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Effect of a density isomer on high-energy heavy-ion collisions
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On the basis of conventional nuclear fluid dynamics, we study the sensitivity of high-energy heavy-ion collisions to
a density isomer in the nuclear equation of state, as well as to a variation in the nuclear compressibility coefficient.
Our equation of state is a new functional form which has the property that the speed of sound approaches the speed
of light in the limit of infinite compression. The equations of relativistic nuclear fluid dynamics are solved
numerically in three spatial dimensions by use of a particle-in-cell finite-difference computing method for the
reaction "Ne+'"U at a laboratory bombarding energy per nucleon of 393 MeV. By integrating over the
appropriate ranges of impact parameter, we compute the double-differential cross section d'o/dEdQ corresponding
both to all impact parameters and to central collisions constituting 15% of the total cross section. To within
numerical uncertainties, the results for the various equations of state are very similar to one another except for
central collisions at laboratory angle 8 = 30' and for both central collisions and all impact parameters at 8 = 150'.
In these cases, over certain ranges of energy, d'o. /dEdQ is larger for the density isomer than for conventional
equations of state. The results calculated for all impact parameters are compared with the experimental data of
Sandoval et al. for outgoing charged particles.

NUCLEAR REACTIONS Ne+ +U, E~/20=393 MeV; calculated d o/dEdQ for
outgoing charged particles for all impact parameters and for central collisions.
High-energy heavy-ion collisions, relativistic nuclear fluid dynamics, nuclear
equation of state, density isomer, particle-in-cell finite-difference computing

method.

I. INTRODUCTION

With the development of accelerators that are
capable of accelerating heavy nuclei to relativistic
energies, we are now beginning to explore what

happens when heavy nuclei become highly com-
pressed and excited. As part of the theoretical
effort in this area, several calculations of high-
energy heavy-ion collisions have been performed
on the basis of conventional nuclear fluid dynam-
ics, ' "where the fundamental input is the nuclear
equation of state. It is of crucial importance to
know the sensitivity of the calculated results to
the input equation of state.

Some two-dimensional and three-dimensional
calculations have already been performed for dif-
ferent equations of state, ' but the fairly large
numerical errors that are present have precluded
an accurate assessment of this sensitivity. In the
present study we improve in two separate ways the
numerical accuracy of three-dimensional relativis-
tic nuclear fluid-dynamics calculations performed
by use of a particle-in-cell finite-difference com-
puting method. ' ' First, we represent the fluid

by approximately three times as many Lagrangian
computational particles as were used previously.
Second, we use an improved treatment of exterior
cells that does not require setting their rest-frame

density equal. to normal nuclear density.
With this improved computing method, we study

the effect of a density isomer in the nuclear equa-
tion of state, as well as the effect of varying the
nuclear compressibility coefficient, on the dis-
tribution of outgoing matter in the reaction ' Ne
+"U at a laboratory bombarding energy per nu-
cleon of 393 MeV. By integrating over the appro-
priate ranges of impact parameter, we compute
the double-differential cross section d'oldEdQ
corresponding both to all impact parameters and to
central collisions constituting 15% of the total
cross section. The results calculated for all im-
pact parameters are compared with the recent
experimental data of Sandoval et gl. for outgoing
charged particles. 'g Although we vary only the
compressional contribution to the nuclear equa-
tion of state, an equally important problem for the
future is to study the sensitivity of high-energy
heavy-ion collisions to changes in the thermal
contr ibution.

Our considerations are based on conventional
nuclear fluid dynamics, which neglects any inter-
penetration that the target and projectile may ex-
perience upon contact. Although this interpene-
tration can be taken into account by means of two-
fluid dynamics, " in which coupled relativistic
equations of motion are solved for separate target
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and projectile nuclear fluids, the effect of the
equation of state in such a model has not been ex-
plored.

