is given by the solution of

After the first iteration, the process is started
again, Leading to a nem set of results C;"'. If

~
C,"' -C;"'

~

is less than a given value for all t', the
set of equations is regarded as solved; if not, a
new iteration is done. From the fourth iteration
a symmetric Pade approximant can be constructed
with the C,'"' for a given i, and the test between
successive iterations can be replaced by evalua-
tion of the Pade approximant with and without its
last term. On the contrary, if the second iteration
was sufficient for a given value of the total spin J,
one can stop at the first iteration for larger values
of J. "Sequential effects" apart, the result of the
first iteration is identical to that of a DWBA calcu-
lation.

This method has been successful in nucleon
scattering, chiefly for the study of polarization
effects' which introduce first derivatives in the
nondiagonal potentials. It can break down for
coupling potentials which are too large, and at low

energy.

D. The Green's function and the integral method

'The method described above is the differential
version of the EQIs method. It necessitates the
computation of the optical solutions of the un-
coupled equations. In the integral version of the
ECIS method, one also needs the "irregular solu-
tions" y,

'" of the uncoupled equations, defined by

err - Gri+iFri ~

which are easily obtains by backward integration.
With these two solutions, one can build the Green's
function

(ff) V „,(n) V „, (n)+ iiXi
o&f&i if iso

o&f if i=o

(18)

y
(n)

ri io

Vifyf
f=0 aid f&i

iso

(16)

(16)

which is the solution, regular at the origin and
purely outgoing, of the inhomogeneous equation
with 5(r -r') on the right-hand side. The solution
of the system (15) with boundary conditions (16) is

) a
y "'(r)=y"'(r)5 + 9 (r, r') V, &(r')y& '(r')dr'

40 fg

1 «7 1 F

=yt"(r)5)0+ —y,'"(r) yt (r') V, q(r')y~ '(r')dr'+ —y'"(r) y'"(r') QV;q(r')y) '(r')dr'
r 0 fbi

(19)
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+ $(R —2h) —((R+ 2h)] . (21)

Second, the evaluation of integrals with a Green's
function is not straightforward. 'To obtain

and the coefficient of the outgoing wave is

C (II) C (0)5 + yollt( rl) Ql( (rl)y (sl)(rl}(fry1

"0 /sf

(20)

'The sequence of iterations through which these so-
lutions are obtained is identical with the one des-
cribed above in connection with Eq. (15); the sum-
mations and the values of the iteration index m on
the right-hand side are the same as in the latter.
Note that y(("(r) replaces the information contained
in V«(r), which no longer appears explicitly.
Equations (19) and (20} show clearly where and

how Coulomb corrections should be introduced in
order to avoid the errors coming from the use of
some finite matching radius R instead of infinity.

At this point, two comments of a technical na-
ture are in order. First, accurate, equal step
methods have been described to solve single'
and coupled' second-order differential equations.
Numerov or modified Numerov methods lead to
an error of the order h4 when a step h is used;
they deal with ((x)=y(x) —(h'/12)y "(x) instead of
y(x). To use Coulomb corrections with conven-
ience we will have to discard the method of match-
ing' which uses the values of $(R + h} and to go
back to the use of the function and its first deri-
vative at point R, given by

y'(R) = (14[((R+h) —${R -h)]1

Coulomb corrections are to be introduced without
destroying the accuracy of the computation.

'The Eels method, as described above, has been
used successfully for heavy ions inelastic scatter-
ing with many partial waves and large matching
points ""

III. COULOMB CORRECTIONS

When Coulomb deformation is taken into account
with no special care, a large matching radius
(50 or 100 fm) must be used. For small total
spina, many iterations are needed. In the case
of "0 on "Si at 56 MeV with a convergence pa-
rameter 10 ', five iterations are necessary up to
J=10, six or seven up to J=30, three up to J= 50,
and only one above. Then, if sequential effects
are neglected, the inelastic scattering described
by (20) is the pure DWBA result. For some
larger value, 55 or 60, one can consider that the
wave function is no more distorted by the nuclear
potential; it is the asymptotic region of J values.
We shall refer to small J values as the nuclear
region.

A. The asymptotic region

When the nuclear potential does not matter, the
optical solutions of the diagonal equations are the
regular Coulomb functions F„(g,; kr(.}The de-
formed Coulomb potential is er " ' only for r
larger than the Coulomb radius. However, this
expression of the coupling potential can be extended
to the origin in the integral (20) because the wave
functions are very small.

