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Relativistic heavy ions measure the momentum distribution on the nuclear surface

J. Hufner and M. C. Nemes

(Received 29 December 1980)

In fragmentation reactions of the type "0+target~"0+X, the momentum distribution of the outgoing
fragment "0reflects the momentum distribution of the nucleon which is removed from the surface of the projectile
nucleus. We derive a relation using Glauber's multiple scattering theory and the Wigner transform of the one-body
density matrix. The experimental cross section at 2 GeV/nucl is analyzed with the following result: The uniform and
local Fermi-gas models fail to reproduce the momentum distribution on the surface. The shell model with harmonic
oscillator wave functions is correct for momenta below the Fermi momentum. Hartree-Fock wave functions describe
the data up to 350 MeV/c.

NUCLEAR REACTIONS Heavy ions, relativistic energies; fragmentation reac-
tions; relation to nuclear momentum distribution on the surface.

I. INTRODUCTION

How is matter distributed in the nucleus?
Various experiments with electrons, mesons,
protons, and ~ particles have resulted in a con-
sistent and very detailed picture of nuclear charge
and matter densities. How is motion distributed
in the nucleus? Do nucleons move faster in the
center and slower on the surface? We still lack
detailed quantitative information. Quasielastic
electron scattering experiments' measure the
global mean square momentum (k') or equivalently
the Fermi momentum pr ——(5(k')/2)'~' of the pro-
tons. Experiments' of the type (e, e'p) map the
single-particle wave function of the knocked-out
nucleon but not for the large momentum com-
ponents. In particular, how is momentum dis-
tributed in the nuclear surface'P Experiments
with relativistic heavy ions may answer this
question. The present paper relates quanti-
tatively the momentum distribution observed in
fragmentation reactions to the momentum distri-
bution on the nuclear surface.

In reactions of the type

"0+target - "0+X,
the momentum of the outgoing fragment "0 is
measured, while everything else remains un-
observed. If k denotes the momentum of the final
fragment in the rest system of the projectile, an
inclusive cross section d'o/dk' can be measured.
The momentum vector k = (k, k~~) is usually decom-
posed into a component ki„parallel to the beam,
and the transverse part R . Situations with Qii &0
are particularly interesting. The fragment is
faster than the projectile. Since the stripping of
a nucleon cannot accelerate the projectile, the
extra forward momentum must have been present

in the projectile before the collision. This hypo-
thesis is supported by the fact that experimental
shapes of d'o/dk' do not depend on energy nor
on the target. ' Goldhaber has been the first to
relate the width of g'o/gk' to the nuclear Fermi
momentum. Abul-Magd et al. ' and Fujita et al. '
have followed up this idea. Fragmentation reac-
tions at much lower energies (40 MeV/nucleon)
have been analyzed in a, similar spirit (Shyam
et al. '). However, the quantitative relation be-
tween cross sections and momentum distributions
is not yet sufficiently clear in the sense that
reaction dynamics and nuclear structure are not
clearly separated. This also holds true for the
earlier attempts to describe high energy deuteron
breakup in the field of the nucleus by Glauber, '
Akhiezer et al. , Bertocchi et al. ,

' and Kuhn

et al."
In this paper we try to give a transparent and

quantitative relation between d'c/dk' and the mo-
mentum distribution on the nucl. ear surface. The
following physical picture underlies the calculation:
Since the fragment "0 in Eq. (1.1) has to survive
in a bound state, the reaction proceeds peripheral-
ly. The extra neutron is removed from the nuc-
lear surface and the "0 reflects its momentum
distribution. Can there be momentum distribution
on the nuclear surface 'P Does the uncertainty
principle allow us to define a momentum distri-
bution in a localized region of space? The ap-
propriate tool to handle this problem correctly
is the Wigner transform ~ of the one-body den-
sity matrix (r( p~ r')
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This quantity represents the "probability" of
finding a particle with momentum p at position 5.
We write probability in quotation marks because
g need not be positive. Only certain integrals
of & are. In this paper we derive the following
relation between & and the fragmentation cross
section d'(T/dk'

dG 2 dv
du„

= ' "
da

. dsD(I) f d* f d's, w(I, *;)(„s„-(s,)).
(1.3)

The distorting function D(s) contains the reaction
dynamics and localizes the reaction to the nuclear
surface. The Wigner transform ~ contains the
momentum distribution of the removed nucleon.
The derivation of Eq. (1.3) from Glauber theory
as well as its conditions of validity are the subject
of the next section. Then, in Sec. III, the ex-
perimental data are compared with several models
for the nuclear momentum distribution. In
particular, Fermi gas models are ruled out. The
paper closes with a discussion of desirable fur-
ther experiments.