We introduce in Sec. II our nuclear equation of
state, which is a new functional form with the
property that the speed of sound approaches the
speed of light in the limit of infinite compression.
In Sec. III we discuss our relativistic fluid-dy-
namics equations of motion and the improvement
that we have made in our particle-in-cell finite-
difference computing method, which is used to
calculate the time evolution of the matter dis-
tribution and the cross section d o/dEdQ for out-
going charged particles. Our conclusions are pre-
sented in Sec. IV.
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II. NUCLEAR EQUATION OF STATE

The nuclear equation of state, which specifies
how the pressure depends upon density and ther-
mal energy, can be written as the sum of a con-
tribution from the compressional energy and a
contribution from the thermal energy. This is
seen most clearly by recal. ling that the total in-
ternal energy per nucleon is given by'

8(n, s}=$,(n)+s,

where bo(n) is the ground-state energy per nucleon
at nucleon number density n and is the thermal
energy per nucleon. The pressure p is then ob-
tained from the fundamental relation~

, ag(n, s),dg.(n), ss
en ~ dn en '

with differentiation at constant entropy per nucleon
s.

A. Compressional contribution

For the ground-state energy per nucleon b,(n)
we use a new functional form which has the proper-
ty that the speed of sound approaches the speed of
light in the limit of infinite compression. This is
achieved by parametrizing bo(n} for n greater than
a critical value n, in terms of three smoothly
joined parabolas in the density, so that in the
limit of infinite compression it increases linearl. y
with density. In the limit of zero density, b 0(n)
is taken to be the difference between a specified
term proportional to n' ' that represents the kinet-
ic energy of noninteracting nucleons and a term
proportional to n whose coefficient is adjusted so
that the two forms join smoothly with continuous
value and first derivative.

To be specific, our equation for b,(n} is

K, =(-1)'9n,'
Qn

is the magnitude of the compressibility coefficient
at equilibrium density n, . We insert the factor
(-1)' in its definition so that it is positive in each
region. To adhere to standard notation, we often
use the symbol K=—Kp to refer to the compressibil. i-
ty coefficient at normal nucleon number density
n~. The quantity bo(n, ) is the ground-state energy
per nucleon at equilibrium density n, .

In Eq. (3) for b,(n} there appear three equilibri-
um densities n„three equilibrium energies ba(n, ),
three magnitudes of compressibility coefficients
K„three joining points n, , n~, and n„and the
coefficient 5, resulting in a total of 13 constants.
Six of these are eliminated by the requirement that
b,(n) be continuous in value and first derivative at
the three joining points n„n~, and n, . This leaves
a total of seven independent constants for the spe-
cification of b,(n} when it contains a density iso-
mer. For these seven constants we choose the
equilibrium density, energy, and compressibility
coefficient at normal density and at the density
isomer, as well as the joining point n, . By taking
the limit in which n, is infinite, we are also able
to describe with Eq. (3) a conventional equation of
state that does not contain a density isomer.

Once the seven independent constants no, b,(ng,
K, n„b,(n,), K„andn, have been specified, the
joining points n and n„the coefficient 5, the
equilibrium density n„the energy b( )n, and the
compressibility coefficient K, are obtained by use
of the formulas given in the Appendix.

We show in Fig. 1 the resulting ground-state
energy ba(n) for three specific choices of con-
stants. In each case, normal nucleon number
density

1
np 4—'r3

3 0

is calculated with the value r0= 1.18 fm for the
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10 showed that pion condensation leads to a density
isomer for certain values of their parameters.

B. Thermal contribution

0
00 MeV

For the thermal contribution to the pressure
we use the nonrelativistic Fermi-gas model,
which yields4

2 —=288
Pg herman 9pl $

Unlike what is often implied, this is a general
result for the nonrelativistic Fermi-gas model
that is valid to all. orders in the temperature.

(4)

III. RELATIVISTIC FLUID DYNAMICS

A. Equations of motion

200 MeV
density isomer

—10 I I I

0 1 2 3 4 5
Nucleon Number Density n jne

FIG. 1. Compressional contribution to our three nu-
clear equations of state.

fundamental nuclear-radius constant. '4 To simu-
late the effects of surface and Coulomb energies
for finite nuclei, we use the value 8 (no) =-8 MeV
at normal nucleon number density.

The solid line in Fig. 1 shows the result for a
conventional nuclear equation of state with com-
pressibility coefficient K=200 MeV, which is close
to the experimental value of 210+ 30 MeV deduced
from experimental data on nuclear giant-mono-
pole resonances. " The dashed line shows the ef-
fect of doubling the compressibility coefficient in

a conventional nuclear equation of state to 400
MeV.