So, the result is

1 t'

y(r) = — y'"(r&}y'~(r&}f(r'}Cr'k„
at the point r=nh, one can use'

y(nh)= y'"(nh)-y"'(ih)f(ih)
kt

h'
+y"'(nh) Q y' (ih)f(ih) —

12 f(nh),

because

l (a+1 )h hf(r}dr = —[f(nh)+ f({n+1)h)]
nh 2

(22a)

(22b)

(i)C ("=— „F, (q, , k,r)F, ((}0,kor} dr . (23)
0

Such integrals have already been studied, "but
we need to generalize them. Because q&k&= g&k&,

we shall use

k= (k k )"' ~ = (k Ik )"' 6= ((}n )'" (24)

and define the integrals

M(H, K,R}(".('= &,zH&(c ((},tp)K( (c(},c 'p)dp,

(25)
h+
12 [f'(nh) —f'({n+ l)h)], (22c)

with an error of the order h'. Such a simple meth-
od gives accurate results because f(r} and its first
derivative vanish at the origin and at infinity; the
correction term in h' of (22b} comes from the dis-
continuity of the derivative of the Green's function
at r =r'. Such details must be kept in mind if

where H and E are the regular or the irregular
Coulomb function or any combination of them.
With these notations, (23) becomes

C(l& M{F F 0) 1 (
fggo '

i
(26)

These integrals are real. This first order result
does not respect unitarity. However, the coupled
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i Zg Kog Kgo C
iK& GKG~

1++)KG~K&G '

Kp( K(p

1+Q~KG~K~G
' 'G 1++~KG~KG~

'

(2V)

Neglecting the denominator, this expression for
C pp has been used" to derive a long range imagi-
nary optical potential to fit the elastic scattering.

Coulomb functions are not used in the asymptotic
region. The integrals (26}vary regularly and the
matrix C can be interpolated easily with respect
to J.

channel problem can be formulated differently,
in terms of the reactance matrix K, which is the
coefficient of the irregular function (instead of
the outgoing function) in the solution, with the nor-
malized regular function in one channel only.
This K matrix is built with integrals (26) between
all the equations, and the C matrix is K(1 -iK) '.

This method takes into account reorientation
effects, gives some effects for the incident chan-
nel, and maintains unitarity. In the absence of
reorientation effects, the matrix elements Kpp and

K(z vanish and the C matrix is

B. The nuclear region with-the integral method

For lower 4 values, where the numerical inte-
gration is needed, there must be some matching
radius R beyond which the mixture of regular and
irregular Coulomb functions does not change sig-
nificantly. All the functions which appear in (19)
and (20) can be replaced by their asymptotic
forms,

V (r) (2&a)

y', "(r)-F;+C"'(G;+iF, ),
y,'"(r}-G,+iF;,
y&"&(r}-F.5 +C'"'(G;+iF;) .

(28b)

(28c)

(2&d)

The infinite integral of (19) can be replaced by
~0

y'"(r') v, (r') 'M'(r')dr'

R
y&rr(r1) gV (r1)y&)R&(r1)dr1+g (29)

y'

and (20) becomes
)'R 1

C &R) yoR&(ri) V (r1)y &)R&(r1)dr)+
i G

(30)
with

g= g g&&R /~[M(H&u& F R)-R-'6 /C&~&M(H&u& H'u' R) " '] (31a)

a= g g a". Pgm(F F R)-"-'+ C,"'M(H" F,R)-"-'J6
l

+ [M(F H&u& R}-&-&+CGM(H&u&H&u& Rp-xjC&)R&j (31b}

Here H" is the outgoing Coulomb function G+iF.
Corrections for finite step size are easily per-
formed by neglecting the last value of the potential
in Eq. (22) and replacing M(H, K,R },R~

' by

M(H K R)-"-'+- p-"-'H H + (p" 'H, H }- .—-
i

(32}

In this way, one takes into account the first-or-
der effect of the nondiagonal Coulomb potential
between R and infinity. The diagonal deformed
Coulomb potential is taken into account when com-
puting y' (r)&Ra&nd yt"(r); at the matching point,
the regular and irregular Coulomb functions are
replaced by F,(R) and G, (R}, respectively, which
are given by

F, ( R) = F, (
1 -Z u„—M(G, F, R )„')

+Q( a(~( M F, F,R ((" ',
f

G(R) G(1 Qu&j
&

M(FGR)» )
k"xF ~" —MQ QR " 33

(

At the level of approximation used in (28)-(31),
these functions are the solutions of the diagonal
equations which reduce to the regular and irregu-
lar Coulomb functions at infinity. Their difference
with Coulomb functions generates higher-order
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C. The differential version of ECIS and the usual
coupled channel method

In the differential version of the EGIN method,
the optical solutions y, are obtained as above,
using values (33) instead of the pure Coulomb
functions at the matching radius. The solution
y~P' of the inhomogeneous equation (15) is the lin-
ear superposition of a numerical solution g, of
the inhomogeneous equation and the optical solu-
tiony, &, such that, at the matching radius,

&'"' =)& ~ & &" =R, (R) I(),.~ „—)

Qi R +i7i R
a' t

(34)

corrections in (28)-(31), which should be neglect-
ed if R is sufficiently large.

Here, A and B are the integrals (31) without the
correction (32}. This expression is easily obtain-
ed by comparison with the integral method; A/k,
is the component of the regular Coulomb function
which remains at the matching point and B/k, is
the missing part in the phase shift.