H. DERIVATION OF THE CROSS SECTION

(2 1)

The cross section for a fragmentation reaction of the type of Eq. (1.1) is calculated from Glauber's
multiple scattering formalism. " The notation is summarized in the following equation, valid in the pro-
jectile's rest system:

"Z( [ o, @&} +target( I- P&»BO&j - " '&(lk, C~)j +n(lp, q~&) + (target)'(}-0, —q, BB&}.
Before the reaction, the projectile nucleus Z with intrinsic wave function 4', is at rest and the target
approached with momentum —P,. After the interaction a fragment with A —1 nucleons is detected in a
particle-stable 4 with momentum k. The neutron with momentum p and scattering wave function g-, and

pP

the final state B() of the target, are unobserved. The cross section corresponding to Eq. (2.1) is given by
(cf., Fujita et al. ')

(2.2)

jcT

Here the I',&(x;+b —y~) are the profile functions for collisions between a projectile nucleon I located at x,
and a target nucleon j at y~. ~ and y& refer to the respective centers of mass and the impact parameter
b is the transverse distance between projectile and target. As usual in Glauber theory, energy conserva-
tion is neglected. This approximation is good except close to the kinematical limit in I) (cf., Fig. 3 of
Ref. 6). If E, is the total laboratory energy of the projectile and + its mass, then the maximal forward
momentum k

~~
of the fragment in the projectile rest system given by

(2.3)

where m is the nucleon mass. In Eq. (2.2) the sum over target states B8 is performed by closure and the
sum over fragment states 4 is restricted to the particle-stable states (indicated by the prime on the
sum). We expand the projectile s ground state into the 4 (neglecting antisymmetrization)

4',(x„.. . x„,) = Q a q„(x,)4 (x„.. .x„), (2.4)

where the a are the spectroscopic amplitudes. During the fragmentation reaction a nucleon is lifted from
a bound orbit y to the scattering state qy. The two wave functions are therefore orthogonal:

&qylv )=0. (2.5)

This relation has important consequences. With this notation the cross section Eq. (2.2) is written as

3

s s ~
'"'"2

I .I' Js'xs-„(*)s (x) Jl s's's;. s(.x.')s"(x')&(s s', 5~ s s'~ s;x),
(2.s)

where x=(s, z) and x'= (s', z'). The function G is defined by
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G = d'x,. d'x,' d'y, e, y„.. . C. x„.. . e x,', . . . 1-X r „+r*„-r„„r*„. 2.7
f &1 f&1 nf GP

n 6 1'

The profile functions I'~depend on (s +b —t „) and the I'* on (s' +b'-t„'), where t„ is the transverse
component of yob We have assumedthat the fragment state 4 in Eq. (2.4) does not change during the
collision, i.e. , that elastic fragment-target collisions dominate the cross section. The parameter A in
Eq. (2.7) is introduced to define a cumulant expansion:

lnG (X)= lnG (0)+ 2). G„'(0)+ ~ ~
9G~

k=1 ~

We truncate after the first order in 1, thus neglecting nucleon-nucleon correlations (cf., Glauber").
G (0)= 1 and

(2.8)

CX

—G„(b, b'; s+ b, s'+ O'; A) (x-o

b+ + b'+=r[Z, (b) —Z;, (b')I ~ r (X,()r ~ s) —Zb(b'+ s'))+ rr (b+ s —b'- s') q ( (2.9)

where ~~ is the optical phase shift function for
elastic fragment-target collisions

z.,(b)=-(q. qb I: r.„q.o,).
n1 &1

(2.10)

Terms of the type I'„„F*„withm & 1 have been
dropped in (2.10) since they are small. The pre-
sumably weak dependence of the optical phase
shift function on the fragment state (labeled (x)
will be neglected. The optical phase shift function

g& describes elastic scattering of the removed
nucleon by the target

„(b~ )=-(o, I r,„(b+ —r )o,). (q.(r).
G =G„„+G1, (2.14}

with the coherent part" (small Fourier compo-
nents}

(b) =fdrq e's' (2.13)
d g

The function (x»(b) is of short range (order 1 fm)
and therefore introduces high Fourier compon-
ents in the integrals of Eq. (2.6).