Finally, the dot-dashed curve in Fig. 1 shows
the result for an equation of state with a density
isomer that is taken to occur at a density n2 =3
n, and an energy 8,(n,) =-6 MeV. The joining
point is taken to be n~ = ~ no, below which the
curve is taken to be identical to that for our con-
ventional equation of state with K= 200 MeV. The
compressibility coefficient for the density isomer
is taken to be K, =1800 MeV, so that the curvature
at the density isomer is equal to that at normal
density. The resulting curve is qualitatively si-
milar to some that have been computed numerical-
ly by Migdal" and by Hecking and Weise, "who

In a complete nuclear fluid-dynamics calculation,
we would need to take into account surface energy,
Coulomb energy, nuclear viscosity, thermal con-
ductivity, and single-particle effects, as well
as the production of additional particles and the
associated radiative loss of energy from the sys-
tem. However, in heavy-ion collisions at the lab-
oratory bombarding energy per nucleon of 393 MeV
considered here, these effects are small com-
pared to those caused by the dominant kinetic,
compressional, and thermal energies, and are
consequently neglected.

The covariant relativistic hydrodynamic equa-
tions that we solve express the conservation of
nucleon number, momentum, and energy for a
specified nuclear equation of state. In units in
which the speed of light c =1, these equations
are'~

BN—+V (vN) =0,
'dt

(5a)

BM

at
+V ~ (vM) = —Vp, (5b)

and

—+& ~ (vE) =-& ~ (vp),
Bt

(5c)

N =yn,

M = y~(a +p)v,

(6a)

(6b)

where N, M, and E are, respectively, the nucleon
number density, momentum density, and energy
density (including rest energy) in the laboratory
reference frame and v is the velocity of matter
relative to the laboratory frame. The three labora-
tory-frame quantities are related to rest-frame
quantities by
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(6c) C. Time evolution of the matter distribution

where y=(1 —v') 'n and e is the internal energy
density in the rest frame, which is related to the
internal energy per nucleon of Eq. (1) by

e = [mo+8(n, s)]n.

B. Particle-in~11 computing method

For our nuclear equation of state, which is
specified by Eqs. (2)-(4), and for given initial
conditions, we solve the equations of relativistic
nuclear fluid dynamics numerically in three spa-
tial dimensions by use of a particle-in-cell finite-
difference computing method. ' This technique is
applicable to supersonic flow and combines some
of the advantages of both Eulerian and Lagrangian
methods. To facilitate comparisons with experi-
mental results, the calculations are performed in
the laboratory reference frame.

As in previous calculations with this technique,
the computational mesh consists of fixed cubical
Eulerian cells approximately 1.2 fm in length.
The fluid, which moves through this mesh, is
presented by about 26000 discrete Lagrangian
particles, corresponding to 3'=2V particles per
cell for nuclear matter at equilibrium density.
This is about three times the number of computa-
tional particles used previously.

From finite-difference representations of Eqs.
(5), the values of N, M, and E for each Eulerian
cell are calculated at later times in terms of pre-
ceding values. The time step used for this pur-
pose is approximately 2.8x 10 '4 s. By means of
a partial algebraic reduction followed by the iter-
ative solution of a transcendental equation in one
unknown, Eqs. (2)-(4), (6), and (7) are solved to
yield the values of n, v, &, and p throughout the
mesh. Then the values of 8 can be found from
Eqs. (1) and ('f).

Another improvement in the present cal.culation
concerns our treatment of exterior cells, for
which the volume occupied by the Quid is in gener-
al less than the volume of the cell. In previous
calculations, the rest-frame density of all. exter-
ior cells was simply set equal to equilibrium nu-
clear density. ' Although this procedure is ade-
quate during the early stages of the collision it
becomes increasingly worse during the later ex-
pansion stage. We therefore determine the rest-
frame density of edge cells by averaging the rest-
frame densities of adjacent interior cells if there
are any. For exterior cells that are not adjacent
to interior cells, we compute the density by as-
suming that the entire cell volume is occupied by
fluid.

0.0

'4Ne+ "'U at E~ /20 = 393 MOV

IMPACT PARAMETER b = 0.1 {RI+ RP)

k

4.2

11.2

K = 400 NeV K = 200 MeV OENSITY ISOMER

FIG. 2. Time evolution of the matter distribution in
the collision of ~ Ne with ~+U, calculated for three dif-
ferent nuclear equations of state.