Coulomb corrections can be used also in the
usual method of coupled equations, in which n in-
dependent solutions are obtained. The matching
conditions can be written as the solution of a linear
system of 2n equations; with the Wronskian re-
lations of the Coulomb functions, this system re-
duces' to dimension n. But this reduction is not
possible if one matches directly with the "correct-
ed" functions. It is best to compute an "uncorrect-
ed" C matrix with plain regular and irregular
Coulomb functions and to obtain the corrected
C matrix afterwards,

X

Qa'&
&

M(H Ht+) R))
—

gC& a
&

M(Ht ~) H'", R) ')C &

yX
M(F, F&R)~q +QC~, ~5)(-gn,")

h
M(H(+), F, R)g P) . (35)

With the iteration method, the second iteration is enough for some J value; from there, the computa-
tion can be continued with one iteration only. The asymptotic region begins five or ten J values above.
No such indication of a shift to the asymptotic region can be found when the usual coupled channel method
ls used.

IV. RECURRENCE RELATIONS ON COULOMB INTEGRALS

As shown in the last section, knowledge of the integrals (25} allows us the use of a smaller matching
radius. They can be computed one by one, but this is tedious and can be done only above some minimum
matching radius, which increases with the angular momentum.

Recurrence relations do not allow us to directly pick up a given integral. However, they can be used
to obtain, with very high precision, some simple integrals which we shall call the "stored integrals, "
and to derive some "local recurrence" expressing the wanted integrals in terms of the stored ones.

A. Recurrence relations

Recurrence relations of Coulomb functions can be used to generalize formula (2.8.64) of Ref. 3 to the
integrals (25). One obtains

l L, +1+igfj I l, +Ahl [ l, +1+A},)

) M(H }~
& + +

f
M(H»R)l

~f i ~

i i ~ f gi( i+ ) f

-x M(H K R) ' —I
' +~ — ' — M(H K R&) &-&

4 1 l )+1 lEf+ i & f
(36)

-= [x,(l~ —X)+x,l, -xH(l, + 1) -x,(l~+ X+1)]M(H,K, R), , R

x +Kg 1
)+~ H~ (e q&eR)Ke (e„&e R)+ I ~, ) ~

d—Hg (e q&ep) K, (eq&e p)dp&
xx+x2+xs+S4 f 1

where x„x„x„andx4 are arbitrary constants. Independent recurrence relations may be obtained by
using various values of the x's such that x, +x,+x,+x, = 0. For R =0, when triangular relations between
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l &, l z, and X are fulfilled, the extra term in the second member disappears, and the equation is exactly
the one of Ref. 3. For R4 0 and an arbitrary Coulomb function H and K, the recurrence relation differs
from the previous one only by this inhomogeneous term in the second member.

Other recurrence relations can be obtained by combining those derived from (36) as in Ref. 3; the result
differs by an inhomogeneous term. Of particular interest are the recurrence relations between integrals
with the same value f'or ~ and for the difference q= I& —l, . There are three-term relations for ~= q=0
and X= [q) = 1, four-term relations for &= )q ( &1, and five-term relations for &e [ q ~.

B. Stored integrals

In practice, we are interested in the integrals with &» 4. They can be expressed through l.ocal recur-
rences in terms of the integrals with some fixed value of A. and q. Integrals with the chosen values for A.

and q are evaluated beforehand, also by recurrence relations, with the best precision possible. One can-
not choose the monopole integrals X = q= 0, nor the integrals for which &=

( q~, because their recurrence
involves less than five terms. We choose q= 0 to obtain symmetric expressions for the local recurrences
with respect to the exchange of l, and l &. We choose A. = 1 with the hope that the expressions will be sim-
pler. These integrals for ~=1, q=0 are not used by themselves in this problem for parity reasons. How-
ever, for 4& =k'& they are related to relativistic corrections, as we shall see later.

The recurrence relation between five integrals with X=1, q=0 is quite complicated. Instead, we can
use

(( () I ( ('(&I I (+('(AIM((( + +) —,- llg tlg[( (( +() (+ ( ((+ 1) (~ ~) M((I (( R),(
2l -1l

( f)y gg

(2l+ 3
+l&2f, l 1'~ l+' +« llf+1+iq, [

M(H K»i", i"'
n2, (&-+ )1l f+iq(IM(H K R)c . (+2nall 1+1+inilM(HK, R), „,'

l(i+1)'q-, '
R, H, ,K, +f'(1+1)q, —,HgK„, , (3Va)

I i+in(l 1 . If+1+farl

which is an inhomogeneous three-term recurrence relation, the inhomogeneous terms of which can be
obtained from another three-term recurrence relation, . which is

2( i+i@)) ) l+1+iqq( M(H, K, R). . . ' —4q, q~+ (l+1) (2f+1) ~+(2l+3) ~ M(H, K, R), , g„'

+2I ~+1+inc I I l+2+inyl M(gK R)a+i g, ~'

=-(2l+l)g, — ~ -TH+, +(2l+3)6~ ', H„,K„,.il+1+~g, l 1 ll+1+g, l 1
R f (37b)

The monopole integral could be used; we avoid it because M(F, F, 0), , has S, logarithmic singularity
when 0, =k~.