The reaction dynamics which are contained in G
can be separated according to the magnitude of
the Fourier components which are generated. The
phase shift functions depend smoothly on the argu-
ment (variations over distances of the nuclear
radii}, while the c» fall off rapidly. Therefore

The inelastic interaction of the knocked-out nuc-
leon with the target is contained in the last term
of Eq. (2.9). It is proportional to the thickness
function of the target

G,~ = exp[ix2, r(b) —iyg r(b ')

+iyr(b+ s) intro(b'—+ s'}] (2.15)

q, (B)=d,I dzq(b, z) (2.12)

and to the Fourier transform of the nucleon-nu-
cleon cross section

and the incoherent term G„,. Equation (2.15) de-
scribes those fragmentation processes in which
the target remains in its ground state. Therefore,
the coherent part of the cross section defined by
introducing into Eq. (2.6} can be written as

d'c d~b
ooh Q ~S

~

2 d2q e -i)2 be (X gr(O) dX d2S)7rb (S g}e(X r(b o)~ .(S X}
7t

(2.16)

This cross section corresponds to the diffractive dissociation of the deuteron-nucleus collisions extensive-
ly discussed in Refs. 8-11. Since yr is a smooth function of s, the orthogonality, Eq. (2.5), between 2} and

is very important and is responsible for the smallness of the coherent contribution. For reaction (1.1)
with "C as a target, the integrated coherent cross section is calculated to be of the order of 10$ of the
total fragmentation cross section. For this reason we neglect it in the comparison with experiment and
relegate a further discussion of Eq. (2.16) to Appendix A.

The fragmentation cross section which corresponds to the incoherent processes contained in G„, is
written as
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~3 2 2do d2 dbdb
dk (2v}

dg z e e FT FT

"Z lx. I f x'*x'x'xx ;tx&xx ;tx 'lx. (x&x."(x '&

a

xi z((xr(&"-2&-xr(K'-r» exp (bi- b, -)T
i

+ s+b +s
(2.17)

It sums all contributions in which the target is excited; see, for instance, the similarity of the operator
in curly brackets to the one by Qlauber and Matthiae. '3 Since the inelastic collisions by the free space NN
cross sections o» generate momentum components of the order of 0.4 GeV/c, the scattering function ((I& „-

may be replaced by a plane wave (cf., also Appendix B). Then the integration over q in Eq. (2.17) leads to
a 5 function

d o d kd2kx3(2&(b+ s b s+Xfx)r(»-x)r(b»
dk3

—Ij z 1 (x)pm(x )z(2v)2 m xx (2.13)

A particularly clean result is obtained if one calculates the momentum distribution integrated over k„
namely

do do
dki) dk

The integration over k, yields a 5(2&(s -s') in Eq. (2.18) and

(2.19)

d2b e -2 imxF T (b) e -2 Im)(T(b I) eoNg (0)TT (& I)
d ))

(2.20)

Here 8' is the signer transform for the removed particle

x'(R, k& f =Q Io I
x"(R —x)x (R+ x). (2.21}

Equation (2.20} is the form of Eq. (1.3) except for the small shift (k„) discussed in Appendix B. The nu-
clear structure information, i.e. , the momentum distribution in the projectile ground state, is contained
in the Wigner transform while the term in curly brackets describes the reaction mechanism and may be
written as a function D(s). The phase shift function X)r ensures that target and fragment are kept a dis-
tance ib i

)R) +Rr apart. The term in the square bracket is maximum for ib+ s i =Rr, where the knock-
out takes place. The Wigner transform vanishes for isi &R~. For these reasons the expression is larg-
est on the projectile's surface is i =R~. Details are postponed to the next section.

While the Wigner transform need not be positive definite, the expression appearing in Eq. (2.20) must
be because the cross section is positive. This is a consequence of the following particular situation: k„
is observed and z is integrated over (thus washing out any spatial information in z direction). Conversely,
the transverse spatial components are localized to the surface by the reaction dynamics, but k, is inte-
grated over. For these reasons there are no problems with the uncertainty relation.