We consider the reaction ' Ne+~"U at a labora-
tory bombarding energy per nucleon of 393 MeV,
for which there exist experimental data on the
cross section d o/dEdQ for outgoing charged
particles. " For each of the three equations of
state illustrated in Fig. 1, we solve the equations
of motion for five different impact parameters.
We continue calcul. ating the fluid-dynamical ex-
pansion to relatively small densities, where the
thermal energy per nucleon is negligible, rather
than perform a thermal folding after the system
reaches a freezeout density at which fluid dynam-
ics ceases to be valid. '

We show in Fig. 2 the calculated time evolution
of the matter distribution for an impact parameter
that is 0.1 the sum of the target and projectile
radii, corresponding to nearly central collisions.
Each column presents a side view of the matter
distribution evolving in time for a different equa-
tion of state. The initial frame in each case shows
a "'U target bombarded from above by a Lorentz-
contracted ' Ne projectile whose energy per nu-
cleon is 393 MeV. The projectile and target are
represented by computational particles, which are
initially aligned so that in the direction perpen-
dicular to the page only a single point is visible.
However, as the impulse resulting from the col-
lision propagates throughout the system this
alignment is destroyed and additional particles
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"Ne + "8U at E /20 = 393 MeV
born
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come into view.
The target and projectile are initially deformed,

compressed, and excited by the collision, which
produces curved shock waves. . These are fol-
lowed by rarefaction waves and an overall expan-
sion of the matter into a moderately wide distribu-
tion of angles. The results for the three different
equations of state are very similar to one another,
but the expansion stage starts later because the
matter is compressed to a higher density for our
equation of state with a density isomer compared
to our two conventional equations of state.

Because it is difficult to extract densities from
plots such as those in Fig. 2, we show in Fig. 3
perspective views of the rest-frame density in the
midplane of the collision for our conventional equa-
tion of state with compressibility coefficient K
= 200 MeV. In our finite-difference calculation,
the matter is compressed to a maximum rest-
frame density of 3.9 no. However, because of the
rapid expansion of the system the rest-frame
density remains above 2 n, for a total time of only
1.0x 10 "s. The calculated results for our other
two equations of state are qualitatively similar to
those shown in Fig. 3, although for our conven-
tional equation of state with K= 400 MeV the mat-
ter is compressed to a maximum rest-frame den-
sity of only 3.4 no. For our equation of state with
a density isomer the matter is compressed to a
higher maximum rest-frame density of 5.1 n,. In
this case the rest-frame density remains above
about 3 no for a total time of 1.4 x 10-" s and above
2 n, for a total time of 1.9 x 10-" s.

D. Cross section d e/dEdQ for outgoing charged particles
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For a given impact parameter we construct from
the velocity vectors at some large time the energy
and angular distributions for the expanding matter.
The small amount of matter that already has
passed through the top and side boundaries of the
computational mesh is also included. By inte-
grating over the appropriate ranges of impact par-
ameter, we compute the double-differential cross
section corresponding both to all impact para-
meters and to central collisions constituting 15$
of the total cross section. The cross section for
the outgoing matter distribution is then converted
into the cross section d'o/dEdQ for outgoing
charged particles under the assumption of uniform
charge density.

The results calculated for a conventional nuclear
equation of state with compressibility coefficient
K= 200 MeV are shown in Fig. 4 in the form of
energy spectra at four laboratory angles ranging
from 30' to 150 . Some measure of the numerical
inaccuracies inherent in the calculations can be
determined from the fluctuations in the histograms,

1.4 x 10-»I

2

8.4 x 10-»I 20.8 x 10-»s

Laboratory Kinetic Energy per Nucleon (MeV)

FIG. 3. Perspective views of the rest-frame density
in the midplane of the collision of Ne with 2+U, cal-
culated for our conventional nuclear equation of state
with compressibility coefficient K= 200 MeV.

FIG. 4. Charged-particle energy spectrum d2g/dEd 0
calculated for our conventional nuclear equation of
state with compressibility coefficient K= 200 MeV. The
histograms calculated for all impact parameters are
compared in the left-hand side of the figure with the
experimental data of Sandoval et al. (Ref. 12).
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which are obtained using angular bins of 10' width.
The results calculated for all impact parame-

ters, given in the left-hand side of Fig. 4, are
compared with the experimental data of Sandoval
et a/."for outgoing charged particles, which in-
clude contributions from protons, deuterons, tri-
tone, 'He particles, and 'He particles. Because
of our neglect of binding, at low energy the cal-
culated results at all angles are higher than the
experimental results. At higher energy the cal-
culations reproduce, to within numerical uncer-
tainties, the experimental data at all angles ex-
cept 150', where the calculated results are some-
what below the experimental results.