The four integrals M(H, K, R), , ', M(H, K, R), , ', M(H, K, R), , ', and M(H, K, R), , ' are needed to
start the recurrence. As the last one can be expressed in terms of M(H, K, R), , ' and M(H, K, R), , ',
these starting values involve only the angular momenta 0 and 1. They can be obtained by integration' of
the product of the asymptotic mqensions" at the matching point. For l = 0, and g &30, this asymptotic
expansion can be used only ' for R ~ 5q/3+ V.S; for larger values of q, a look at the asymptotic formula
shows a quadratic variation of the lower radius; R - 0.06 g seems to be a safe limit. To use a smaller
matching point R, a numerical integration between R and R is necessary; with these starting values we
can obtain the integrals M, , ' through the recurrence relations (3V) for any R, whereas the direct compu-
tation' can be used only from some value of R which increases with angular momentum as (rP+ l')'~'

This procedure is convenient for M(G, G, R). . . which increases quickly with l, and for M(G, F,R), ,
and M(F, G, R), , ', which remain of the same order of magnitude when q& and q, are not very different.
On the contrary, M(F, F, R). . . which decreases with l, is not given accurately. The downward recur-
rences, starting from zero values for the integrals and using the usual procedure of downward recurrence
for the regular Coulomb function of the inhomogeneous terms, give a very accurate value of the integral
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from the origin to the matching point; then M(E, F,R), , is obtained by taking the difference with

M(F, E, 0). . . which is needed anyway in the asymptotic region.
The integrals M(F, F, 0), ~,' have been extensively studied, ' ' and can be expressed in terms of hyper

geometric functions of two variables. Here one only needs

M(F F 0 - & 0 exp(~('9y '9()) 2) ~pl
' I'(i+ I+f0,) exp(~(gg —gg)/2) ~q'l,

' I'(I+ 1+i', )
2 shy(q& —q ) (2E + 1)q& q&~

I'(I+ 1+i', ) (2f + l}q, q&) I'(I i 1+ iq& )

+, exp2 (q, -q&) Re
2 ~ q, s q ~

~ e Ixw( go(g j) (Tf (fjg) p I )

1
2 2 ) T' I, —eq&+tg&

x F3 —l ) + sg), —l ) —tq~, l+ 1+sq], l+ 1 —gq~, 2 —gq + gg;

(36)

where o, (g) is the Coulomb phase shift. For large angular momenta, more and more terms are necessary
to evaluate the hypergeometrical function F,. So, the recurrence relations (36) and (37) are also useful
in this case.

In a forward recurrence, the starting values M(E, E, 0), , ' and M(F, E, 0), , ' are obtained by (38};
M(F, E, 0), , 'andM(E, E, 0), , 'canbeexpressedintermsofM(F, F, 0), , 'andM(F, E, 0), , ', forwhichthe
closed expression' is a hypergeometric function with the argument (q&

—q, )'/(q&+ q, )'. Such a recurrence was
foundtobequite stable. However, foramaximum l value suchthat~qz -q, (

& 3(q&+ q&), thedownward recur
rence was found to be better. The upward recurrence (37) is more stable if q, &q&, the downward one if

q, &q&, but the role of q, and q& can be exchanged. The downward recurrence is started with

M(F)F&0)~, ~ ~+,
' =M(E, F, O)~ ~ 2=0,

(39)

[ I.+ i+ $q&

All the values are normalized by using the com-
puted value of M(E, E, 0), , ', then the increasing
solution of the homogeneous recurrence (37a)
must be added to the M(F, F, 0), , '. In fact, the
first part of (37a} can be rewritten as follows

(l+ 1)'
( I+ iq& )X, —l ') I+ 1+iq ( X,+ f)g

X,=(2l —1) ~ ~ I+iq~~ M(F, E, 0)g

—(2l + 1)) l+ fqq i M(E, F, 0), (40)

A solution of the homogeneous system is obtained
withe, =O. It is

M(F, F, 0) 2 1 q~ I'(l+ 1+jq&}
2I+ I q r(I+ I+ fq )

(41)

The other one differs by the exchange of q, and
The linear combination of the increasing sol-

ution with the values obtained in the recurrence is
fixed, using (38) to obtain M(E, E, O), , '. So,
when downward recurrences are used, only two

integrals must be obtained from the closed form-
ulas.

C. Local recurrences

The general recurrence relation (36) has been
used to express all the integrals M(H, K,
R), ~,' ... in terms of the storai M(H, K, R), ,
for X= 1, 2, 3, 4 and 0& q& ~, q+ A. even; negative
values of q are obtained by permutation of (q„q& )
and (l„I&). These local recurrences depend upon
the chosen l value. The integrals M(H, K, R), , '
exist for l & 0; the integrals M(H, K, R),,",', „
exist only for l, & —,

'
(& —q}. So we derive local

recurrences expressing M(H, K, R),,~,', +, in terms
of the four successive M(H, K, R), , ', starting
with l=l, + —,