In the actual experiment2 the quantity in Eq. (2.20) is not measured but rather d2o/dk2 for k, =0 and also
for k„=0. The corresponding theoretical expression is only obtained after a further approximation: Since
the reaction is localized in impact parameter and b -b' is small, one can expand

W ) W)b+b b+b
i[X&xr(b) -XPr(b') J= -2 ImX&xr

2
+2(b —b') ~ V ReX)r 2

(2.22)

Then

3

dk
d2z d2)&&

-2 Xmx&xr(»&e -2 Xmxro& i&[&(&&&&((0&rr(b'2& 1] dz Qf[s z k ReVX (b)] (2.23)
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The additional transverse momentum M,
=-ReVg» which appears in the argument of Eq.
(2.23) is acquired by the fragment when it scatters
elastically from the target. Thus according to
Eq. (2.23) the momentum distribution d'a/dk' is
not directly related to the momentum distribution
in the target. Difficulties are particularly evident
in transverse direction. This has been observed
already in Refs. 6 and 11. Furthermore, the inte-
gration over b is more complicated and reaction
dynamics and nuclear structure are no more
so clearly separated as in Eqs. (1.3) and (2.20).

III. CALCULATION AND COMPARISON
WITH EXPERIMENT

As derived in the previous section, the fragmen-
tation cross section da/dk„, Eq. (2.20), reflects
the momentum distribution on the nuclear surface
in a way which needs the least number of assump-
tions. Unfortunately, dc/dk„ is not measured' but
rather the cross section (d'o/dk3}, , For the
comparison with experiment we shall use the ex-
pression

dz w sy z kij kji kg =0

(3 1)

In this paper we investigate the reaction

160+12C j.5O +g (3.3)

at 2.1 GeV/nucleon. The data are taken from
Greiner et al. The experimental distribution in

k&& covers the range ~k&&~ & 350 MeV/c for k = 0.
The kinematical limit Eq. (2.1) for 2.1 GeV/nu-
cleon "0projectiles is k»

"= 640 Me V/c and large
compared to the observed k]~. Therefore, energy
conservation can be safely neglected. The choice
of a light target in reaction (3.3) is advocated
since the coherent breakup of the projectile due
to the Coulomb interaction with the target is small.
We extrapolate the analysis by Heckman et al."
to "C as target and estimate 1 mb for the contri-
bution of Coulomb dissociation to reaction (3.3).
Similarly, the coherent breakup of "0 due to
elastic scattering by "C is small and estimated
to be below 5 mb (Appendix A}.

Two functions enter the calculation of the cross
section, Eq. (3.1): the distortion function D(s),
which contains all the reaction dynamics, and
the Wigner transform 5, which reflects nuclear
structure. The distortion function is calculated
with no free parameters. Realistic densities for
the matter distribution of the projectile are used,
a Gaussian density for the target is used, and

o~N =40 mb.
We calculate the integrated fragmentation cross

section

with the Wigner transform W from Eq. (2.21) and
the distorting function 0'g = dk' 3

= d9 (3.4)

D(s&=f d'be

x [e'»Nrr &'~ & 1] (3.2)

The integrand in Eq. (3.4} represents the prob-
ability for the abrasion of one nucleon as a func-
tion of its distance from the center. Explicitly,

The symbols are explained in the previous section.
The expression (3.1) is derived from the Glauber
theory with the additional assumption that the mo-
mentum transfer bk, = -ReVX~~ can be neglected.
This momentum arises from elastic fragrnent-
target scattering. The neglect seems justified for
the high energy reaction under consideration for
the following two reasons:

(i) This momentum transfer is transverse, but

we are interested only in the longitudinal depen-
dence k„. For a pure Gaussian wave function the
longitudinal and transverse momentum directions
in the Wigner transform are completely decoupled.
For "Q with its 1p orbits this still holds to a
good approximation.

(ii) The additional momentum r&k~ is estimated
to be of the order of several tens of MeV/c and
therefore small compared to the mean transverse
momentum of about 100 MeV/c for the experimen-
tal distribution.