The results calculated for central collisions con-
stituting 15% of the total cross section are given
in the right-hand side of Fig. 4. At low energy
and all angles these results are significantly be-
low those for all impact parameters. At labor-
atory angle 8 = 30' the result for central collisions
decreases much more rapidly with increasing
energy than the result for all impact parameters.
However, at 8=150' the result for central col-
lisions is at higher energy very similar to that
for all impact parameters. %e are unable to

compare our calculations for central collisions
with experimental data because the available data
for central collisions do not yet include contribu-
tions from composite particles but instead in-
clude only protons. "

As shown in Fig. 5, the results calculated for a
conventional nuclear equation of state with K= 400
MeV are very similar, to within numerical un-
certainties, to those calculated with K= 200 MeV.
Varying the compressibility coefficient alone in
a conventional equation of state has little effect on
the single-particle-inclusive cross section
d'rrldEdQ for either all impact parameters or
central collisions. The insensitivity of the angular
distribution to the compressibility coefficient has
also been demonstrated by Bertsch and Amsden. '

%e show finally in Fig. 6 the results calculated
for our equation of state with a density isomer.
At most energies and angles these results are
very similar, to within numerical uncertainties,
to those calculated for conventional equations of
state. However, for central collisions at 8 = 30
the results calculated for a density isomer de-
crease more slowly with increasing energy than
those calculated for conventional equations of state.
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FIG. 5. Charged-particle energy spectrum d2g/dE'dO

calculated for our conventional nuclear equation of state
with compressibility coefficient E=400 MeV. The
histograms calculated for all impact parameters are
compared in the left-hand side of the figure with the
experimental data of Sandoval et al. Puef. 12).
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FIG. 6. Charged-particle energy spectrum d20/dEd&
calculated for our nuclear equation of state with a den-
sity isomer. The histograms calculated for all impact
parameters are compared in the left-hand side of the
figure wiQ. the experimental data of Sandoval et al.
ref. 12).
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Also, for both central collisions and all impact
parameters at 8 = 150' the results calculated for
the density isomer are higher than those calcula-
ted for conventional equations of state. These
differences arise because at this bombarding en-
ergy the softer density-isomer equation of state
leads to higher initial density and thermal energy
per nucleon, which increases the thermal contri-
bution to the cross section in regions where it
would otherwise be small.

E. Errors

Ne + U at E j20 = 393 hied
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FIG. 7. Charged-particle energy spectrum g o/dEdQ
calculated for our conventional nuclear equation of
state with compressibility coefficient K= 200 MeV. The
error bars represent the calculated statistical errors.

Several sources of errors in the numerical
method used in this paper to solve the relativistic
Euler equations have been identified. Among
these are the finite time step, the finite cell size,
the finite number of marker particles and their
original placement, the treatment of edge cells
and round off errors.

The magnitude of the errors is difficult to as-
sess. However, one advantage of the particle-in-
cell method is that one may obtain an estimate
of the statistical error: If the number of marker
particles in an energy-angle bin is N, the statisti-
cal error is ~N. One may then relate this to a
statistical error in the calculated d'oldEdQ. The

resulting errors are shown in Fig. 7 for the equa-
tion of state having a compressibility of K=200
MeV. The statistical errors for the other two
equations of state are similar and are not shown.

Errors induced by using a finite time step were
investigated by performing several calculations
using different time steps; the resultant errors
were less than the statistical errors for time
steps less than 5.6x 10-'4s or twice the time step
actually employed. The principal effect of using
a shorter time step was to reduce fluctuations in
the rest frame density and the entropy. The ef-
fects of finite cells and the finite number of
marker particles were investigated in a similar
fashion subject to the constraint of available com-
puter memory. The calculations described in the
previous sections used 12 cells to span the "'U
nucleus. Decreasing the number of cells to 10
produced a double differential cross section with
larger relative errors, but which encompassed
the previous d'o/dEdQ calculated with 12 cells.
Decreasing the number of cells to eight produced
large numerical fluctuations. By increasing the
amount of volume within the computational mesh
occupied by the two nuclei, it was possible to per-
form a calculation in which 16 cells spanned the
"'U nucleus. Although the reaction could be
meaningfully followed for only a few time steps
before large numbers of marker particles began
to leave the mesh, the calculated maximum densi-
ty differed from the calculation employing 12 cells
by less than 10 percent.