'
(q —A)= ,'(I&+I, —X—). These recur-

rences are obtained by tedious manipulations of
(36). In a first step, those manipulations gener-
ate inhomogeneous terms which include Coulomb
functions for various angular momenta. In a
second step, recurrence relations for Coulomb
functions are used to express the inhomogeneous
term with JI... K, and their derivative, or, as
it appeared better, JI, „,K, „.The local re-
currence relations are then
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M(H, K, R).. .', , „=g a, (/„, q)M(H, K, R),„,„,j-x

+p, (/„&, q, R)H2, K, + p, (/), A., q, R)H, ,K, „
+P,(/„A., q, R)H, „K, +P,(/„k, q, R)H, „K,„. (42)

The quantities n, (/„A. , q) and p, (/„A., q, R) are quite simple for X=2, but more and more complicated with
increasing values of ~. The simplest ones are

A. =2, q=0,

,(/, 2, 0)=-2, 2, 1 I/+i~, i I/+i~, l,1 (l+ 1)(2/ —1)

1 2E +H-1'
a,(/, 2, 0) =2

I

~+ /(/+1)+O'R~ l(l 1)2')) (t}g ffg +

(/, 2, 0) --= I/+1+i', ) (
/+1 +i)q7I,

1 /(2l +3)
2g l+1 2l+1

a,(/, 2, 0) =0,
1 1

p, (/, 2, 0,R)= + l --+
&

l(l+1)(l+-,')

p,(/, 2, 0,R)=-~&[ I/+1+i'&l,
I, 8) 2m'

p, (l, 2, 0, R) ——
~ ~
—

( [ /1++i t/),
(li l

~=2, q=2,

@+1 q
~2(/ 2 2}=- ~

I /+1+iv&l I /+2+i~, l,
Ig) gj

2

a (l'2'2) — 133( (l+2)+ (21 3)(l 1) (1+1)(ll +121"23))
6q 2l+5 /+1+i@& ~

~ q&'

(43)

a,(/, 2, 2) =-= . '
~

3)h)7, (2/+3)+2 ~ (/+1)(/+3)'+~ (l+1)(4l'+19l +23)
6q l+1+ iq, q. q

(2l+7}(/+1) I /+2+/V3 I /+3+in, ) Ii+3+in&)
3)/(2/+ 5) l+ 1+ig( )

(44}

p, (l, 2, 2, R) = —
i

4l'+ 16l '+ 7l —21+ (/+ 1)(l+ 2)(l+ 3)(2l + 3)(2l+ 5)
11~ 1, 1

1 ), ' (l + 2)(4l '+ 17l + 21)

P(/, 2, 2R) =
I / 3 q&)7s (4l'+ 17l + 3)

1& ' l+2
%R& 6qz l+ 3

+((+))()+3)(~(l ()(2)+3)+2-4(l 3)*)
1

gg )/( i I /+ 1+ ilg I

2l+3 l 2
j l+ 1+if/~



2580 JACQUES RAYNAL

The b's are polynomials in q(RR) starting with the
second degree. Such formulas can be used for
q, =q&, except in the case A, =q=1, in which q,

'
-q&' appears in the denominator. We shall see in
the next section that different formulas can be de-
rived for q, =q, , with a,(l, X, q) =a,(l, X, q) =0.

Recurrence relations similar to (36}can be
found in the literature. "" In Ref. 14, they have
been written in a matrix form which allows us to
express any integral in terms of four of them with

l, and l, +1, /z and i&+1, and a fixed value of X.
In Ref. 15, the recurrence relations are used up-
wards and downwards for a fixed value of X.

F,( p) = H„(~ 'q, ~p)K, , (eq, e 'p),

F,(p)=H, , (~ 'q, ep)K, ,„(eq,e 'p),

F3(p) =H( ~g(6 q, Ep)'K( (fq, e p)

F4(p) =H( ~q(e q, tp)K( +~(tq~ e p) ~

we use the recurrence relation

2l + 1 i( l (l + 1) ti

=l (1+1+zq, iH, „(e 'q, ep)

(46)

V. ANALYTIC DERIVATION OF LOCAL
RELATIONS

The coefficients of the relation (42) can be ob-
tained directly. In practice, the derivation which
we shall describe now leads to less precise re-
sults and longer computation times than the use
of final expressions likethose given in (44) and (45).
But, it shows the existence of three-term recurrence
relations for given values of ~ and q when q, = g&.

A General formulation

(46)

with

+(f+1)~Il+fq, ~H, , (e 'q, ep) (47}

and the similar one for K to express H. .. and

K, ) in terms of H, Hg l and K, , K, „. This$+f l ]& l]+& ly& Jg+l
transformation generates as coefficients of
F~(p) some polynomials A„(p) in p '. Expression
(45) reads