—=2vsD(s) Tp(s),
do (3.5)

where g~ is the thickness function for the nucleon
which is removed from the projectile. da/ds is
displayed in Fig. 1 and it is clearly most import-
ant for values of s which are larger than the rms
radius of '0, i.e. , at positions where the nuclear
matter is thin. Figure 1 substantiates our claim
that the nucleon is abraded from the nuclear sur-
face (removal of a Is nucleon is unlikely since
it is more localized in the interior). Using Eq.
(3.4) and applying the reduction factor of about —,

'

due to final state interaction (Appendix B), we
find

g~
' =57 mb,

[o„'*&'=(42+ 2) mb] (see Ref. 15). (3.6)

We discuss the shape of the fragmentation cross
section (d'o/dk')~ 0. It reflects directly the mo-
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but pz(H) is the local Fermi momentum

p (fl) =p, (0)t.p(~)/p(0)l". (3.11)

The constant pz(0) is adjusted according to the
requirement Eq. (3.8). In the LFG model, nu-

cleons move slower on the surface. For the shell
model with harmonic oscillator functions (SM-HO)
the Wigner transform can be given analytically

R'
(5 Tt) = e "~' e~ '' —+h2b' —1&sM-Ho 3 &

b JI

(3.12)

1.00.0 2.0 ~ 3.0 4.0 5.0 ~ (f~ )RHS

FIG. 1. The cross section dg/dg for the abrasion of
one nucleon as a function of its distance from the center
of the projectile {solid line). The dotted line {dashed
line) shows the thickness function {which is a measure
of the matter distribution) for p-wave nucleons (s-wave
nucleons). Note how the abrasion cross section peaks at
the surface outside the rms radius.

with the oscillator parameter 5 = 1.V5 fm for '6Q.

Finally, the shell model with Haxtree-I'ock wave
functions (SM-HF) leads to a Wigner transform

IVsM HF ( ~s ~
(2v)'

X ++ ——+ +—(

,&ii)= ja'awiit, &l. (3.7)

(ii) All expressions for W(%, |i) have the same
global mean square momentum

mentum distribution in the Wigner transformation
Eq. (3.1). We use this relation to test various
nuclear models. In order to have a fair compari-
son, i.e., to concentrate on their different predic-
tions on the surface we impose the following two
global conditions:

(i) All models for W(5, jt} reproduce the experi-
mental density p(5)

(3.13)

If the numerical single particle wave functions 4&
are expanded in a harmonic oscillator basis, the
Wigner transform can be calculated using Moshin-
sky's transformation brackets (Appendix C). In
our calculation the wave functions +& have been
obtained from a calculation by t.ampi. "

The experimental data are used in two ways to
test nuclear models: We compare calculated and
experimental zoidths for all four models and look
at the shapes of the momentum distributions only
for the shell model distributions. Table I shows
the comparison of experimental and calculated
widths.

&&'i = ju'~a'a&'w&it &' d'R d'& W(%, jt).
OO d

I ( II) )k =0 && II dy3dk Qg= 0

w, (%,T) =p(K), e(p, '-Tm).
4mpg3

Spatial density p(%} and momentum distribution
are decoupled; nucleons move everywhere with
the same momenta.

The local Fern&i gas model (LFG) retains the
simple form of Eq. (3.9),

(3.9}

W.~(&, ) = p(R 4 . el p.'(~) -&'1,3
sp+

(3.10)

(3.8)

A value (Tt')'i' = 174 MeV/c is extrapolated from
(e, e') experiments Ref. 1.

We consider four models. The uniform Fermi
gas model (UFG) for the nucleus has the Wigner
transformation

xi dn
(~ )

(3.14}

Note the requirement k~ = 0. An average without
this constraint,

d
& "I» f~ »-**-'

(3.15)

gives a different width. The experimental value
in Table I has been recalculated from the data
(for kii) (k«)) and is smaller (by 10 MeV/c) than
the value obtained from a Gaussian fit. ' This
difference is explained by the fact that the experi-
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TABLE I. The widths of the experimental and calcu-
lated cross sections for the fragmentation reaction
i6p+ 12g i5p+g 10'

Z
O.
X
CI
0)

I

o

Nuclear model Q„}g0 [Mevfc]2 &I2

uniform Fermi gas

local Fermi gas

Shell model
(harmonic oscillator)

Shell model
(Hartree- Fock)