The original placement of the marker particles
was at the vertices of a closely packed cubic array.
The marker particles were 0.4 fm apart. This
regular spacing gives rise in part to the striations
evident in Fig. 3. Effects of this regular place-
ment of the marker particles were investigated by
randomly placing the marker particles in a sphere
of radius 0.04 fm centered about its original po-
sition. The principal result of this randomization
was to reduce the amount of apparent striation,
but again the effect on the calculated d'oldEdQ
was less than the statistical error.

Two further important checks were performed.
After each cycle of the calculation, the total mo-
mentum, energy, and entropy was calculated. The
energy and each Cartesian component of momen-
tum were conserved to a relative accuracy of 10-' .
To save computer storage the positions of each
of the computational particles were stored in one
half of a 60 bit word; no loss of precision was
found and the effects of round off error were there-
fore adjudged to be insignificant. Finally, the
expansion of the nuclear fluid should be isentropic
after the creation of the shock wave. In the cal-
culations reported here, the entropy initially in-
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creased rapidly, but approximately 5 x 10~' s
after the initiation of the reaction, the calculated
entropy remained constant with fluctuations of 5%.

IV. CONCLUSIONS

On the basis of a three-dimensional relativistic
nuclear fluid-dynamics calculation of the single-
particle-inclusive cross section d'/J!dE/fQ for all
impact parameters and for central collisions, we
have shown that the calculated results depend very
little on the nuclear compressibility coefficient.
Thermal folding after freezeout would reduce the
small differences that are present even further.

A strong density isomer increases the cross
section /f'a/dEdQ for central collisions at 8 = 30'
and for both central collisions and all impact par-
ameters at 8 = 150', but numerical uncertainties
are comparable to the effect. Furthermore, the
inclusion of transparency in a more realistic mod-
el that goes beyond conventional nuclear fluid dyn-
amics would also increase d'o/dEdQ for central
collisions at 8=30, which complicates the inter-
pretation of experimental data.

Although current experimental data on relativ-
istic heavy-ion collisions can be understood on the
basis of conventional ideas, the work done thus
far provides a necessary background for the iden-
tification of any new phenomena that may result
from high compression and excitation of nuclear
matter. Possible directions for the future include
studies of excitation functions, two-particle cor-
relations, impact-parameter dependences, par-
ticle-multiplicity distributions, the deuteron/pro-
ton ratio, and the Coulomb distortion of charged-
pion spectra.
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APPENDIX: DETERMINATION OF DEPENDENT
CONSTANTS IN THE EQUATION FOR Eo{n)

We give here the formulas that permit the cal-
culation of the six dependent constants in Eq. (3)
in terms of the seven independent constants. The
requirement that E,(n) be continuous in value and
first derivative at the joining point n, gives two
equations involving the two unknown quantities n,
and b. A small amount of algebra yields the equa-
tion

-'an, ~'+-
~a n, ' —[ho(no)+ vK)= 0,

which is solved iteratively by use of Newton's
method for the intersection point n, . The coef-
ficient b is then given by

2 a 2 1 1

nano

The requirement that 8,(n) be continuous in val-
ue and first derivative at the intersection point
n, yields one equation involving the three unknown

quantities, n„8,(n,), and K, and a second equa-
tion involving n, and Kg A similar requirement
at the joining point n, yields one equation involving
the four unknown quantities n» 80(n, ), K„andn,
and a second equation involving ny lt'y and n,.
After a considerable amount of algebra, we are
able to obtain the joining point n, from the equa-
tion

j./2 -
rt' ) x/2 -l +Vino(no) -&0(~))/K

no j Ino

The equilibrium energy 8,(n, ) is then given by

1) o( ) 9 f 1/2 1/2 f 'i vs

(no no &no& n~ K

lis ) 1PII n ) 1/2

in terms of which the equilibrium density n, is obtained from
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I
~n 1 —,

' h. n, -8.~ K R n

0 0 ~ ~ ~ 2

The compressibility coefficient K, is given finally by
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