r~ 4 4

g &,(p)F, (p) = g P, (p.)F,(p.),
~Ip g ] j=l

To prove the relation

00

~~~ H( (Eq, ep)K('(eq~ e p)dp
Pp

40

H( ~) (e q, ep)K)+q(eq, t p)dp
~ p P

C, (p}=b„p' ' —Q a,A„(p)= QC", p",

P, (p) = P P,"p
"

Differentiating with respect to p„we get

(49)

with

+g P, ( p)F&(p), (45) p ,
' Nbr) (c=+,E"M',

~ p", ~),

where N(s) is a diagonal matrix

(50)

n -l] -l~- 3

n —l, +l) —1

n+E, —l~-1
n+l, +l&+1

(51)

and

1 Ii~+1+i@,I

E)+1

Il, +1+i@,I

l, +1

1 1

El, +1 l~+1

I l, + 1+iq~ I — 1 1

l&+1 l, +1 l~+1]
IE, +1+i', I

l, +1 0

I l, + 1+ig, I

l, +1

1&+1 l&+1
Il, +1+i', I

l~+1

I~, +1+i', I

l, +1

Il, +1+i@~I

l~+1
1 1

i)+1 Ey+1),

(52)
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The C, (p) s are polynomials in p ', starting from p
' and ending at p "; their coefficients are linear func-

tions of the a' s. The expansion coefficients of P, (p} are obtained from (50} starting from P,"', unless
N, (n) =0, which happens if lf = l, +q with q & 0 for N, (q+ 1); in this case p; is not defined and must be con-
sidered also as an unknown on which the P",'s obtained afterward will depend. As there is no C, , we ob-
tain the n's by solving the linear system of equations

C( + Q M(~ p~(a, p2) = 0,

C;"+Q M,~ P~"'(o.) = 0.

The order of the polynomials increases with ~ and also with q. Moreover, it depends on the value of l
chosen in (45). Any integral can be expressed with any l value, but it is clear that the final result is
simpler when l„l&, l+i are closer.

(s3)

The determinant of the matrix (52} is

B. Degenerate case q&
=

q&

d«[M] = ("' (s4}

and this matrix is of rank 2 when g, = q&. So, if (50) is used to compute the P,"s, there are only two of
them which are independent. Consequently, the relation (46) holds with n, =o.', =0 when q, =rI& and the first
term of the polynomial expansion of the p, (p)'s is p '.

In this way, a recurrence relation between three integrals with fixed X and q can be derived. The one
with l, =l& and X=1 is

(2l — )(l'+q')M(H, K, R)g. . . ' —(Bi +1)(2l'+2l+1+2g')M(H, K,R), , '+ (2l+ 3)[(l + 1) +q ]M(H, K, R)g., „,
(l + 1) + vp ——p —1)(2l + 1) —

2 l (l + 1) (2l + 1) H
g K,

Po

+ 2 ~l 1+iq+~~ -q+ l (l 1+}I(HK„, H+„,K, ) —+ , [(l+1) +q]H„,K...
po l+j '

Po ]I l / 1 l j, 2
p l+) & (55)

can be used to simplify (43) and (44):

X=2, q=O, n, =n, =O,

(21+1}[(l+1)'+q']+2q'
2ql(l+ 1)

(2l + 3}[(l+ 1)'+q']
2ql(l+1)

(ss)

6qkR(l + 1}(l+ 3)

x vP+(1+3)
~

-l —2)
& 3'
gkR

1 I l+ 3+i@I
kR 6(l+1)(l+3} '

I l + 1+ig I

p~(1, 2, 0,R)=p, (l, 2, 0,R)=-
kR 2l(l 1)

(l + 1.)'+ q'
2kRl(l+1) '

~=2y q=2 (xg= @4=0

2l+3 Il+2+igl
sq Il+1+iql

(l 2 2)
2l+5 I'l+2+ iqI

6g I l+1+igl '

(sv}

P,{i,2, 0;R)= (l+1}'+rP+ (l+1) ~,

6kR(l + 1)(l + 3)I 1 + 1+irIIP, , 2, 2, R)=

x
i
3l'+12l+11- g'(

+ ~[4(1+1)(1+2)'-(21+5)q'] i,l+3
qkR

1 [(l+1)(l+2)- q'] l l +3+irII
kR 6q(1+1}(1+3) Il+1+igI '

For the dipole integral, the limit g, = gz cannot
be used, due to a denominator g, '- g~'. We obtain
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A. =i, q=l, n, =@~=0,
2l+3 (l+2)'+q'

2&) II+ I+i&}l '

2l+5 (I+2)'+ rP

2q 1l+1+i&}l' '

1 1
P z (I, 1, 1,R ) =

kR
—

2 (I + 1)

P, (l, 1, I,R)=-
kR 2 I I II+2+Ill,
1 1+2

(l+1)(l+2}'+q'(I'+I —1)
&)kR 2 I{+1)(l +2)ll + I+i &I}

1 2l+3 Il+2+iql
kR 2(l+1)(l+2) )I +I+qfl

x I1+ ( 1+1)(l +2)'&

gkR

(58)

The integral

M(F, F, O)„'=
I

——Im&1&(l+I+iq) I, (59)
)

where P, the logarithmic derivative of the F func-
tion, can be used to evaluate the other integrals
M(F, F, O), ",,'; their expressions are simple" but
cannot be generalized to finite integrals.

C. Relations with relativistic corrections

We want to underline the relations between
Coulomb corrections and the differences between
relativistic and nonrelativistic Coulomb phase
shifts. The Dirac equation in an external field can
be written as a Schrodinger equation for the large
components

(60)

(61)

—(LV) ——,(VV) ~ (OV) — o . x V+ V'- 2EV k+'
I }=&&,0

where &} is the wave function multiplied by (E+m —V) ' '. The potential in this equation could be expanded
into multipoles as shown for the rotational model in Sec. II. The vector product term is of standard use'
in proton inelastic scattering with a deformed spin-orbit potential.

Let us consider the use of (60) for electron scattering on a point charge. The potential is -z/r and the
Schrodinger equation is

( d' l(l+1) 2zE z&i (zz 1 z 3 1 1
Lo ——

Idr r r j Ir E+m —V r 4 (E+m-V} r

The first part of this equation generates the pure
Coulomb phase shift o&=argi'(I+I+i&)} with &I

=-zE/k. The first correction term generates
a correction z'M(F, F, 0}, ,

' and the second one,
if V is neglected in the denominator, a correction
-k(E+»&} 'z(L o)M(F, F, 0)» '. The result is

5 =argI'(i+1+i&})+
I

——Img(i+ I+i&))
I

z' (m

2t+1 (2
zk Lo

E+m 2l(l+1)(2l+1)