Experiment

130

33

91

86

89

10

-2—10

O

bo

10

IV. AN IDEAL EXPERIMENT

In this paper we have related the cross section
d'o/dk' for a fragmentation reaction to the mo-
rnentum distribution of the removed nucleon on
the surface. The relation has been successfully
tested with a particular experiment. Thus we
think that experiments of this type may be a useful
and reliable tool to measure momentum distribu-
tions in nuclei. High energy reactions can thus
be used to investigate nuclear structure. The
derivation and discussion in the previous chapters
can be summarized in the following recommenda-
tions for an ideal experiment: If Tc denotes the
momentum of the fragment in the projectile's
rest frame, the quantity

do' 2 d (7

dk dk''
II

(4.1)

is most useful. That is, the cross section for a
particular k„should be integrated over all trans-

mental distribution is not a pure Gaussian (Fig. 2).
According to the table, the uniform Fermi gas

predicts too large a momentum on the surface
while the local Fermi gas predicts too small mo-
rnenta. The two shell models do well for the width.
In order to test them more severely, we calculate
the shapes of the cross section from the two
models and compare them with experiment (Fig
2). Both models work well for momenta below
and around pr = 225 Me V/c, but the harmonic os-
cillator model falls off much too rapidly for large
rnomenta. As expected, the Hartree-Fock func-
tions do much better. The wave functions of Ref.
16 are given in a harmonic oscillator basis which
is truncated at the Sp orbit. We suspect that the
remaining discrepancy at the high rnomenturn end
is due to the insufficiency of these eight terms
in reproducing the actual wave function. But on
the whole, the agreement is gratifying.

PF
2

10~
0 1 2 3 Ie

k (frn )

FIG. 2. The momentum distribution of ' P fragments
(arbitrary units) in the projectile's frame as a function
of k)( Displayed are calculations with two models: the
shell model (harmonic oscillator) and the shell model
(Hartree-Fock), as well as the experimental data. The
curves have been normalized relative to each other in
order to have the same area Jdk„do/dkI.

"0+target '45+X. (4.2)

verse components. In this way many theoretical
approximations are not necessary and a direct
relation to the nuclear momentum distribution
[Eq. (1.3)] is obtained. The energy of the incident
projectile should be sufficiently high" for two
reasons: The Glauber theory, which underlies
the derivation of Eq. (1.3), works better the higher
the energy, and a lower limit may be 500 MeV/
nucleon. At this energy the kinematical limit is
kii

*=410 MeV/c and therefore the neglect of ener-
gy conservation might be dangerous. Projectile
energies of 1 GeV/nucleon and 2 GeV/nucleon
have kinematical limits of 530 MeV/c and 640
MeV/c, respectively, and permit us to measure
a wider range of intrinsic momenta.

The experiment should concentrate on values
kg ) (kg) since for negative k„multiple scattering
effects, which have no relation to intrinsic mo-
mentum distributions, degrade the spectrum. The
experiment should be performed with light targets
in order to reduce the Coulomb breakup. " The
momenta of those fragments are not related to
intrinsic momenta. Protons as targets would be
very useful. In this case the coherent breakup
cross section would be zero.

Experiments with the removal of more than one
nucleon have been performed, such as
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What can be learned from the momentum distri-
bution of '4' Unfortunately, it is not easily re-
lated to the momentum distribution of two nucleons
in ' O. The reason is the reaction dynamics":
A ' N nucleus can be formed in two ways from
reaction (4.2):

(i) Two nucleons can be removed directly in a
high energy process with the '4N remaining in a
bound state. This process measures properties
of a nucleon pair in "0.

(ii) One nucleon is removed from "O in a fast
process, at the same time the intermediate nuclei"0or "N are excited and later decay into "N.
In this case the momenta of "N measure the sin-
gle-nucleon distribution in "Q modified by the
distribution of a recoil nucleon in the decay.

The relative importance of (i) to (ii) is about 2 to
1 for reaction (4.2)."