+ 2&)&l&(l + 1+i&})], {62)

X+$7&&&&/E I (y+ I+I7j), (g~&'

y+ ig I'(y+ I - iq)
(63)

where y'=l' —z' and x=-1 —(L o). The expansion
in I ' of (63) coincides with (62) for the term zl '.
The differences between the z'l ' terms are

which must be compared with the relativistic phase
shift"

and vanishes for E =m.
We can conclude that the method described here

could be used to study the inelastic and the elastic
scattering of a relativistic charged particle. The
difference between relativistic and corrected non-
relativistic Coulomb phase shifts is small for
large l values. This difference should also be
small for low l values with a matching at a finite
radius.

VI. RESULTS

The Coulomb corrections as described here have
been introduced in the codes ECI878 and &CI879.
In the latter only, the parameters of optical po-
tentials and the deformations can be introduced
in the manner that is usual for heavy ion reactions;
furthermore, formulas (56) and (57) are used
instead of (43) and (44) in the degenerate case.

A. Heavy ions

1 ( E 1 i 1
2l+1 I( E+&r& I+I&l

—
2(l+I)

1 ( E li 1
I1+2l+1 k

E+I l~ 2l . (64)

The scattering of "0on ~Si with inclusion of
the effects due to the first 2' state of ~Si has
been studied in the rotational model. ' We have
chosen a potential derived in this study and done
the calculation without Coulomb corrections for
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matching radii of 13.5, 20, 30, 50, and V5 fm.
There is no difference in the drawing of the in-
elastic cross section for matching radii of 50 and

V5 fm. The curve obtained with 30 fm shows small
differences for angles smaller than 25'. These
differences can be seen up to 50' (or 60") when
the matching radius is at 20 (or 13.5) fm. The
elastic cross section and the backward inelastic
scattering are not significantly changed.

When Coulomb corrections are included with a
matching point of 13.5 fm, the result is identical
with the one obtained previously for the largest
matching point. The result is independent of the
choice of the matching point when Coulomb cor-
rections are taken into account. The value of
13.5 fm corresponds to the radius plus 12 times
the diffuseness; that is, the matching radius used
when there is no Coulomb deformation (slightly
more than the radius plus ten times the diffuseness
because the rotational model is used).

Requesting a precision of 10 ', the computation
is stopped at J=52, 79, 120, 201 for matching
radii of 13.5, 20, 30, and 50 fm without Coulomb
corrections, but J=250 is not enough for a matching
radius of 75 fm without Coulomb corrections. The
shift to only one iteration occurs at J=45, 63,
V6, and 78 but there are only 3 iterations from
J=32 in all cases. Even if it seems that the as-
ymptotic region is not well defined by the cri-
terion of only one iteration, the stability of the
J value for which there are only three iterations
shows that it is because the required precision
was so high. Anyway, J's larger than 120 do not
show up in the results. Various curves obtained
in this test for the inelastic scattering below 90
are shown in Fig. 1, which shows results in the
rotational model with the parameters of Table I.

A more interesting test is the scattering of "0
on ' Ge, for which curves obtained with different
matching radii have been published. ' The results
of such calculations, without Coulomb correc-
tions and with matching radii of 40, 60, and 100
fm are shown on Fig. 2. The computation stops
at J=205, 310, and 525 for a precision of 10 '
in these cases. The computation with Coulomb
corrections using the nuclear matching point 15
fm (potential radius plus 12 times the diffuseness)

D t$

I

20

28 Q j {160160)

E = 56 INeV

1.78 HeV 2+

200
I

404
I I

60'
ec.m.

agrees quite well with the conventional calcula-
tions using a matching point at 100 fm, except
between 5 and 10', where the curve is sensitive
to very high partial waves. The dashed curve at
the right is the DWBA result and shows that cou-
pled channel effects are mostly the nuclear ones.
The elastic cross section depends slightly on the
matching radius: the maximum of the cross
section divided by Rutherford's cross section at
54 decreases from 1.1690 to 1.1325 when the
matching radius is changed from 15 to 100 fm
without Coulomb corrections; these values are
1.1269, 1.1310, and 1.1320 with Coulomb cor-

FIG. 1. Results in the rotational model with the pa-
rameters of Table I. The plain curve is obtained with
Coulomb corrections and a matching radius of 13.5 fm.
The other curves are obtained without Coulomb correc-
tions, the dashed one with a matching point at 13.5 fm,
the dash-dot one with 20 fm, and the dotted one with 30
fm.

TABLE I. Optical potential parameters. The imaginary potential for protons is a surface
one; in this case p4= 0.044 and p6=-0.012 are included. The P2 of the Coulomb potential for
74Ge is 0.208.

+1s +1s ~ ls

i6O+ 28Si 50,0 1,245 0,539 5 25 1 245 0,539 -0.223
0+ Ge 24.4 1.360 0.430 36.6 1.270 0.420 0.234
~ + 238U 57.05 1.19 0.73 11.43 1.220 0.720 8.0 1.1 0.65 0.238
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'16O 16( )

E=56 NeV

0.596 MeV 2
50 238

U

20

50-

20-

4+

I

20
l

40
I

60
I

80

e c.m.

FIG. 2. Results in the second-order vibrational model
with the parameters of Table I. The plain curve is ob-
tained with Coulomb corrections at a matching radius of
15 fm. The other ones are obtained without Coulomb cor-
rections; the dashed-dot one with a matching point at 40
fm, the dotted one with 60 fm, and the dashed one with

100 fm. For the last one the difference with the plain
curve might come from long range integration. For
large angles, the dashed line shows effects of coupled
channels.

rections and matching radii at 15, 20, and 25
fm, respectively.

I

20'
I I I I I I I

40' 60' 80'
C.ITl.

FIG. 3. Results in the rotational model with the pa-
rameters of Table I, taking into account the 0'-2'-4'
coupling without spin-orbit deformation. The plain curve
has been obtained with Coulomb corrections at 15 fm and

191 values of J. The dashed and the dash-dot curves are
obtained without Coulomb corrections and a matching
radius at 20 and 30 fm, respectively. In this last case
31 values of J were used. The dotted curve is obtained
with Coulomb corrections, a matching radius at 15 fm,
and only 31 values of J.

B. Proton scattering

Coulomb corrections are needed also for in-
elastic scattering of light particles in a heavy
target. As an example, let us consider the scat-
tering of protons on 2~U at 22 MeV. ' The nu-
clear matching radius is 15 fm, whereas a value
of 30 fm was used in Ref. 18. The cross section
obtained with 20 fm is also shown on Fig. 3 by the
dashed curve.

The value of 30 fm is not large enough because
the curve obtained with 50 fm differs below 30'.
The plain curve is obtained with Coulomb cor-
rections and a matching radius of 15 fm. It dif-
fers from the 50 fm results below 16'. The com-
putation with Coulomb corrections stops with 191
values of J, whereas the usual computation with
30 fm stops with 31 values of J. The dotted curve
is the result obtained with Coulomb corrections
and only 31 J values. The series of S matrices

are too sharply truncated and there are more
oscillations in the curve. This shows that very
high partial waves must be taken into account,
even if all the 191 ones used in the plain curve
are not necessary.

This example shows that the importance of
Coulomb corrections is not restricted to heavy
ion inelastic scattering. It should often be in-
cluded for deuterons, and, a fortiori, in a-par-
ticle inelastic scattering.

C. Comparison with other approaches

In one of the most usual approaches to heavy
ion inelastic scattering, "' the wave function is
written as a superposition of ingoing and outgoing
waves of which the coefficients are unknown new

functions. The coefficients of the outgoing waves
are related among themselves by slowly varying
potentials and with the coefficients of the ingoing
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waves by quickly varying terms which are dropped
in a first approximation. This implies

M(F F R)-~-~-M(G G R)-~-~

M(F& G&R)& &
M(G&FyR)g (65)

which is approximately true for heavy ion but not
for proton scattering. The integral M(G, G, R)i&»
becomes very large with respect to M(F, F,R),",'
in the transition region between the nuclear region
and the asymptotic one; we chose to use (65) if
M(G, G, R),~, ' is larger than the wave number.

lyly
The coupling between ingoing and outgoing waves

can be taken into account in higher approxima-
tions. " For very heavy ions, this procedure con-
verges quickly, "but the method described here
is no more suitable, due to too large wave num-
bers. However, it should be noted that iterations
on the coupling between ingoing and outgoing waves
are more time consuming than the ones described

here, and that the use of Pade approximants'
gives good results up to six times the radius of
convergence.

When the bombarding energy is decreased down
to the Coulomb barrier, the iteration procedure
described here does not work any longer; results
are not stable with respect to the matching radius.
However, the usual coupled equations with the
use of (35) are fairly independent of the matching
radius. This difference of behavior comes from
higher-order effects; it should disappear if the
B term of Eq. (30) is not taken into account when
the C,'""s are used to compute (31) if the integral
of Eq. (30) is negligible.
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