The origin of the momentum distribution of nu-
cleons in nuclei is twofold: The average shell
model potential together with the Pauli principle

lead to a smooth momentum distribution charac-
terized by the Fermi momentum. High momentum
components in nuclei are attributed to nucleon-
nucleon correlations. The fragmentation experi-
ment measures the shell model part for the follow-
ing reason: The requirement that the fragment
remains in a bound state limits the state of the
removed nucleon prior to the collision to a shell
model orbit.
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APPENDIX A

In order to estimate the total coherent fragmentation cross section

I 2 2
coh d3k de g 2 e-II'behxgg (b& d3~q x efx g &b+»&q

O r (Al)

we make two approximations. The functions e'"»' ' and e'"~ S'» will give their maximum contributions
at 52 = (Rr+R~)2 and (b+x}2=Rr', respectively. Therefore, one expects an expansion around x = - bR /
(Rr+R~) to converge rapidly and write

(
B

) (
bR

) (
R

(A2)

Inserting (A2) into (Al),

I 2

0""= d k dq ao e ' '
expix~zb +iXz b d xggqxx /pex ~

I (
1T

g""~4 mb. (A4)

The momentum Vyz is estimated from the knowl-
edge of the optical potential to be of the order of
40 MeV/c. This small value ensures rapid con-
vergence of (A2) and permits the truncation in
(A3). Since for ' 0 as the projectile the bound
state y is a IP orbit (well approximated by a har-
monic oscillator wave), the operator x only con-
nects to the 1d orbit or the 1s orbit, the latter
being forbidden by the Pauli principle. Therefore
we exhaust the integral over final states by the id
orbit and find

APPENDIX B

The wave function q;;, Eq. (2.2), of the neutron
which is removed from the projectile is a plane
wave modified by the final state interaction with
the fragment nucleus. In a coherent fragmenta-
tion event, the neutron receives small recoil mo-
mentum and the orthogonality Eq. (2.5) is the
most important consequence of the final state in-
teraction. In an incoherent fragmentation process
(a hard collision) the nucleon receives a mainly
transverse recoil momentum which is fairly large
(400 MeV/c). Then the nucleon reacts in two
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ways with the fragment.
(i) The struck nucleon recoils into the fragment,

deposits all or part of its recoil energy (of order
100 MeV). The fragment will be excited to a par-
ticle unstable state and decay by emitting more
nucleons. ""Those nuclei are not observed.
Hence the final state interaction reduces the cross
section of reaction (1.1).

(ii) The removed nucleon is bound in a shell-

model potential before the interaction. The motion
out of the potential leads classically to a small
observable shift (k„) in the experimental momen-
tum distribution. This is quantitatively under-
stood. ' The detailed calculation of Ref. 6 with a
distorted wave q, calculated from a separable
potential, does not show significant changes in the
longitudinal spectrum (in the transverse direction
the modifications are significant).

APPENDIX C

An analytical expression for the W'igner function, calculated from a general one-body density matrix
(riper'), can be derived, provided (ripIr') is given in the form

ng limi
(C1)

where „, are harmonic oscillator wave functions and a„, are arbitrary expansion coefficients. The
corresponding Wigner function is defined

where

nil hami
n2 l2m2

(C2)

(C3)

The idea is to consider instead

d3
W

I (R p ) f ( 2 )
8 + (X II [

l » l p p) R ) g j g
+

)mi m2

(c4)

which couples the angular momentum of the two particles to a total angular momentum A. with projection
(Xp iffmf/2 m2) is the corresponding Clebsh-Gordan coefficient.

Now we introduce the variable transformation (R, y, p) - (R', y', p')

ytR'- y' = v 2 R ——i,2)

R'+y'=v 2 R+— (C5)

p'= v 2p.
Then (C4) can be rewritten as

3 I

W"„'," "(R', p')=
( )3

2' 'e" ().

peal,

m, l2 —m2) „... ~(R'-y') „, ~ (R' y') . (C6)
mf m2

Using the Moshinsky transformation brackets, ' the R' and y' dependence can now be decoupled, and the
Fourier transform on y' can be explicitly evaluated

W„"&Ii""(R',p')=2 ~ g (NLnlkin|l n2f2X)(Xg iLMfm)4'„i„(R')0'„i (p') .
NLnl

(c7)
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is the Fourier transform of the harmonic oscillator wave function

(Cg)

and (NLnlX ~n~l~nqX) are the Moshinsky transformation brackets as defined in Ref. 20.
Now by using the orthogonality of Clebsh-Gordan coefficients, one can evaluate (CS)

W„"",& ~(R', p')=(-)~& Q (Xm~ —mt ~i)mql2 —mg)(Xp~mLlm)(ÃLnlX)(l|ntlt&)@„~„(R')@„, (p') ~

N L fthm

(c9)

To obtain the Wigner function W one has now only to construct the linear superposition of the S'
Ngg~sl~

according to (C2).
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